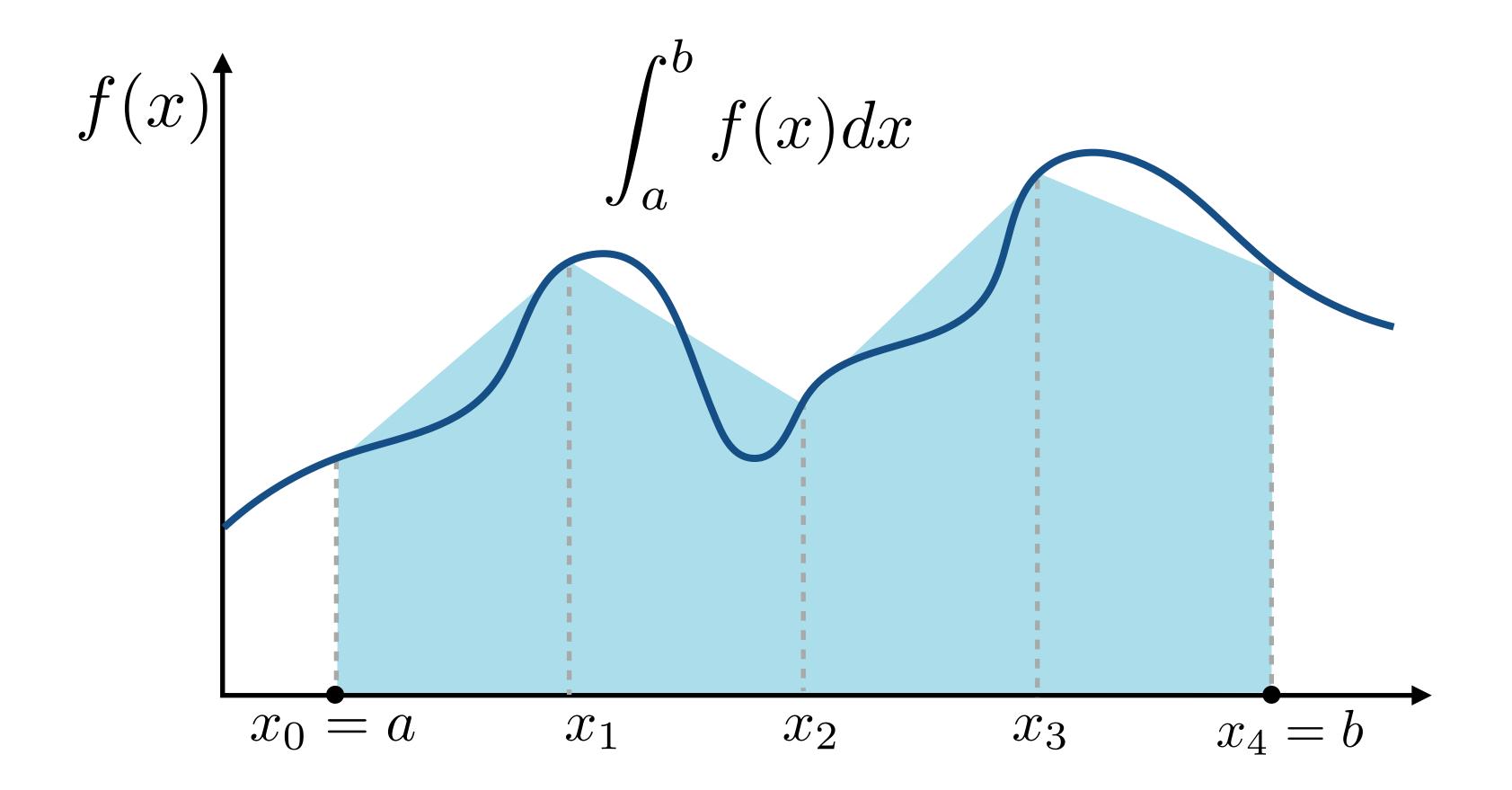
Lecture 12:

Monte Carlo Integration

Computer Graphics and Imaging UC Berkeley CS184/284A

Reminder: Quadrature-Based Numerical Integration

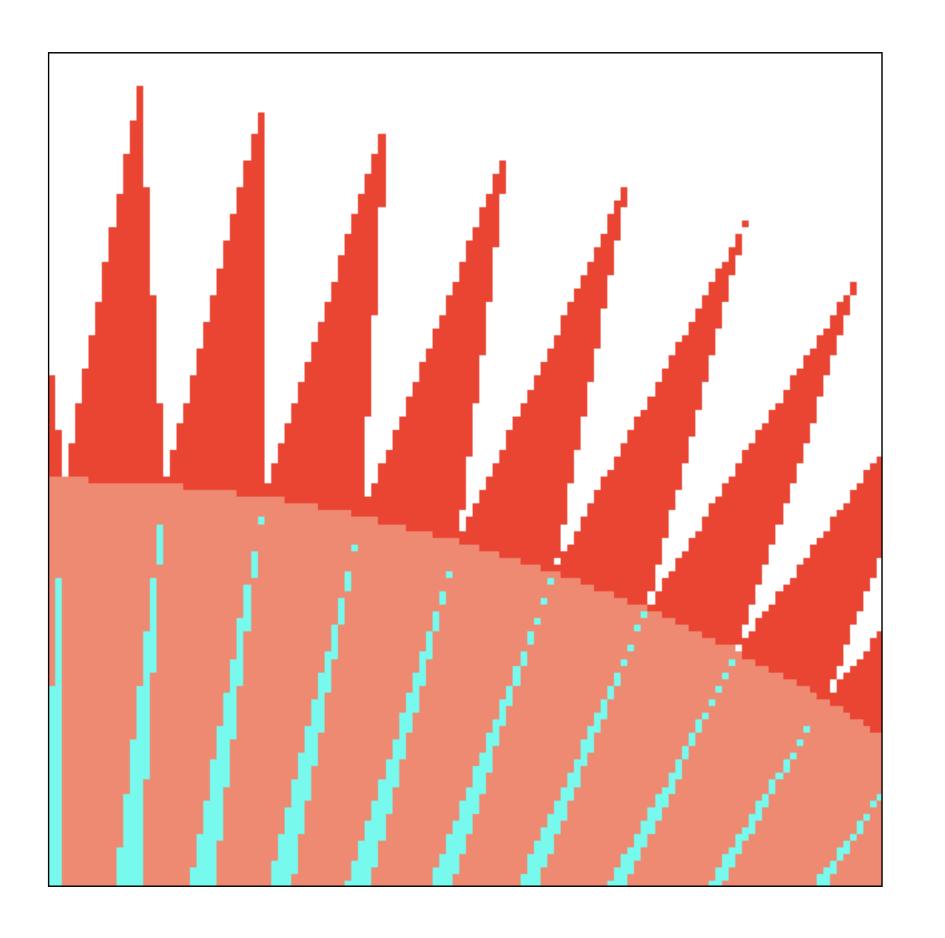


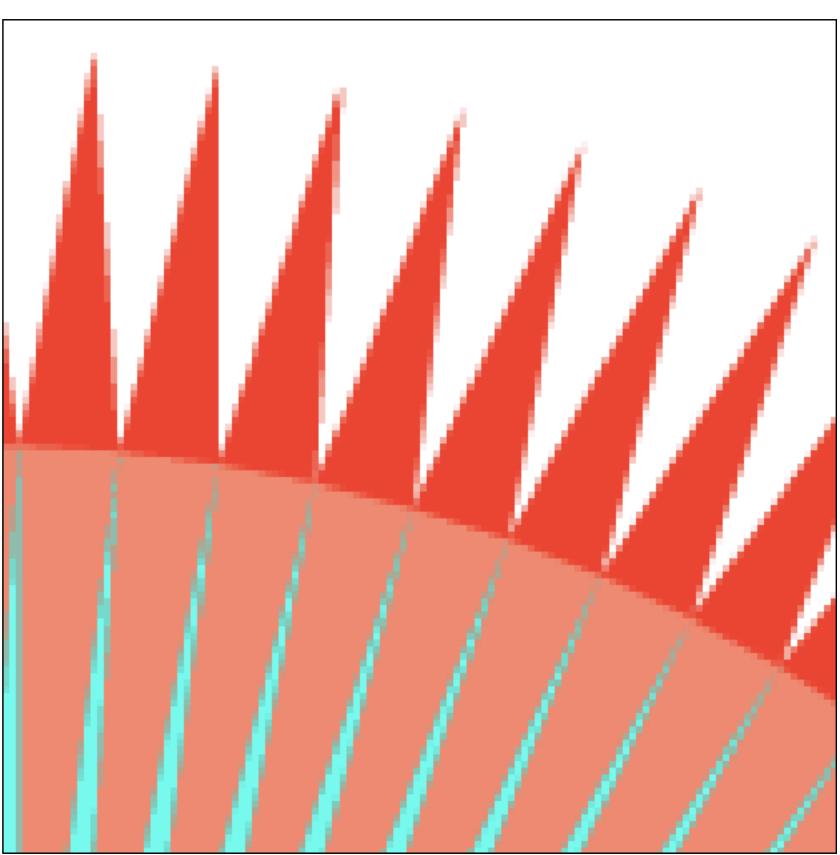
E.g. trapezoidal rule - estimate integral assuming function is piecewise linear

CS184/284A

Multi-Dimensional Integrals (Rendering Examples)

2D Integral: Recall Antialiasing By Area Sampling





Point sampling

Area sampling

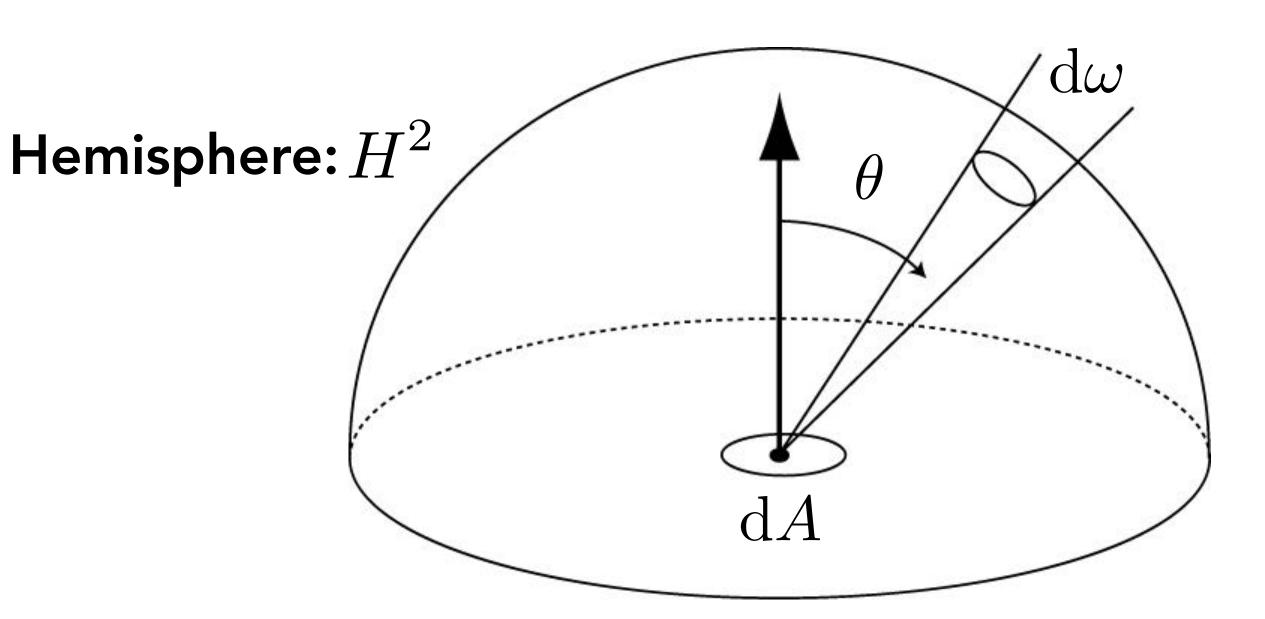
Integrate over 2D area of pixel

2D Integral: Irradiance from the Environment

Computing flux per unit area on surface, due to incoming light from all directions.

$$E(\mathbf{p}) = \int_{H^2} L_i(\mathbf{p},\omega) \cos\theta \,\mathrm{d}\omega$$
 —— Contribution to irradiance from light arriving from direction ω

Light meter



3D Integral: Motion Blur

Integrate over area of pixel and over exposure time.

