Course Roadmap

Rasterization Pipeline

Core Concepts
e Sampling
e Antialiasing
* Transforms

Geometric Modeling

Core Concepts
e Splines, Bezier Curves
e Topological Mesh Representations
e Subdivision, Geometry Processing

Lighting & Materials

Cameras & Imaging

CS184/284A

Rasterization

Transforms & Projection

Texture Mapping

Visibility, Shading, Overall Pipeline

Intro to Geometry
Curves and Surfaces
Meshes and Geometry Processing

Today: Ray-Tracing & Acceleration

Ren Ng

Lecture 10:

Intro to Ray-Tracing &
Accelerating Ray-Scene Intersection

Computer Graphics and Imaging
UC Berkeley CS184/284A

Basic Ray-Tracing Algorithm

Ray Casting

Appel 1968 - Ray casting
1. Generate an image by casting one ray per pixel

2. Check for shadows by sending a ray to the light

CS184/284A Ren Ng

Ray Casting - Generating Eye Rays

Pinhole Camera Model

closest scene

eye ra . . .
ye 1dy Intersection point

(starts at eye and
goes through pixel)

N —
\\
N - T~
N :
< note: more
4’ NN intersection points
. AN
eye point U
AN
N
image plane
A
VAY
< >
@)
light source

CS184/284A Ren Ng

Ray Casting - Shading Pixels (Local Only)

Pinhole Camera Model

eye ray
(starts at eye and
goes through pixel)

N
I
N
A4 TN
\\\\
. NN
eye point g
N
AN
image plane

<IVCA>GI>
perform shading calculation ah
here to compute color of pixel light source
(e.g. Blinn Phong model)

CS184/284A Ren Ng

Discussion: Ray Casting vs Rasterization

Remember:

® Rasterization: 4x4 perspective matrix, project
triangles to 2D screen, rasterize pixels

® Ray Casting: shoot rays through pixels into scene,
intersect with triangles

Discussion topics:
® Will they make the same picture?
® Which algorithm is faster, when?

® Other pros/cons? When would you use each
algorithm, and why?

CS184/284A Ren Ng

Recursive Ray Tracing

“An improved lllumination

model for shaded display”
T. Whitted, CACM 1980

Time:
e VAX 11/780 (1979) 74m
® PC (2006) 6s
e GPU (2012) 1/30s

Spheres and Checkerboard, T. Whitted, 1979

CS184/284A Ren Ng

Recursive Ray Tracing

N
\\\
NER"
< [N
<% N
NN
. AN
eye point N
N\
N
image plane

. vAg¢
light source <(>
AYA

CS184/284A Ren Ng

Recursive Ray Tracing

Mirror ray
(specular reflection)

N
\\\
NER"
bt \\
4’ N
NN
. AN
eye point N
N\
N
image plane

. vAg¢
light source <(>
AYA

CS184/284A Ren Ng

Recursive Ray Tracing

4,

eye point

CS184/284A

~
~
N
N
N

R
N
N
N

image plane

N

vA¢

light source <

>

A

Refractive rays
(specular transmission)

Ren Ng

Recursive Ray Tracing

4,

eye point

CS184/284A

~
~
N
N
N

R
N
N
N

image plane

N

vA¢

light source <

>

A

Shadow rays

Ren Ng

Recursive Ray Tracing

secondary rays

primary ray
\\\

RE

A— [N
\\\\
. AN

eye point g
N

N

image plane

N shadow rays

. VAY

light source <1Ql>
LA

® Trace secondary rays recursively until hit a non-specular surface (or max desired levels of recursion)
® At each hit point, trace shadow rays to test light visibility (no contribution if blocked)
® Final pixel color is weighted sum of contributions along rays, as shown

® Gives more sophisticated effects (e.g. specular reflection, refraction, shadows), but we will go much
further to derive a physically-based illumination model

CS184/284A Ren Ng

Recursive Ray Tracing

CS184/284A Ren Ng

Ray-Surface Intersection

Ray Intersection With Triangle Mesh

® Rendering: visibility, shadows,
lighting ...