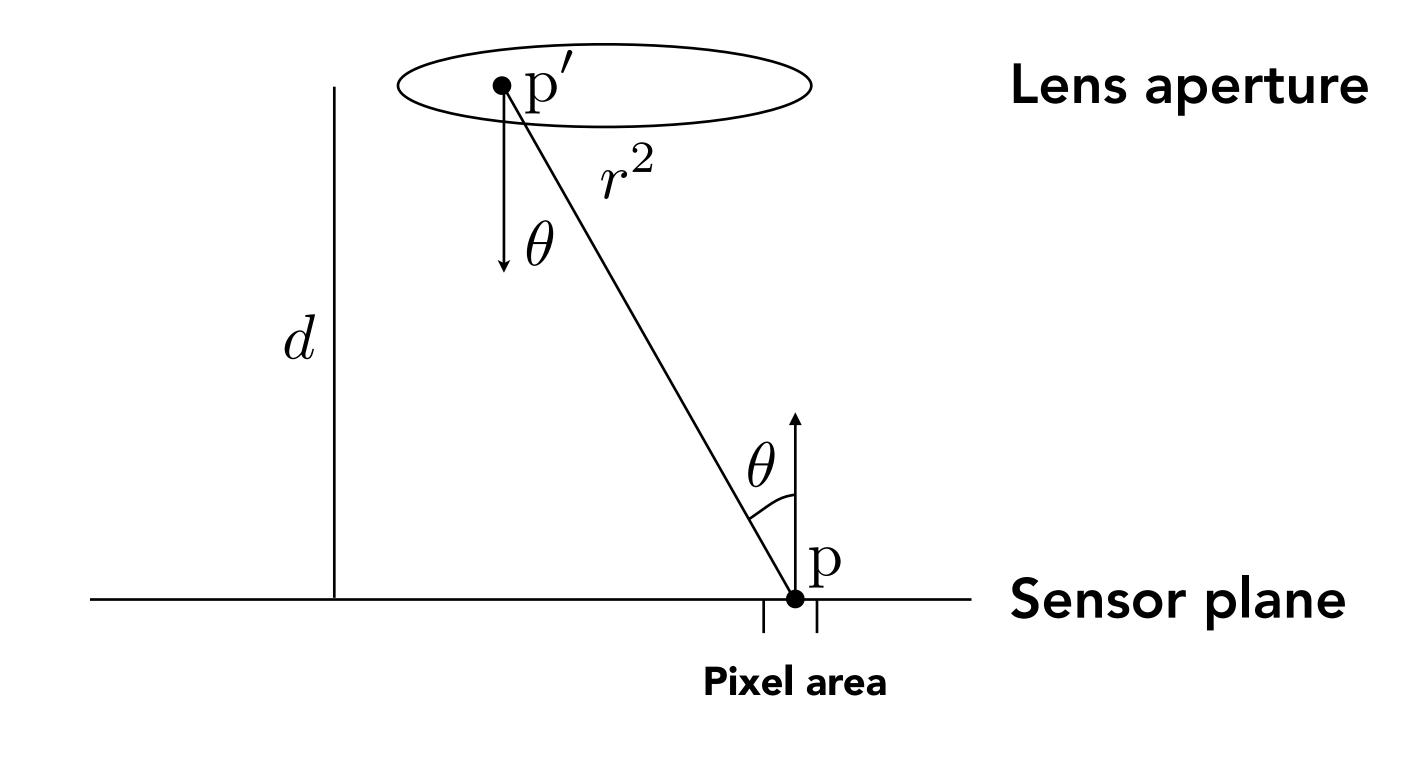
Cook et al. "1984"

5D Integral: Real Camera Pixel Exposure

Integrate over 2D lens pupil, 2D pixel, and over exposure time

CS184/284A Ren Ng

5D Integral: Real Camera Pixel Exposure



$$Q_{\text{pixel}} = \frac{1}{d^2} \int_{t_0}^{t^1} \int_{A_{\text{lens}}} \int_{A_{\text{pixel}}} L(\mathbf{p}' \to \mathbf{p}, t) \cos^4 \theta \, dp \, dp' \, dt$$

The Curse of Dimensionality

High-Dimensional Integration

Complete set of samples:
$$N = \underbrace{n \times n \times \cdots \times n}_{d} = n^{d}$$

"Curse of dimensionality"

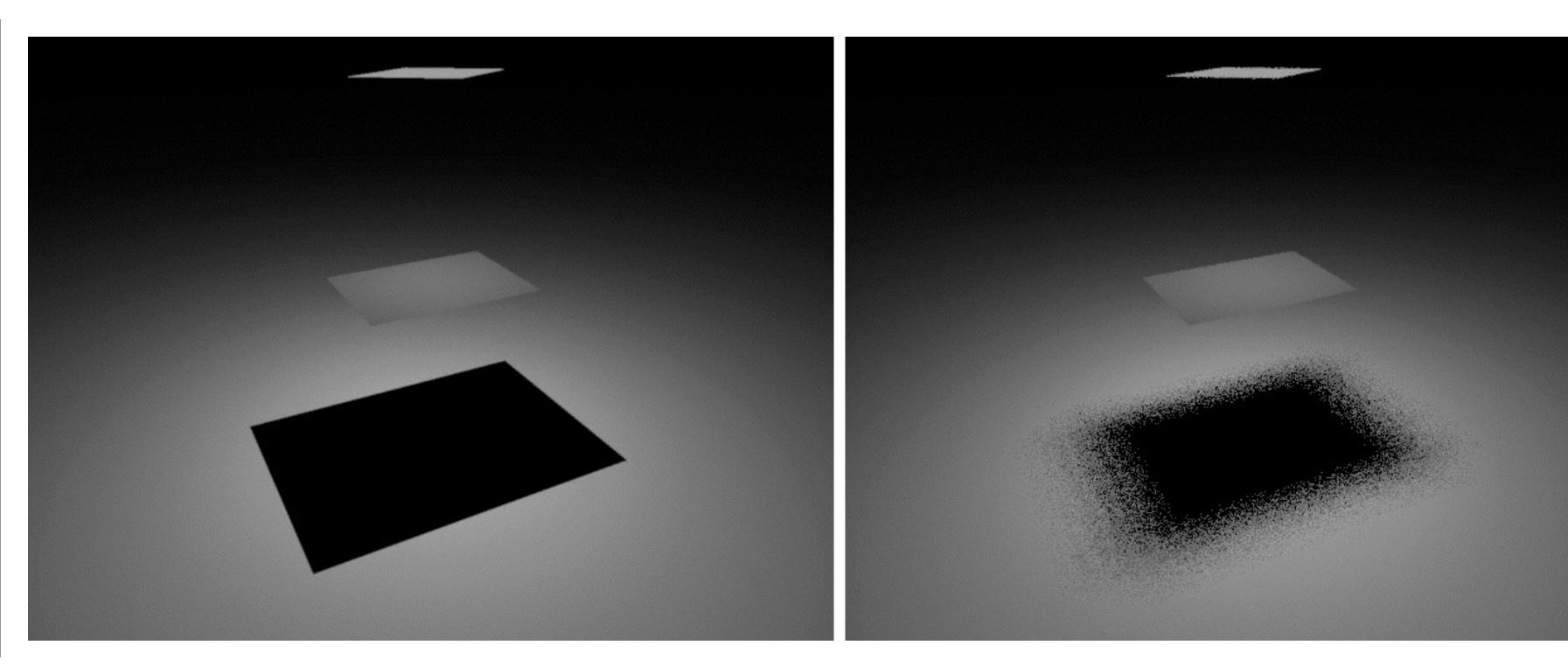
Numerical integration error: Error
$$\sim \frac{1}{n} = \frac{1}{N^{1/d}}$$

Random sampling error: Error = Variance^{1/2}
$$\sim \frac{1}{\sqrt{N}}$$

In high dimensions, Monte Carlo integration requires fewer samples than quadrature-based numerical integration

Global illumination = infinite-dimensional integrals

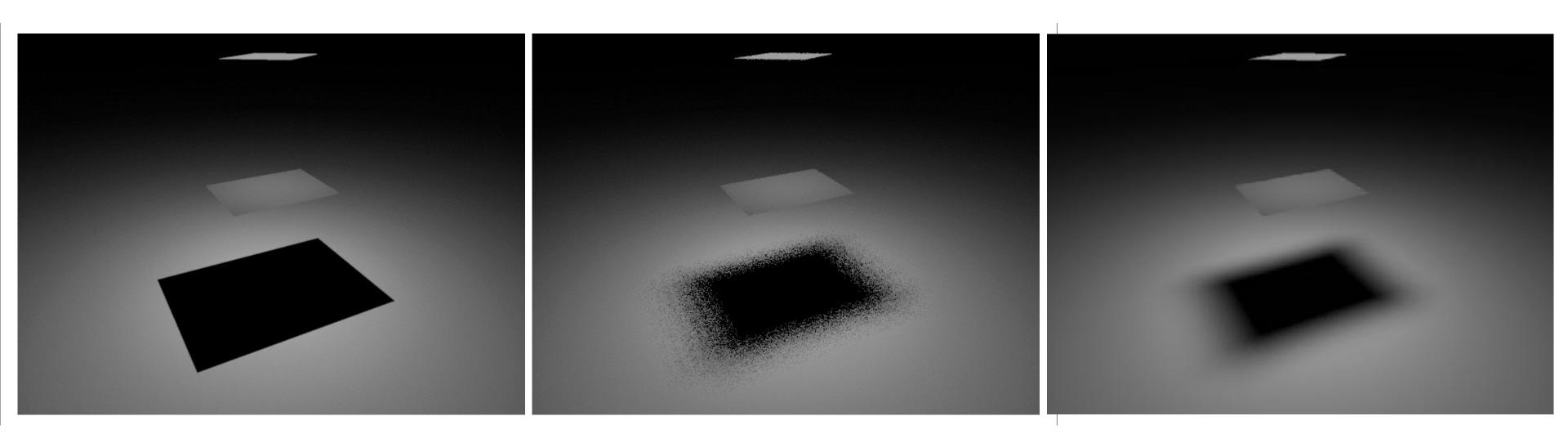
Example: Discrete vs Monte Carlo Shadow



1 sample per pixel Sample center of light

1 sample per pixel Sample random point on light

Example: Discrete vs Monte Carlo Shadow



Sample center of light

Sample random point on light

True answer

CS184/284A

Overview: Monte Carlo Integration

Idea: estimate integral based on random sampling of function Advantages:

- General and relatively simple method
- Requires only function evaluation at any point
- Works for very general functions, including discontinuities
- Efficient for high-dimensional integrals avoids "curse of dimensionality"

Disadvantages:

- Noise. Integral estimate is random, only correct "on average"
- Can be slow to converge need a lot of samples

Probability Review

Random Variables

X

random variable. Represents a distribution of potential values

 $X \sim p(x)$ probability density function (PDF). Describes relative probability of a random process choosing value \boldsymbol{x}

Example: uniform PDF: all values over a domain are equally likely

e.g. A six-sided die

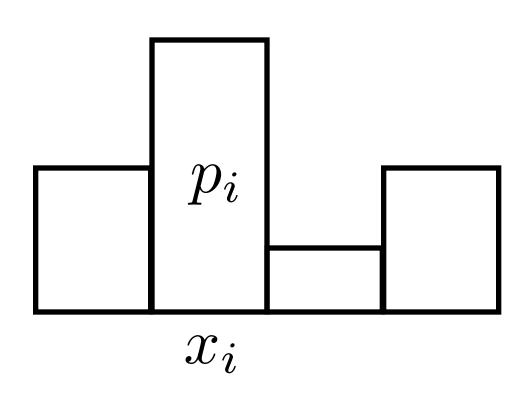
X takes on values 1, 2, 3, 4, 5, 6

$$p(1) = p(2) = p(3) = p(4) = p(5) = p(6)$$

Probability Distribution Function (PDF)

n discrete values x_i

With probability p_i



Requirements of a probability distribution:

$$p_i \geq 0$$

$$\sum_{i=1}^{n} p_i = 1$$

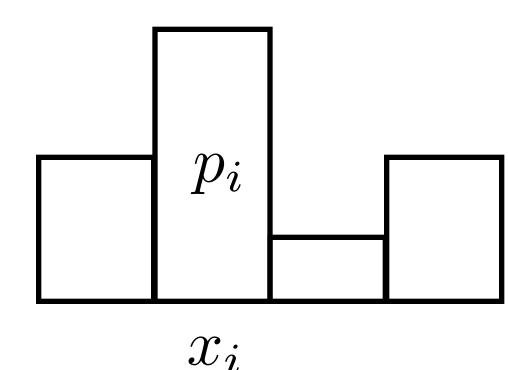
Six-sided die example:
$$p_i = \frac{1}{6}$$

Think: p_i is the probability that a random measurement of X will yield the value x_i X takes on the value x_i with probability p_i

Expected Value of a Random Variable

The average value that one obtains if repeatedly drawing samples from the random distribution.