Why? ’& i =

\ /
U 4
L 4
L 4
. ’
I P AN

® Geometry: inside/outside test
How to compute?
Let’s break this down:
® Simple idea: just intersect ray with each triangle
® Simple, but slow (accelerate next time)

® Note: can have 0, 1 or multiple intersections

CS184/284A Ren Ng

Ray Equation
Ray is defined by its origin and a direction vector

A
.
Al
“
“
“
.
.
.
.
.
.
.
.
“‘
.
A
.
A
.
° .
.
.
“
“
° ..
.

O/,m

Ray equation:

r(t) =o+td 0<t<oc

point along ray “time” origin unit direction

CS184/284A Ren Ng

Plane Equation

Plane is defined by normal vector and a point on plane

N
Example:
Plane Equation:
p:(p—p') - N=0 ar +by+cz+d=0
all points on plane any point normal vector

CS184/284A Ren Ng

Ray Intersection With Plane

Ray equation: N
r(t) =o+td, 0 <t < oc

Plane equation:
p:(p—p') - N=0

Solve for intersection '/T(t)
Set p = r(t) and solve for ¢
(P—p) N=(o+td—p') - N=0

(P’ —0)-N
d-N

CS184/284A Ren Ng

L = Check: 0 <t <

Ray Intersection With Triangle

Triangle is in a plane
® Ray-plane intersection

® Test if hit point is inside
triangle (Assignment 1!)

Many ways to optimize...

CS184/284A Ren Ng

Can Optimize: e.g. Moller Trumbore Algorithm

O+ =(-b-b,)P, +bP +b,P,

B Where:
t ,*E,
b, =g.11:; _S s, E, =P -P,
b, S, D E,=P,-F
S=0-P,
Cost = (1 div, 27 mul, 17 add) Sl — f)sz
S, = Sxi,

CS184/284A Ren Ng

Ray Intersection With Sphere

Ray: r(f) =o+1td, 0 <t < o0
Sphere: P (p—c)—R*=0

Solve for intersection:
(0o+td—c)* —R* =0

at’ +bt+c=0, where
a=d-d

b=2(o—c)-d
c=(o—c)-(o—c)— R’

CS184/284A

Ray Intersection With Implicit Surface

Ray: r(t) =o+1td, 0 <1t < o0
General implicit surface: p: f(p) =0

Substitute ray equation: f(o+td) =0

Solve for real, positive roots

$2+y2—|—22:1

CS184/284A Ren Ng

Accelerating Ray-Surface
Intersection

Ray Tracing — Performance Challenges

Simple ray-scene intersection

® Exhaustively test ray-intersection with every object

Problem:

® Exhaustive algorithm = #pixels X #objects

® Very slow!

CS184/284A Ren Ng

Ray Tracing — Performance Challenges

e

-

"@er\ef
San Miguel Scene, 10.7M triangles

Ray Tracing — Performance Challenges

Plant Ecosystem, 20M triangles

Pre-Class Discussion: Accelerating Ray-Scene Intersection

~1 million pixels, ~20 million triangles

=N

Wy ':,‘ | "' g o 141!) : » '\ | p " 4 ‘ 8 ’a . " ‘. \ I
vl VYL T B Y W e e “-‘:‘i" —Ph H
LR 0 R TN s 0 1 v AP EsE e 2l Pharr-& He

11 P/ JB

instorm accelerations, small or big ideas.
Write down 3-4 ideas.

Pre-Class Discussion: Accelerating Ray-Scene Intersection

Brainstorm 3 or 4 accelerations, small or big ideas.

® Subdivide the world ® |f recursive, truncate the
perhaps using an octtree number of recursions, and
estimate the tail of
® Raycasting for a group computation
of pixels at a time ® Parallelize raycasting
® Something like ® Do every second ray, and
mipmapping, LOD -- interpolate
further away, simpler ® Sort triangles from front to
geometry back
® Bounding box ¢ Ray-marching until.in
proximity

CS184/284A Ren Ng

Bounding Volumes

Bounding Volumes

Quick way to avoid intersections: bound complex
object with a simple volume

® Obiject is fully contained in the volume

o |f it doesn’t hit the volume, it doesn’t hit the object

® So test bvol first, then test object if it hits

-

CS184/284A Ren Ng

Ray-Intersection With Box

Could intersect with 6 faces individually

Better way: box is the intersection of 3 slabs

CS184/284A Ren Ng

Ray Intersection with Axis-Aligned Box

2D example; 3D is the same! Compute intersections with
slabs and take intersection of tmin/tmax intervals

Y1 Tmax

Y1
d d
O O
Tmin
S £
EXo §X1 Note: tmin< O ;XO §X1 Xo x4
Intersections with x planes Intersections with yplanes Final intersection result

How do we know when the ray misses the box?

Optimize Ray-Plane Intersection For Axis-Aligned Planes?

,_ (P —0o)N
General - d-N
3 subtractions, 6 multiplies, 1 division
p’
Perpendicular ,_P,-o,
to x-axis d|.- - d
L

1 subtraction, 1 division

CS184/284A Ren Ng

Uniform Spatial Partitions (Grids)

Preprocess — Build Acceleration Grid

O O 1. Find bounding box

O

CS184/284A Ren Ng

Preprocess — Build Acceleration Grid

.“ﬂ..na. 2. Create grid
LN
RN
HEEAER .

L IN P
HEEEEEEE
Ol [T[]]

CS184/284A Rer

.na....@ 1. Find bounding box

Preprocess — Build Acceleration Grid

i O
HRCEEVENE
ANV
HEEVsNEE

HEEEERNE
LN
HEEEEEEE
Ol [[T[] 1]

CS184/284A

. Find bounding box
. Create grid

. Store each object

in overlapping
cells

Ray-Scene Intersection

EZNEEENS
ERLEEENE
EEEED i
PPy =NEE

AEEEERNE
L IN P
HEEEEEEE
Ol [T[]]

CS184/284A

Step through grid in
ray traversal order
(3D line - 3D DDA)

For each grid cell
Test intersection
with all objects
stored at that cell

Grid Resolution?

e

One cell

® No speedup

CS184/284A Ren Ng

Grid Resolution?

EEEEEEEEEEEEEEEEEFaN
EEEEZANEEEEEEEEEEANV
EEEEEN)IEEEEEEEEEEEEE
TN =
EEEEEEEEEEEEEVEEN
T I T EE
S T i
= o OO0 Mmany cells
T ’
T oxrancoc grid
EEEEEEEE\\EEEEN/IEEE extraneous grid
EEEEEEEEANEEEVAREEEE traversal
EEEEEEEEEAS=ZaENENEE
EEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEE
PNEEEEEEEEEEEEEEEEEE
SREEEEEEEEEEEEEEEEEE

E<EEEEEEEEEEEEEEEEEE

CS184/284A Ren Ng

Grid Resolution?

EZNEEENS
ERLEEENE
EEEEYC
e | |

SEEEERNE
L IN P
HEEEEEEE
Ol [T[]]

CS184/284A

Heuristic:

o #cells = C * #objs

e C=27in 3D

Careful! Objects Overlapping Multiple Cells

EZNEEENS
TP
EEEES ==
BEZm N

HEEERNYS
NN
HEEEEEEE
Ol [1]]

CS184/284A

What goes wrong here?

® First intersection
found (red) is not
the nearest!

Solution?

® Check intersection
point is inside cell

Optimize

® Cache intersection
to avoid re-testing
(mailboxing)

Ren Ng

Uniform Grids - When They Work Well

Grids work well on large collections of objects
that are distributed evenly in size and space

CS184/284A Ren Ng

Uniform Grids — When They Fail

/ Renderer
“Teapot in a stadium” problem

CS184/284A

Non-Uniform Spatial Partitions:
Spatial Hierarchies

Spatial Hierarchies

CS184/284A Ren Ng

Spatial Hierarchies

CS184/284A Ren Ng

Spatial Hierarchies

CS184/284A Ren Ng

Spatial Hierarchies

CS184/284A Ren Ng

Spatial Hierarchies

CS184/284A Ren Ng

Attendance

If you are seated in class, go to this form and sign in:

® https://tinyurl.com/184lecture

Notes:

® Time-stamp will be taken when you submit form.
Do it now, won't count later.

® Don't tell friends outside class to fill it out now,
because we will audit at some point in semester.

® Failing audit will have large negative consequence.
You don’t need to, because you have an alternative!