X drawn from distribution with n discrete values x_i with probabilities p_i



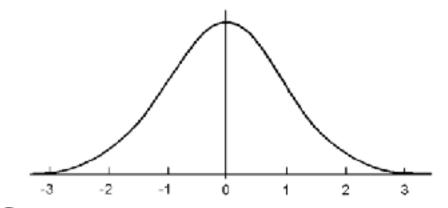
Expected value of X:
$$E[X] = \sum_{i=1}^{n} x_i p_i$$

Die example:
$$E[X] = \sum_{i=1}^{n} \frac{i}{6}$$

$$= (1+2+3+4+5+6)/6 = 3.5$$

Continuous Probability Distribution Function

$$X \sim p(x)$$



A random variable X that can take any of a continuous set of values, where the relative probability of a particular value is given by a continuous probability density function p(x).

Conditions on p(x): $p(x) \ge 0$ and $\int p(x) dx = 1$ Expected value of X: $E[X] = \int x \, p(x) \, dx$

Function of a Random Variable

A function Y of a random variable X is also a random variable:

$$X \sim p(x)$$
$$Y = f(X)$$

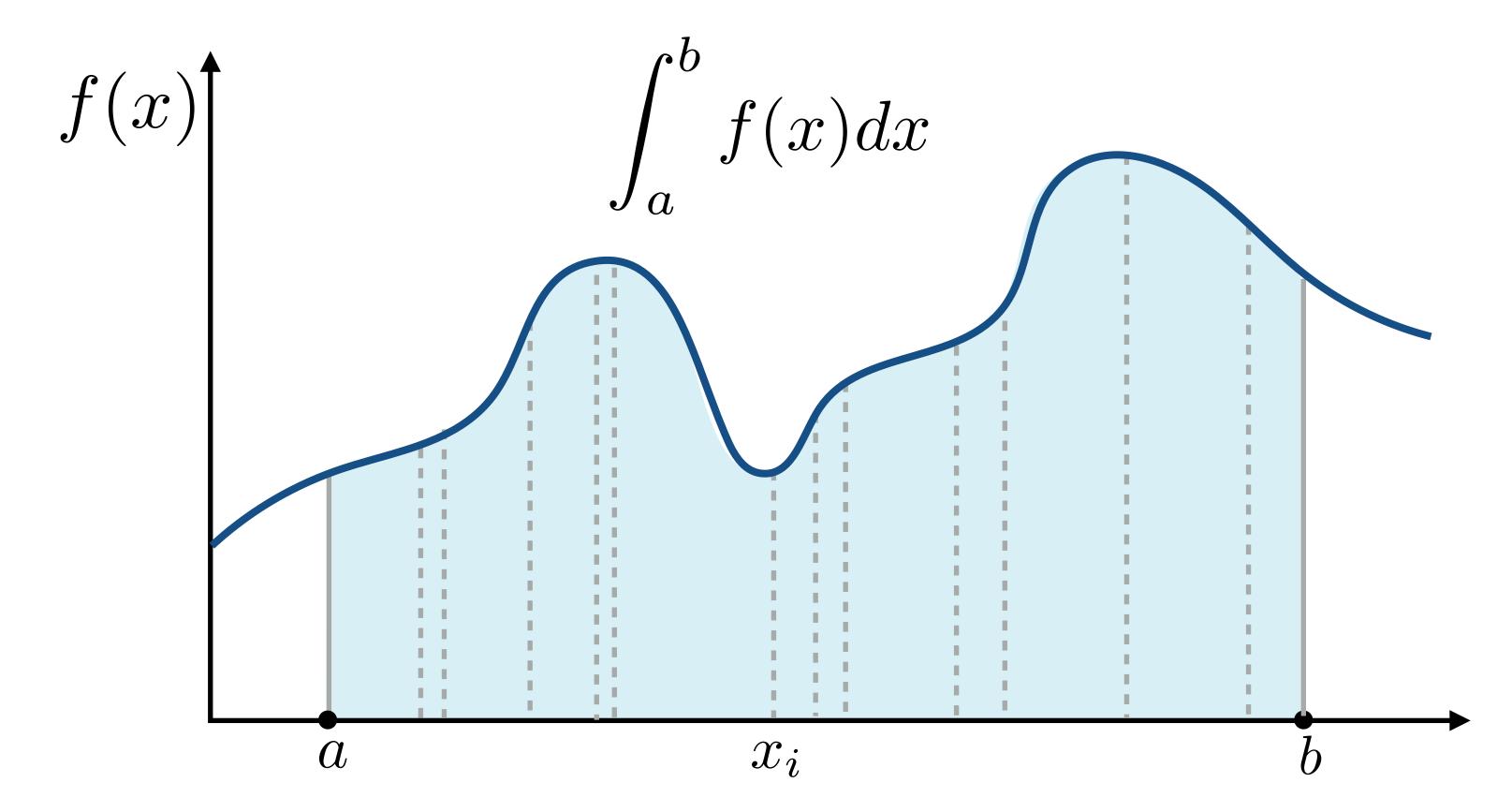
Expected value of a function of a random variable:

$$E[Y] = E[f(X)] = \int f(x) p(x) dx$$

Monte Carlo Integration

Monte Carlo Integration

Simple idea: estimate the integral of a function by averaging random samples of the function's value.



CS184/284A

Monte Carlo Integration

Let us define the Monte Carlo estimator for the definite integral of given function $f(\boldsymbol{x})$

Definite integral

$$\int_{a}^{b} f(x)dx$$

Random variable

$$X_i \sim p(x)$$

Note: p(x) must be nonzero for all x where f(x) is nonzero

Monte Carlo estimator

$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}$$

Example: Basic Monte Carlo Estimator

The basic Monte Carlo estimator is a simple special case where we sample with a uniform random variable

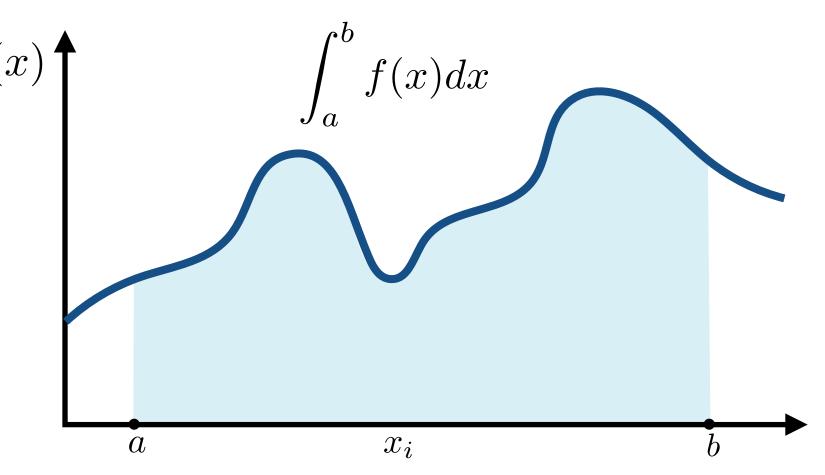
Uniform random variable

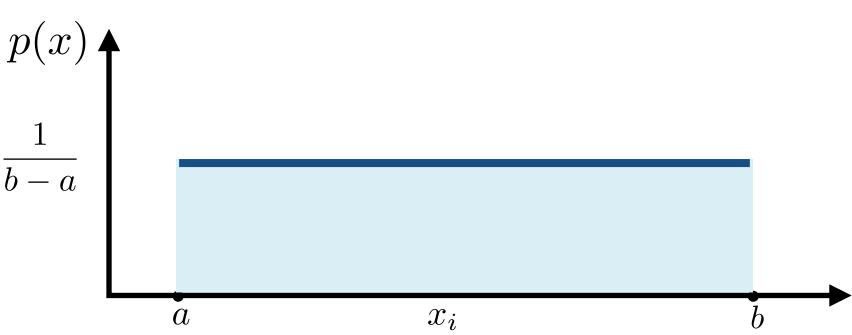
$$X_i \sim p(x) = C$$
 (constant)

$$\int_{a}^{b} p(x) \, dx = 1$$

$$\implies \int_{a}^{b} C \, dx = 1$$

$$\implies C = \frac{1}{b - a}$$





Example: Basic Monte Carlo Estimator

The basic Monte Carlo estimator is a simple special case where we sample with a uniform random variable

Basic Monte Carlo estimator (derivation)

$$F_N = rac{1}{N} \sum_{i=1}^N rac{f(X_i)}{p(X_i)}$$
 (MC Estimator) $= rac{1}{N} \sum_{i=1}^N rac{f(X_i)}{1/(b-a)}$ $= rac{b-a}{N} \sum_{i=1}^N f(X_i)$

Example: Basic Monte Carlo Estimator

Let us define the Monte Carlo estimator for the definite integral of given function f(x)

Definite integral

$$\int_{a}^{b} f(x)dx$$

Uniform random variable

$$X_i \sim p(x) = \frac{1}{b-a}$$

Basic Monte Carlo estimator
$$F_N = \frac{b-a}{N} \sum_{i=1}^N f(X_i)$$

Unbiased Estimator

Definition: A randomized integral estimator is unbiased if its expected value is the desired integral.

Fact: the general and basic Monte Carlo estimators are unbiased (proof on next slide)

Why do we want unbiased estimators?

CS184/284A Ren Ng

Proof That Monte Carlo Estimator Is Unbiased

$$E[F_N] = E\left[\frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}\right]$$

$$= \frac{1}{N} \sum_{i=1}^{N} E\left[\frac{f(X_i)}{p(X_i)}\right]$$

$$= \frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} \frac{f(x)}{p(x)} p(x) dx$$

$$= \frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) dx$$

$$= \int_{a}^{b} f(x) dx$$

Properties of expected values:

$$E\left[\sum_{i} Y_{i}\right] = \sum_{i} E[Y_{i}]$$

$$E[aY] = aE[Y]$$

The expected value of the Monte Carlo estimator is the desired integral.

Variance of a Random Variable

Definition

$$V[Y] = E[(Y - E[Y])^{2}]$$

$$= E[Y^{2}] - E[Y]^{2}$$

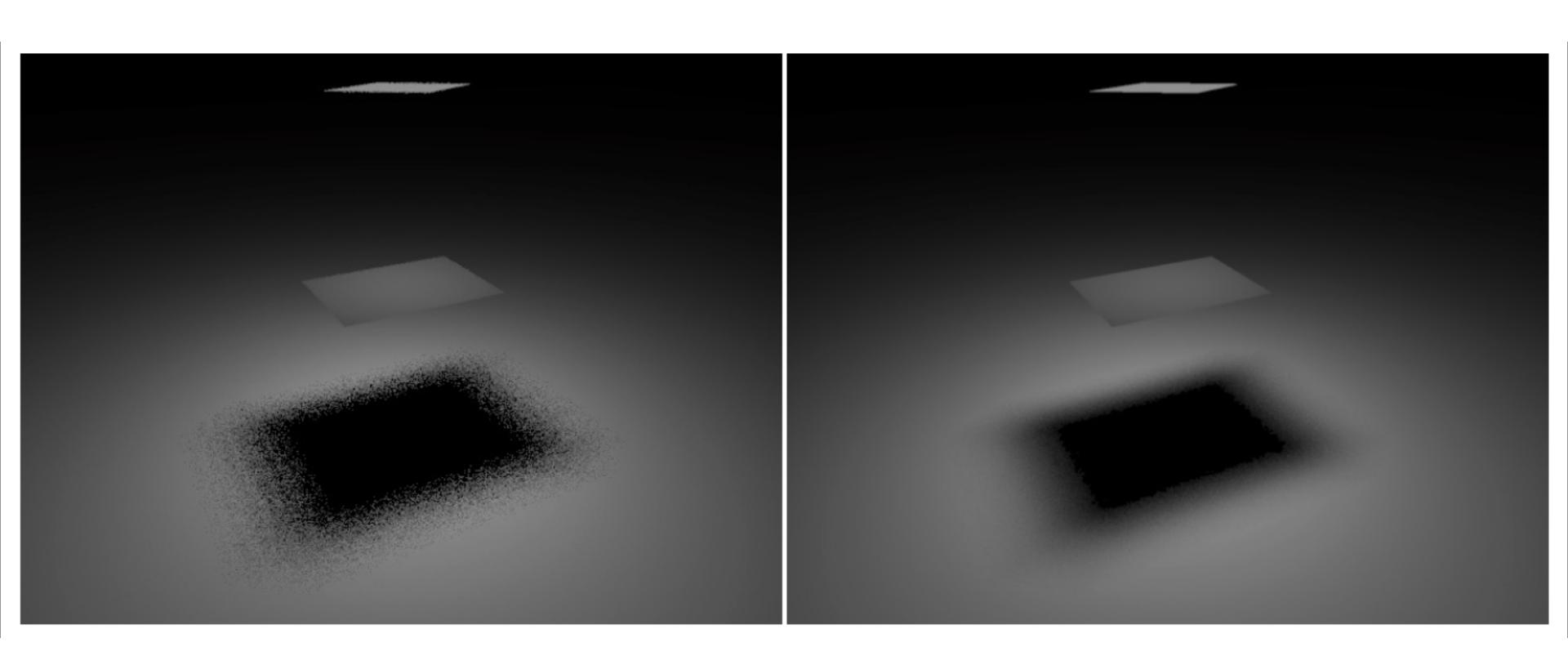
Variance decreases linearly with number of samples

$$V\left[\frac{1}{N}\sum_{i=1}^{N}Y_{i}\right] = \frac{1}{N^{2}}\sum_{i=1}^{N}V[Y_{i}] = \frac{1}{N^{2}}NV[Y] = \frac{1}{N}V[Y]$$

Properties of variance

$$V\left[\sum_{i=1}^{N} Y_i\right] = \sum_{i=1}^{N} V[Y_i] \qquad V[aY] = a^2 V[Y]$$

More Random Samples Reduces Variance



1 shadow ray

16 shadow rays

Definite Integral Can Be N-Dimensional

Example in 3D:

$$\int_{x_0}^{x_1} \int_{y_0}^{y_1} \int_{z_0}^{z_1} f(x, y, z) \, dx \, dy \, dz$$

Uniform 3D random variable*

$$X_i \sim p(x, y, z) = \frac{1}{x_1 - x_0} \frac{1}{y_1 - y_0} \frac{1}{z_1 - z_0}$$

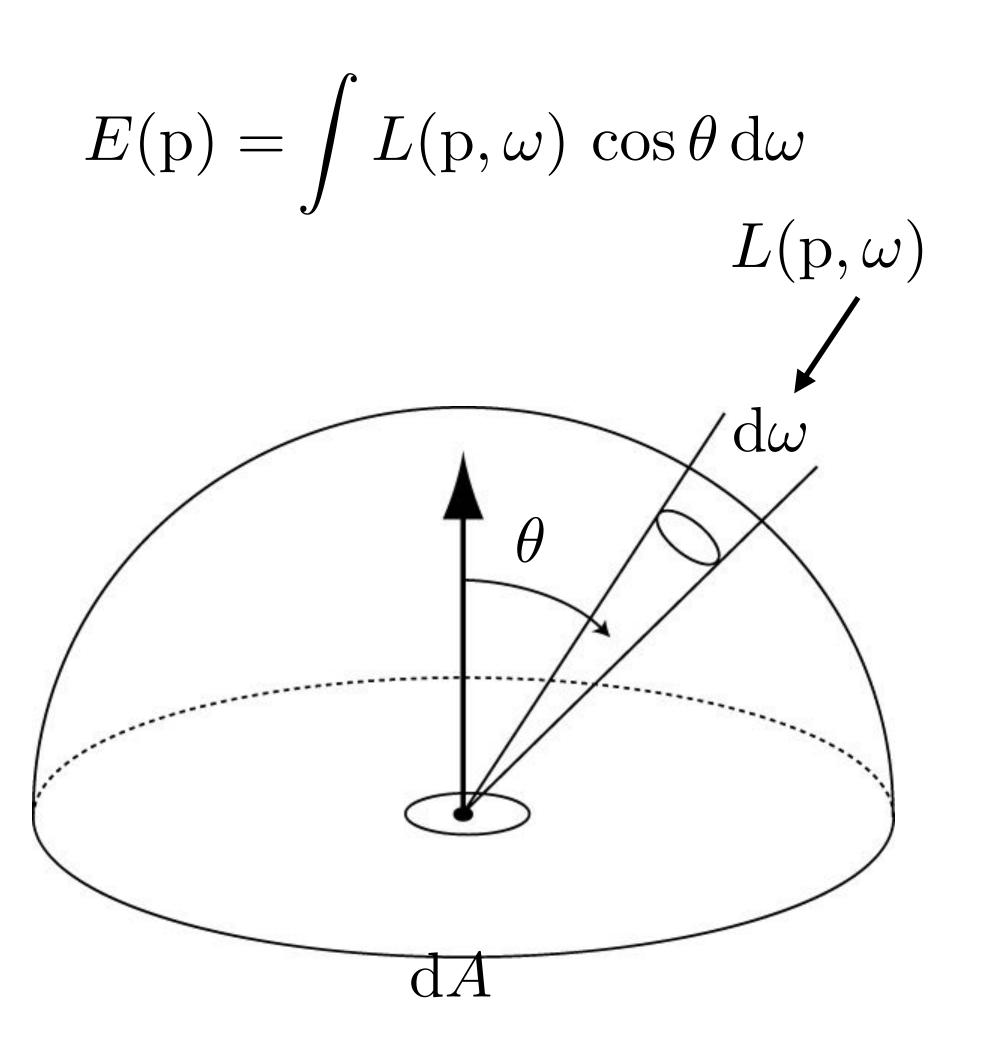
Basic 3D MC estimator*

$$F_N = \frac{(x_1 - x_0)(y_1 - y_0)(z_1 - z_0)}{N} \sum_{i=1}^{N} f(X_i)$$

* Generalizes to arbitrary N-dimensional PDFs

Example: Monte Carlo Estimate Of Direct Lighting Integral

Direct Lighting (Irradiance) Estimate



Idea: sample directions over hemisphere uniformly in solid angle

Estimator:

$$X_i \sim p(\omega)$$
 $p(\omega) = \frac{1}{2\pi}$
 $Y_i = f(X_i)$
 $Y_i = L(p, \omega_i) \cos \theta_i$
 $F_N = \frac{2\pi}{N} \sum_{i=1}^{N} Y_i$

Direct Lighting (Irradiance) Estimate

Sample directions over hemisphere uniformly in solid angle

$$E(\mathbf{p}) = \int L(\mathbf{p}, \omega) \cos \theta \, d\omega$$

Given surface point p

A ray tracer evaluates radiance along a ray

For each of N samples:

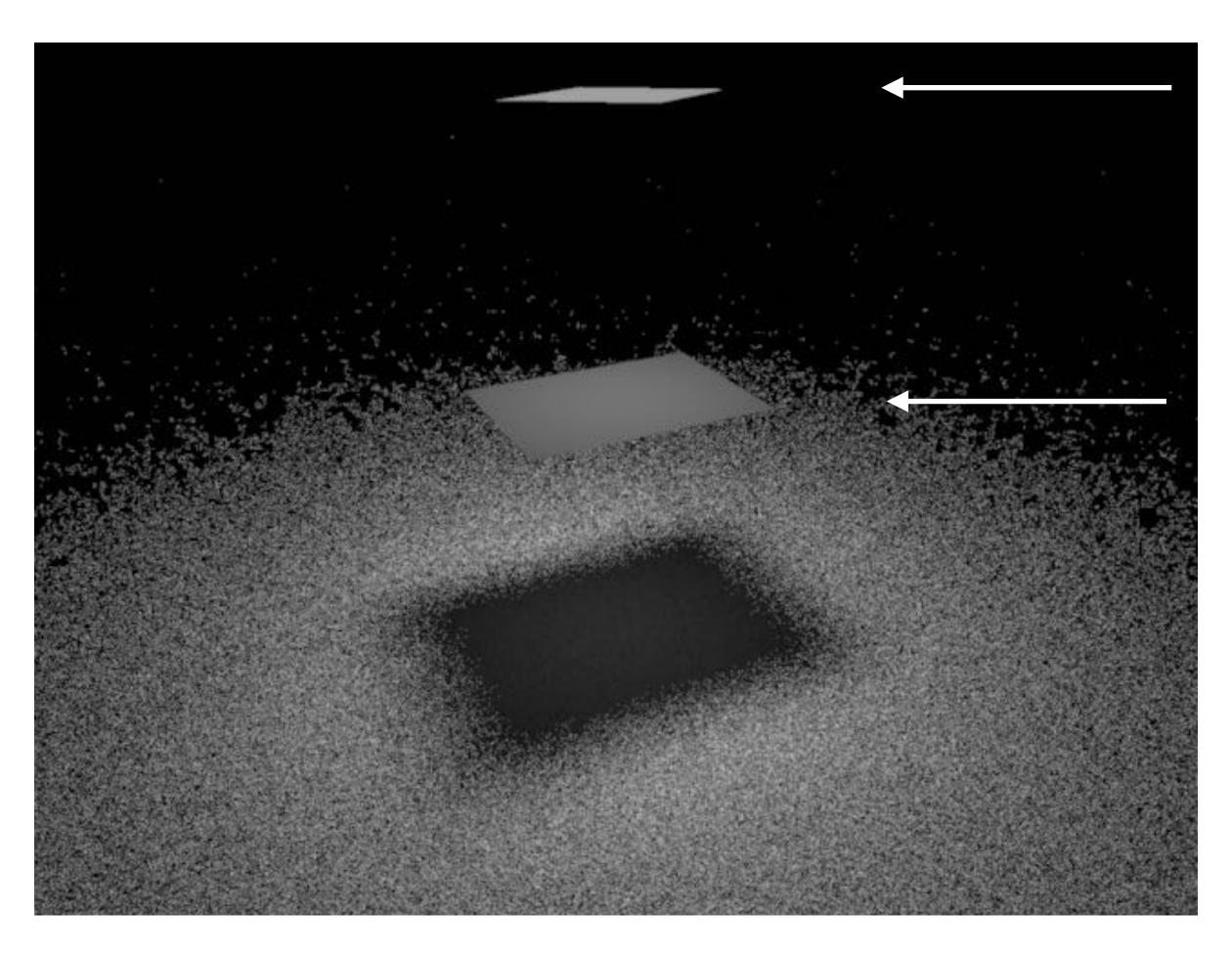
Generate random direction: ω_i

Compute incoming radiance arriving L_i at ${m p}$ from direction:

Compute incident irradiance due to ray: ω_i

Accumulate $\frac{2\pi}{N}dE_i$ into estimator $dE_i=L_icos\,\theta_i$

Direct Lighting - Solid Angle Sampling



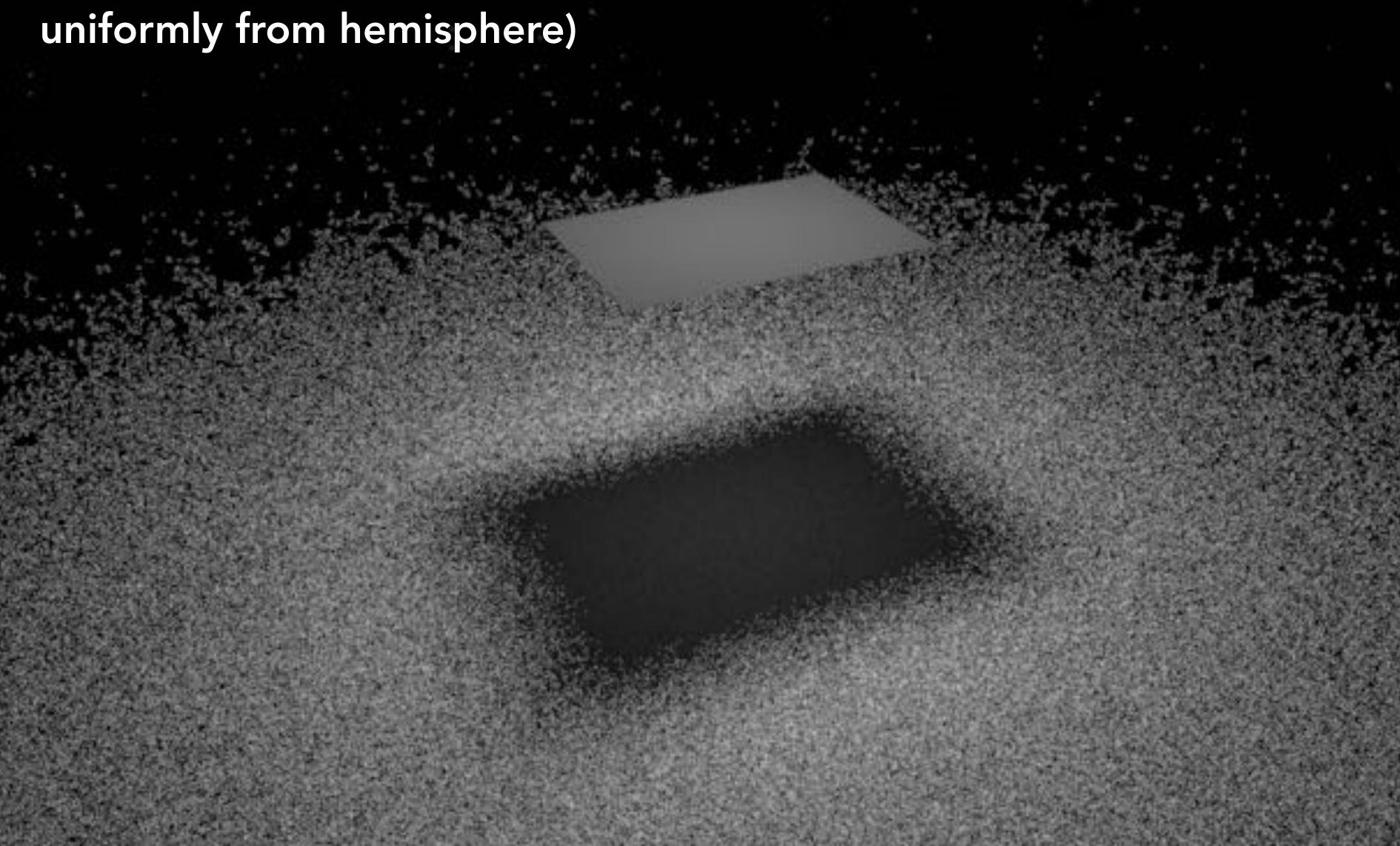
Light

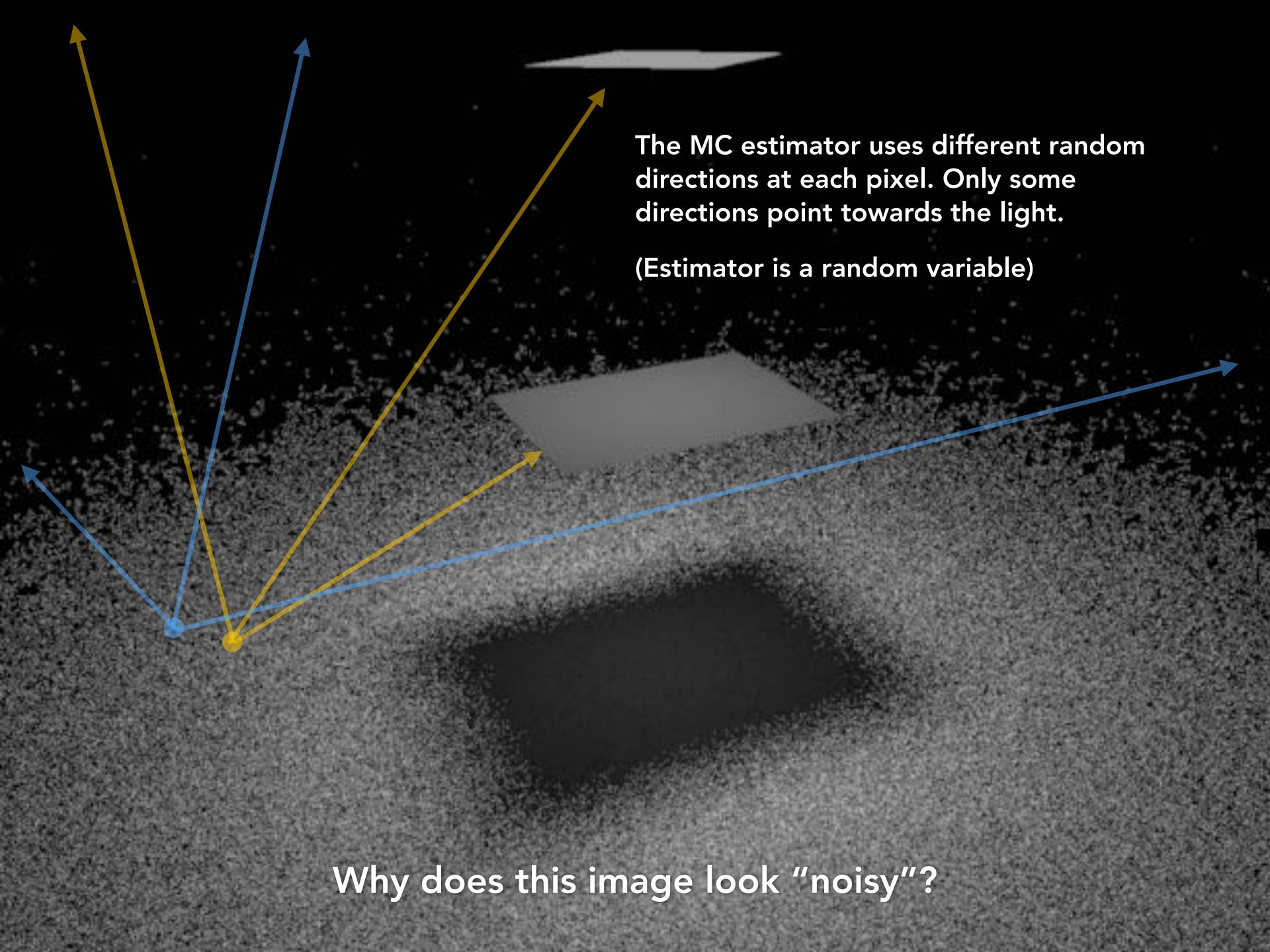
Blocker

100 shadow rays per pixel

Hemispherical Solid Angle Sampling, 100 shadow rays

(random directions drawn





Observation: incoming radiance is zero for most directions in this scene

Idea: integrate only over the area of the light (directions where incoming radiance could be non-zero)

Attendance

If you are seated in class, go to this form and sign in:

https://tinyurl.com/184lecture

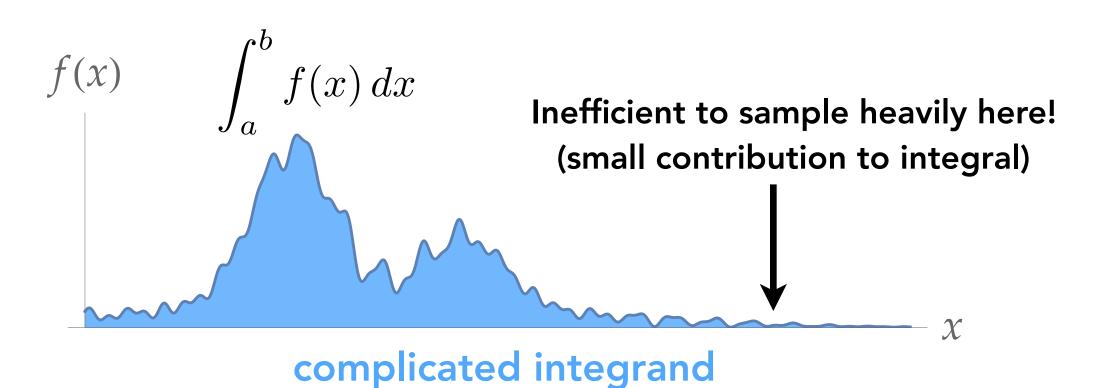
Notes:

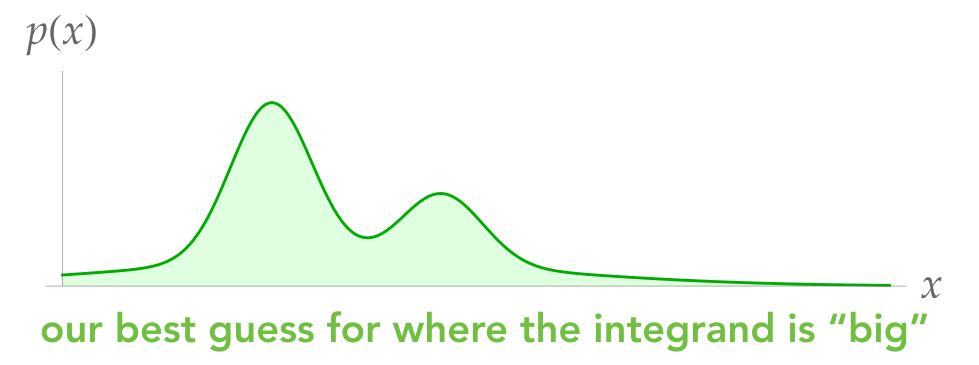
- Time-stamp will be taken when you submit form.
 Do it now, won't count later.
- Don't tell friends outside class to fill it out now, because we will audit at some point in semester.
- Failing audit will have large negative consequence.
 You don't need to, because you have an alternative!

Importance Sampling

Importance Sampling

Simple idea: sample the integrand according to how much we expect it to contribute to the integral.