CS184/284A Ren Ng

Spatial Partitioning Variants

Oct-Tree KD-Tree BSP-Tree

Note: you could have these in both 2D and 3D. In lecture we will illustrate
principles in 2D, but for assignment you will implement 3D versions.

CS184/284A Ren Ng

KD-Trees

Internal nodes store
® split axis: x-, y-, or z-axis
® split position: coordinate of split plane along axis
® children: reference to child nodes
Leaf nodes store
o |ist of objects

® mailbox information

CS184/284A Ren Ng

KD-Tree Pre-Processing

CS184/284A

Find bounding box

Recursively split cells,
axis-aligned planes

Until termination
criteria met (e.g. max
#splits or min #objs)

Store obj references
with each leaf node

Ren Ng

KD-Tree Pre-Processing

Leaf Nodes

Only leaf nodes store
references to geometry

CS184/284A Ren Ng

KD-Tree Pre-Processing

Choosing the split plane
® Simple: midpoint, median split

® |deal: split to minimize expected cost of ray
Intersection

Termination criteria?

® Simple: common to prescribe maximum tree depth
(empirical 8 + 1.3 log N, N = #objs) [PBRT]

® |deal: stop when splitting does not reduce
expected cost of ray intersection

CS184/284A Ren Ng

Top-Down Recursive In-Order Traversal

CS184/284A Ren Ng

Top-Down Recursive In-Order Traversal

tmin

Internal node: split

CS184/284A Ren Ng

Top-Down Recursive In-Order Traversal

tmin

Leaf node: intersect
all objects

CS184/284A Ren Ng

Top-Down Recursive In-Order Traversal

Internal node: split

CS184/284A Ren Ng

Top-Down Recursive In-Order Traversal

Leaf node: intersect
all objects

CS184/284A Ren Ng

Top-Down Recursive In-Order Traversal

Internal node: split

CS184/284A Ren Ng

Top-Down Recursive In-Order Traversal

Leaf node: intersect
all objects

CS184/284A Ren Ng

Top-Down Recursive In-Order Traversal

Intersection found

CS184/284A Ren Ng

KD-Trees Traversal — Recursive Step

W.L.O.G. consider x-axis split with ray moving right
tsplit — (ajsplit — Oa:)/da:

tsplit

Lsplit
X I . <t*<t
tmax <t min max
Intersect(L,tmin,tmax) Intersect(L,tmin,t¥*) Intersect(R,tmin, tmax)

Intersect(R,t*,tmax)

CS184/284A Ren Ng

Object Partitions &

Bounding Volume Hierarchy (BVH)

Spatial vs Object Partitions

Spatial partition (e.g.KD-tree)

® Partition space into non- %y v /\
overlapping regions % /i
® Objects can be contained U

in multiple regions vV

Object partition (e.g. BVH)

® Partition set of objects
into disjoint subsets

® Bounding boxes for each
set may overlap in space

CS184/284A Ren Ng

Bounding Volume Hierarchy (BVH)

Root —>.

CS184/284A Ren

Bounding Volume Hierarchy (BVH)

CS184/284A Ren Ng

Bounding Volume Hierarchy (BVH)

CS184/284A Ren Ng

Bounding Volume Hierarchy (BVH)

CS184/284A Ren Ng

Bounding Volume Hierarchy (BVH)

Internal nodes store
® Bounding box
® Children: reference to child nodes
Leaf nodes store
® Bounding box
e List of objects
Nodes represent subset of primitives in scene

® All objects in subtree

CS184/284A Ren Ng

BVH Pre-Processing

® Find bounding box

® Recursively split set of
objects in two subsets

® Stop when there are
just a few objects in
each set

® Store obj reference(s)
in each leaf node

CS184/284A Ren Ng

BVH Pre-Processing

Choosing the set partition
® Choose a dimension to split or optimize over x,y,z
e Simple #1: Split objects around spatial midpoint
® Simple #2: Split at location of median object

® |deal: split to minimize expected cost of ray
Intersection

Termination criteria?
® Simple: stop when node contains few elements (e.g. 5)

® |deal: stop when splitting does not reduce expected
cost of ray intersection

CS184/284A Ren Ng

BVH Recursive Traversal

Intersect (Ray ray, BVH node) node
if (ray misses node.bbox) return; A' DA
if (node is a leaf node) y‘ K AN
test intersection with all objs; ‘v - Aﬁ
return closest intersection; A
hitl = Intersect (ray, node.childl); V7
hit2 = Intersect (ray, node.child2); 5 ;< A
return closer of hitl, hit2; \V
child1

CS184/284A Ren Ng

Optimizing Hierarchical Partitions
(How to Split?)