Note: p(x) must be non-zero where f(x) is non-zero

Basic Monte Carlo:

$$\frac{b-a}{N} \sum_{i=1}^{N} f(X_i)$$

(x_i are sampled uniformly)

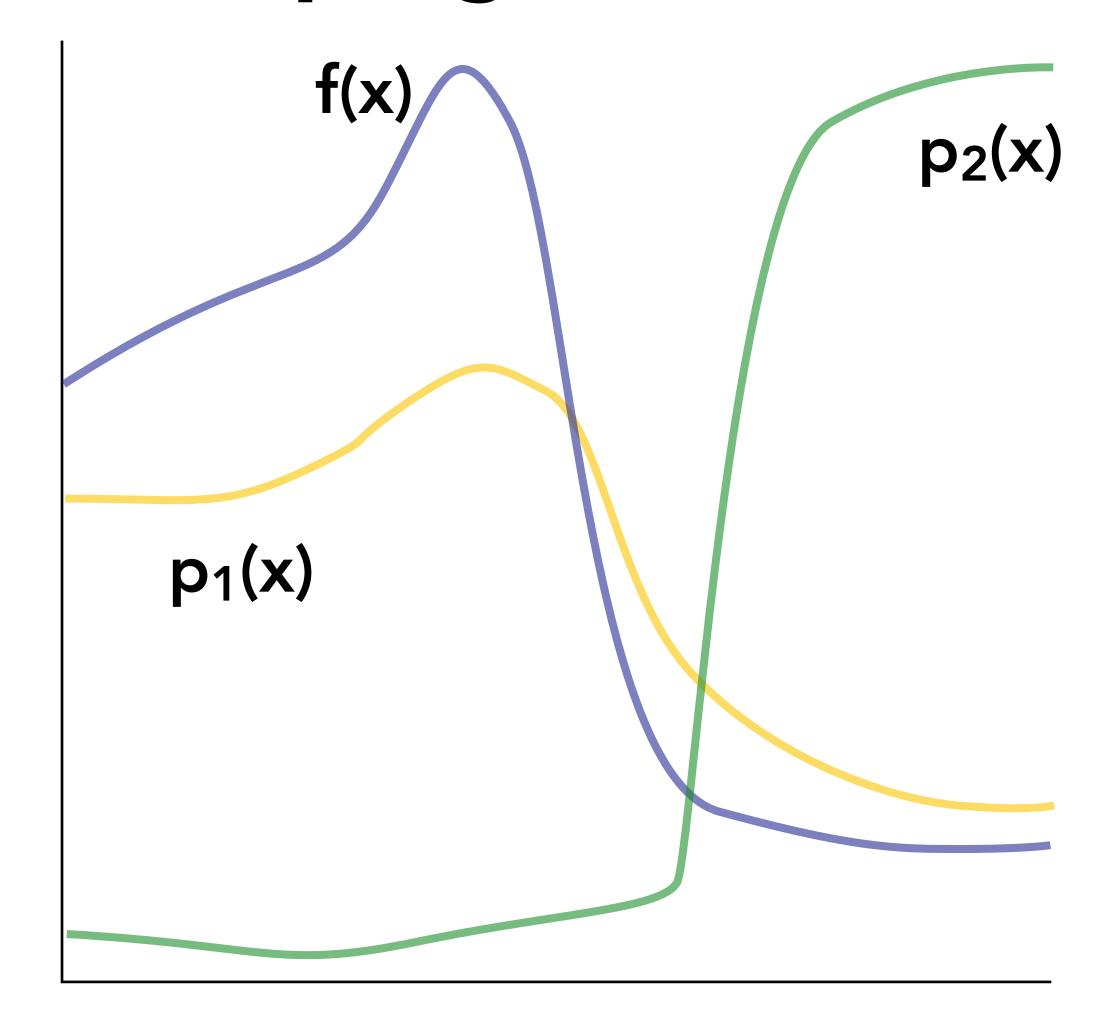
Importance-Sampled Monte Carlo:

$$\frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{p(x_i)}$$

 $(x_i \text{ are sampled proportional to } p)$

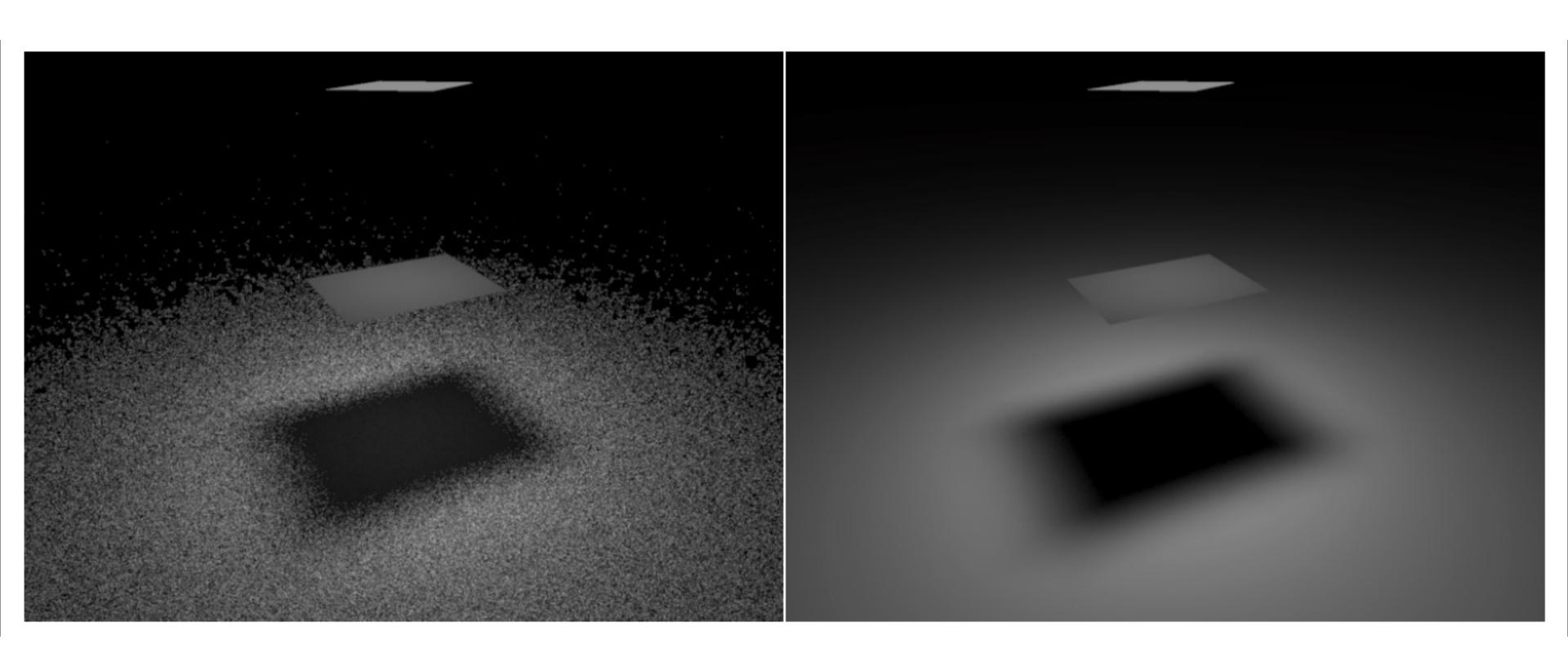
"If I sample x less frequently, each sample should count for more."

Effect of Sampling Distribution "Fit"



What is the behavior of $f(x)/p_1(x)$? $f(x)/p_2(x)$? How does this impact the variance of the estimator?

Solid Angle Sampling vs Light Area Sampling



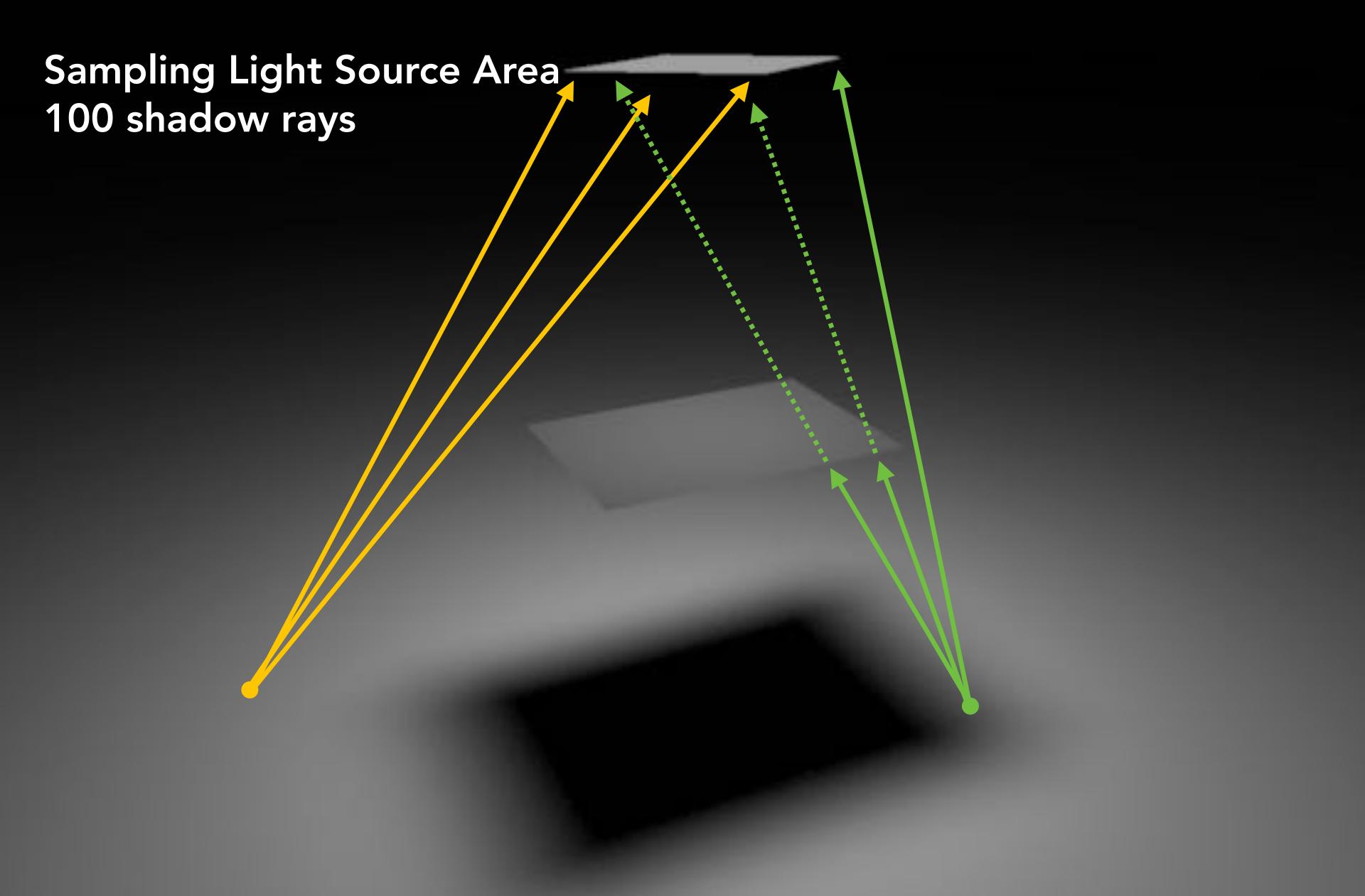
Sampling solid angle

100 random directions on hemisphere

Sampling light source area

100 random points on area of light source

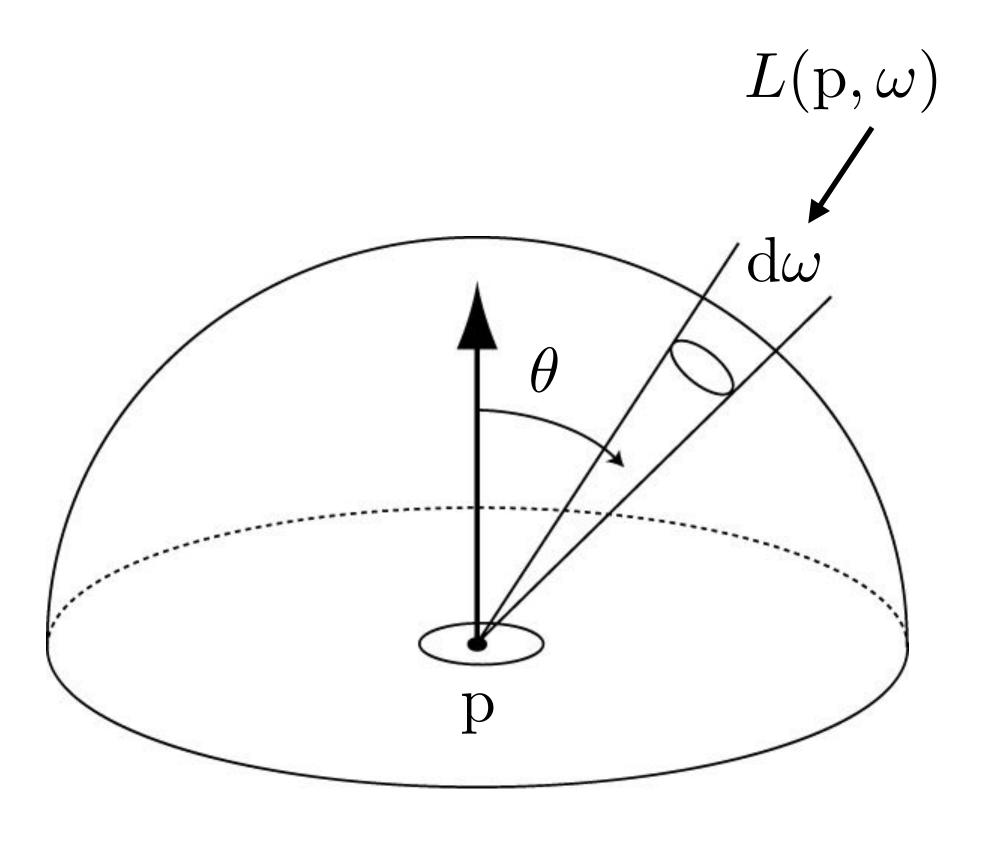
CS184/284A Ren Ng



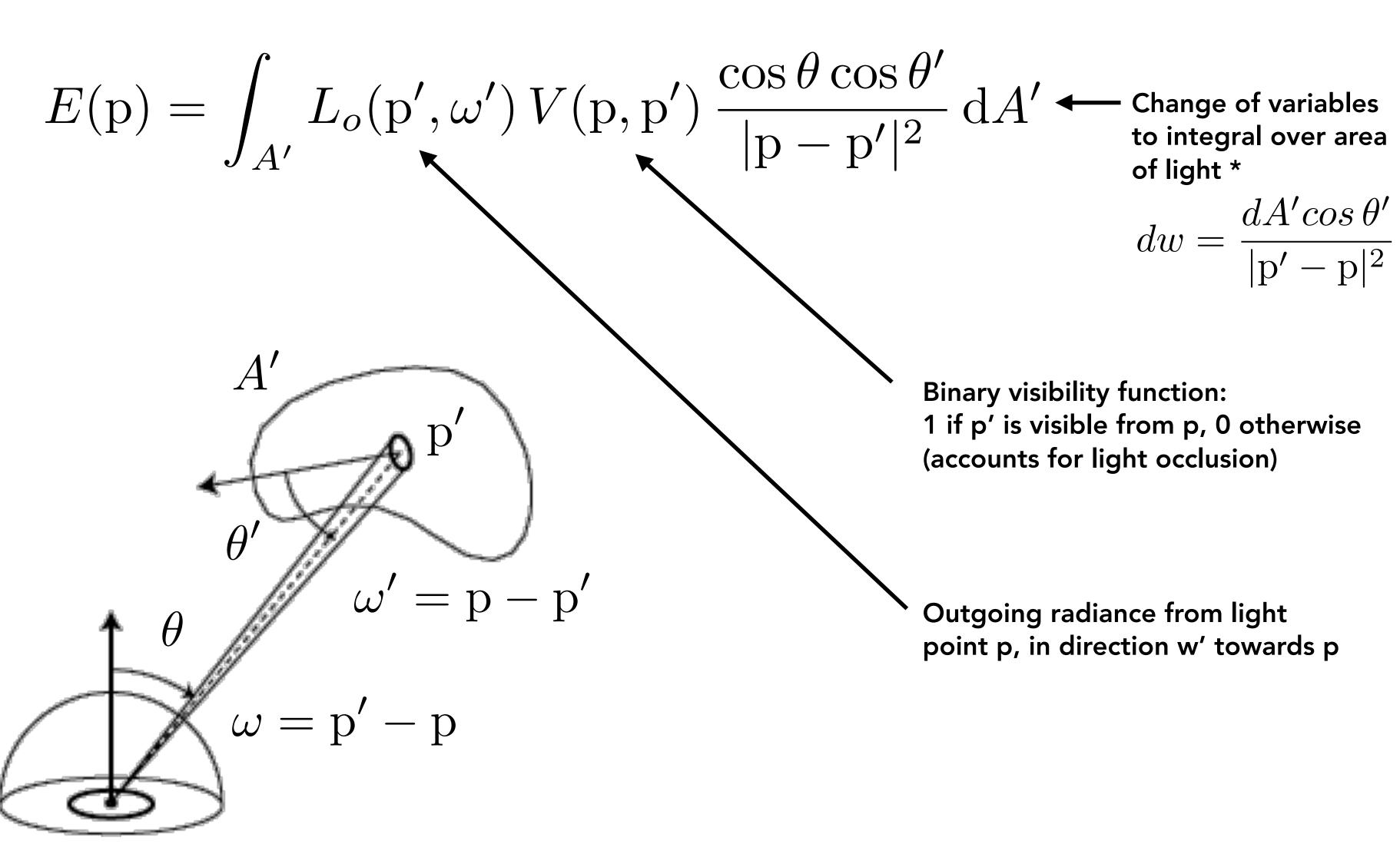
If no occlusion is present, all directions chosen in computing estimate "hit" the light source. (Choice of direction only matters if portion of light is occluded from surface point p.)

Changing Basis of Integration: Sampling Hemisphere

$$E(\mathbf{p}) = \int L(\mathbf{p}, \omega) \cos \theta \, d\omega$$



Changing Basis of Integration: Sampling Light Source Area



Monte Carlo Estimate by Sampling Light Source Area

$$E(\mathbf{p}) = \int_{A'} L_o(\mathbf{p'}, \omega') V(\mathbf{p}, \mathbf{p'}) \frac{\cos \theta \cos \theta'}{|\mathbf{p} - \mathbf{p'}|^2} dA'$$

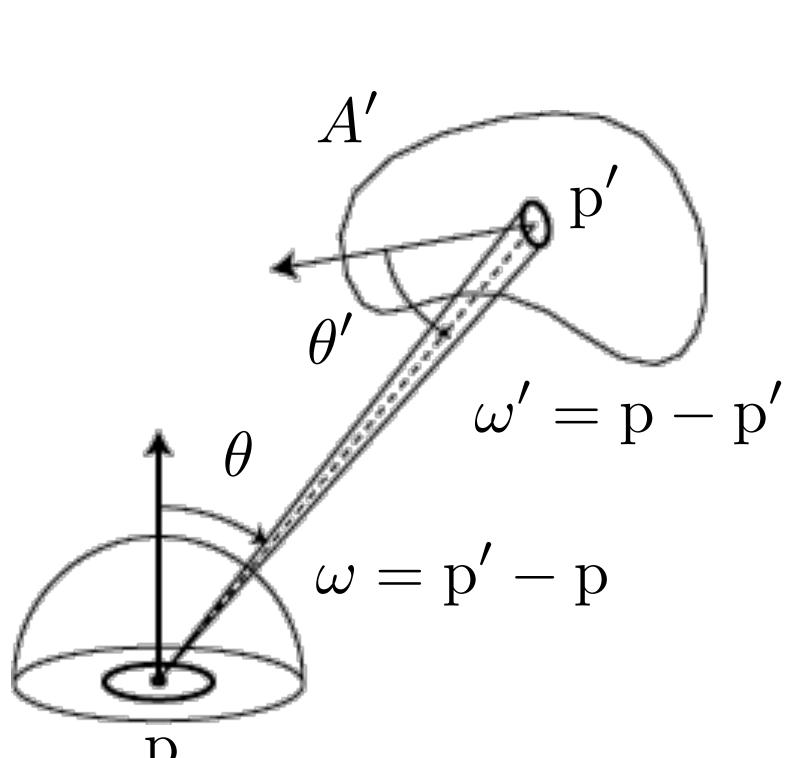
Randomly sample light source area A' (assume uniformly over area)

$$\int_{A'} p(\mathbf{p}') \, dA' = 1$$

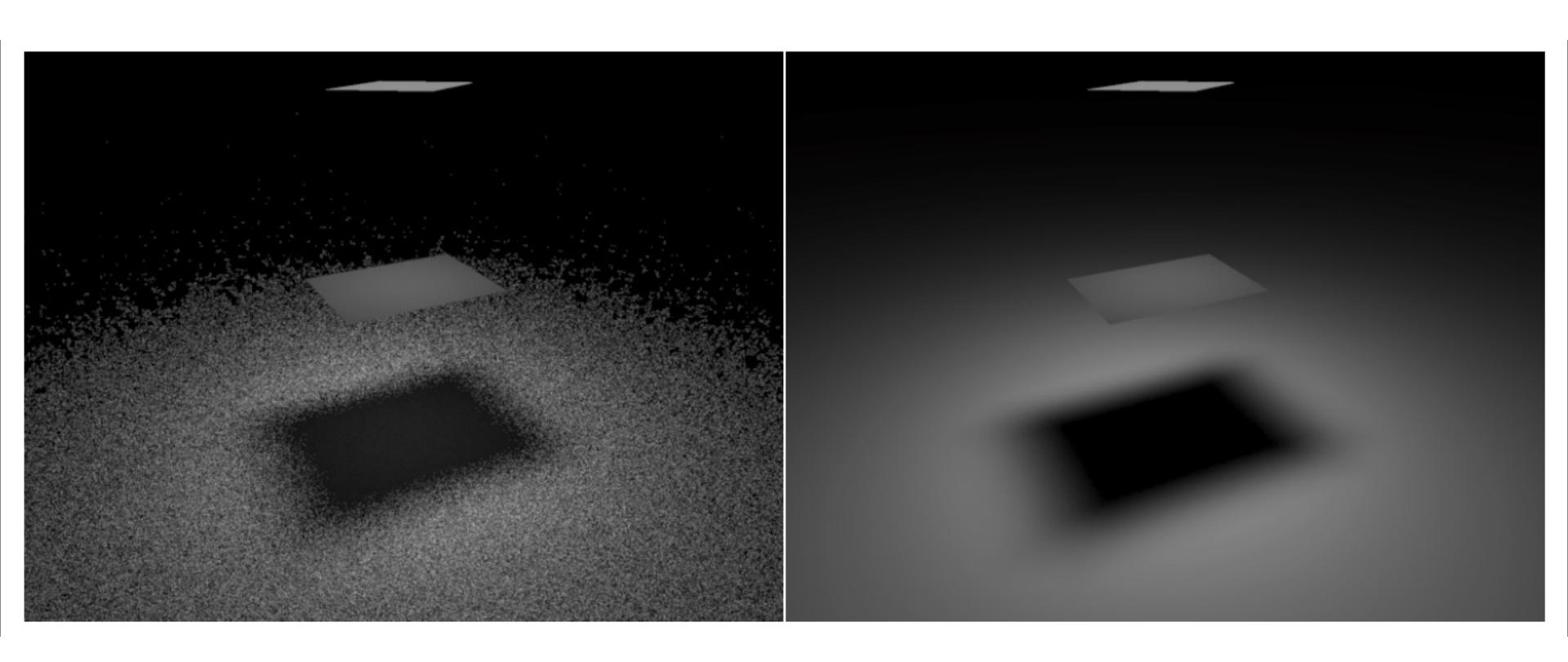
$$p(\mathbf{p}') = \frac{1}{A'}$$

$$F_N = \frac{A'}{N} \sum_{i=1}^N Y_i$$

$$Y_i = L_o(\mathbf{p}_i', \omega_i') V(\mathbf{p}, \mathbf{p}_i') \frac{\cos \theta_i \cos \theta_i'}{|\mathbf{p} - \mathbf{p}_i'|^2}$$



Solid Angle Sampling vs Light Area Sampling



Sampling solid angle

100 random directions on hemisphere

Sampling light source area

100 random points on area of light source

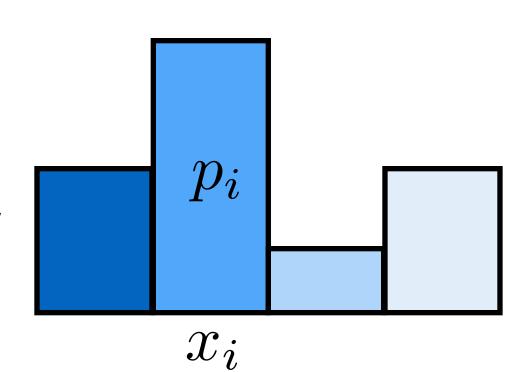
CS184/284A Ren Ng

How to Draw Samples From a Desired Probability Distribution?