How to Split into Two Sets? (BVH)

‘A,' g Av ':A

How to Split into Two Sets? (BVH)

4),
b s

CS184/284A Ren

How to Split into Two Sets? (BVH)

| ﬂ
Split at median element?
Child nodes have equal numbers of elements

CS184/284A Ren Ng

How to Split into Two Sets? (BVH)

y

-

A better split?
Smaller bounding boxes, avoid overlap and empty space

CS184/284A Ren Ng

Which Hierarchy Is Fastest?

Key insight: a good partition minimizes the average
cost of tracing a ray

CS184/284A Ren Ng

Which Hierarchy Is Fastest?

What is the average cost of tracing a ray?

For leaf node:

Cost(node) = cost of intersecting all triangles
= C_isect * TriCount(node)

C_isect = cost of intersecting a triangle
TriCount(node) = number of triangles in node

CS184/284A Ren Ng

Which Hierarchy Is Fastest?

What is the average cost of tracing a ray?

For internal node:

Cost(node) = C_trav
+ Prob(hit L)*Cost(L)
+ Prob(hit R)*Cost(R)

C_trav = cost of traversing a cell
Cost(L) = cost of traversing left child
Cost(R) = cost of traversing right child

CS184/284A Ren Ng

Optimizing Hierarchical Partitions
Example: Surface Area Heuristic
Algorithm

Ray Intersection Probability

The probability of a random ray hitting a convex shape
A enclosed by another convex shape B is the ratio of
their surface areas, Sa/ Ss.

P(hitA[hitB) = E—A
B

CS184/284A Ren Ng

Estimating Cost with Surface Area Heuristic (SAH)

Probabilities of ray intersecting a node

® |f assume uniform ray distribution, no occlusions, then
probability is proportional to node’s surface area

Cost of processing a node

e Common approximation is #triangles in node’s subtree

Cost(cell) = C_trav + SA(L)*TriCount(L) + SA(R)*TriCount(R)

SA(node) = surface area of bbox of node
C_trav = ratio of cost to traverse vs. cost to intersect tri

C_trav = 1:8 in PBRT [Pharr & Humphreys]
C trav = 1:1.5 in a highly optimized version

CS184/284A Ren Ng

Partition Implementation

Constrain search to axis-aligned spatial partitions
® Choose an axis
® Choose a split plane on that axis
® Partition objects into two halves by centroid
® 2N-2 candidate split planes for node with N primitives. (Why?)

Partition Implementation (Efficient)

Efficient modern approximation: split spatial extent of
primitives into B buckets (B is typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: Xx,y,z:
initialize buckets
For each object p in node:
b = compute_bucket(p.centroid)
b.bbox.union(p.bbox);
b.prim_count++;
For each of the B-1 possible partitioning planes evaluate SAH
Execute lowest cost partitioning found (or make node a leaf)

Cost-Optimization Applies to Spatial Partitions Too

® Discussed optimization of BVH construction

® But principles are general and apply to spatial
partitions as well

® E.g. to optimize KD-Tree construction

® Goal is to minimize average cost of intersecting
ray with tree

® Can still apply Surface Area Heuristic

® Note that surface areas and number of nodes in
children differ from BVH

CS184/284A Ren Ng

Things to Remember

Linear vs logarithmic ray-intersection techniques
Many techniques for accelerating ray-intersection

® Spatial partitions: Grids and KD-Trees

® Object partitions: Bounding Volume Hierarchies

Optimize hierarchy construction based on minimizing
cost of intersecting ray against hierarchy

® Leads to Surface Area Heuristic for best partition

CS184/284A Ren Ng

Acknowledgments

Thanks to Pat Hanrahan, Kayvon Fatahalian, Mark
Pauly and Steve Marschner for lecture resources.

CS184/284A Ren Ng