Task: Draw A Random Value From a Given PDF

Task:

Given a PDF for a discrete random variable, probability p_i for each value x_i ,



Draw a random value X from this PDF.

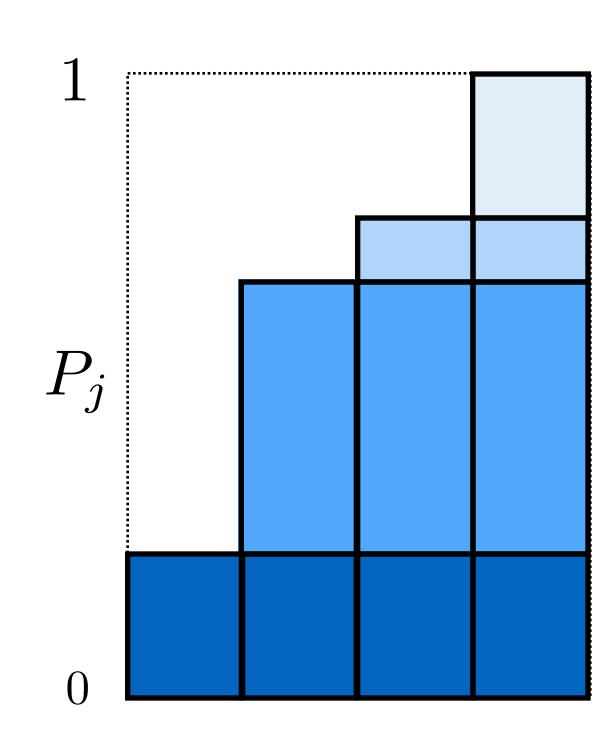
Step 1:

Calculate cumulative PDF: $P_j = \sum_{i=1}^{n} p_i$

Note: must have

$$0 \le P_i \le 1$$

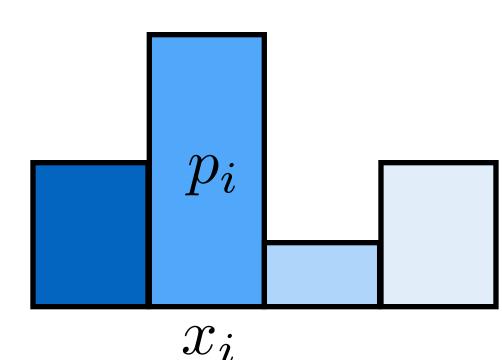
$$P_n = 1$$



Task: Draw A Random Value From a Given PDF

Task:

Given a PDF for a discrete random variable, probability p_i for each value x_i ,



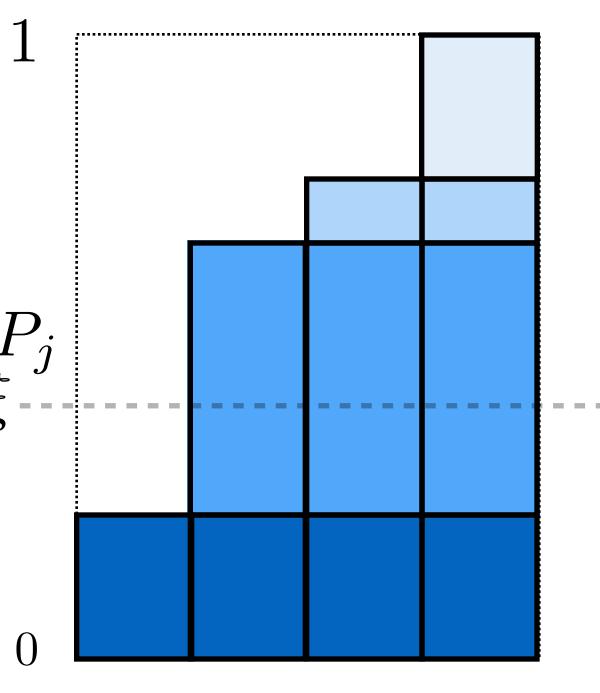
Draw a random value X from this PDF.

Step 2:

Given a uniform random variable $\xi \in [0,1)$

 $\begin{array}{l} \text{choose } X = x_i \\ \text{such that } P_{i-1} < \xi \leq P_i \end{array}$

How to compute? Binary search.



Continuous Probability Distribution

PDF
$$p(x)$$

$$p(x) \ge 0$$

CDF P(x)

$$P(x) = \int_0^x p(x) \, \mathrm{d}x$$

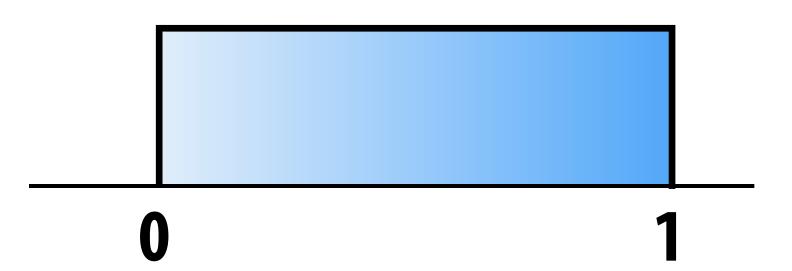
$$P(x) = \Pr(X < x)$$

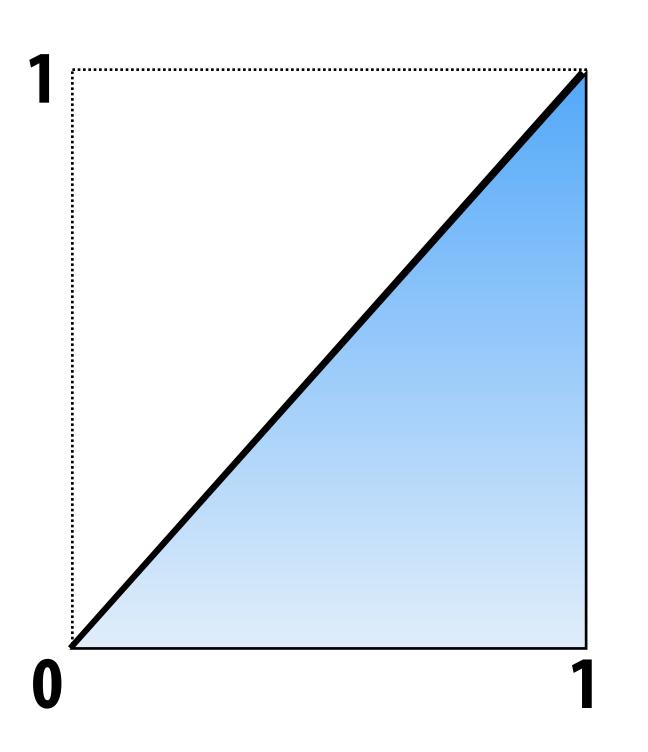
$$P(1) = 1$$

$$\Pr(a \le X \le b) = \int_a^b p(x) \, \mathrm{d}x$$

$$= P(b) - P(a)$$

Uniform distribution on unit interval





Sampling Continuous Probability Distributions

Called the "inversion method"

Cumulative probability distribution function

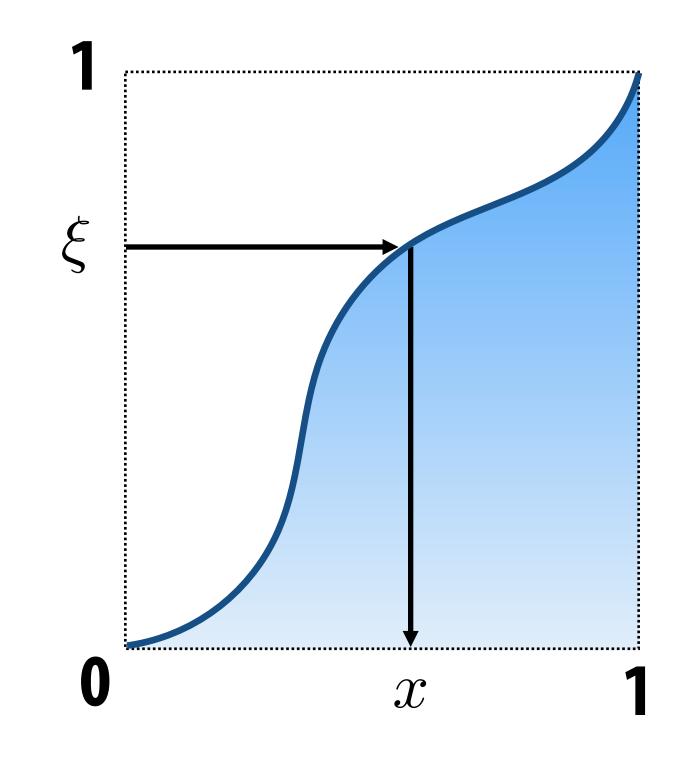
$$P(x) = \Pr(X < x)$$

Construction of samples:

Solve for
$$x = P^{-1}(\xi)$$

Must know the formula for:

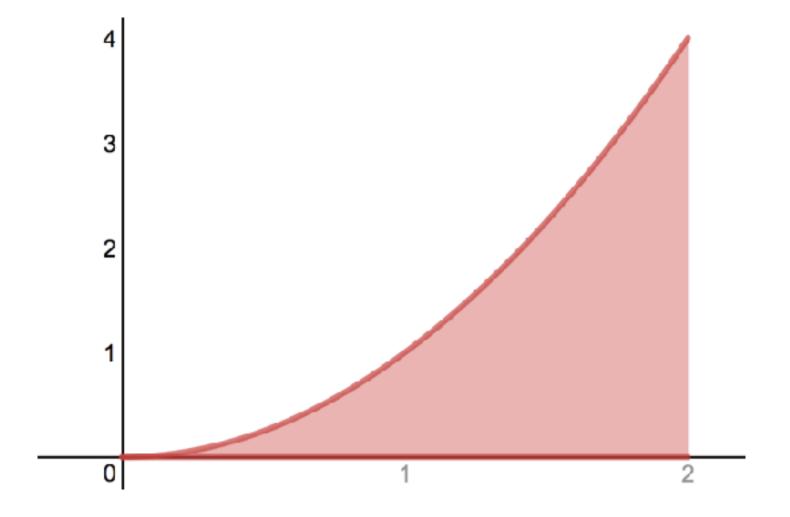
- 1. The integral of p(x)
- 2. The inverse function $P^{-1}(x)$



Given:

$$f(x) = x^2 \quad x \in [0, 2]$$

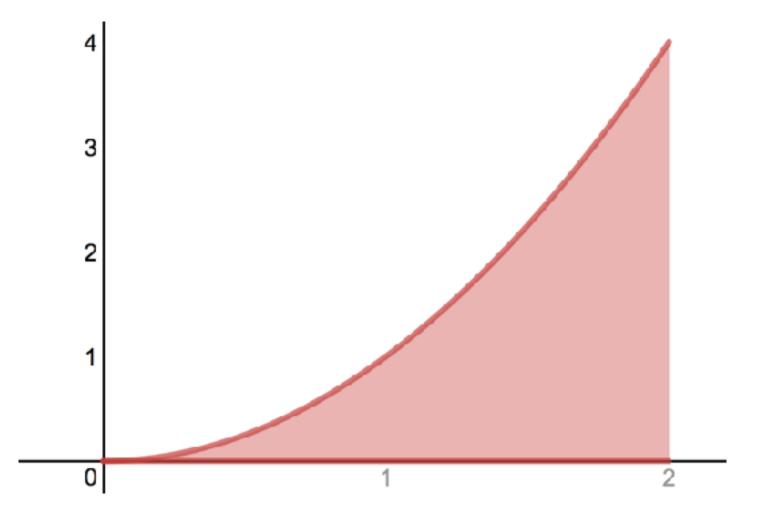
Want to sample according to this graph:



Given:

$$f(x) = x^2 \quad x \in [0, 2]$$

Want to sample according to this graph:



Step 0: compute PDF by normalizing

$$p(x) = c f(x) = c x^2$$

Also
$$\int_{0}^{2} p(x) dx = \int_{0}^{2} c x^{2} dx = 1$$

$$\Longrightarrow c = \frac{3}{8}$$

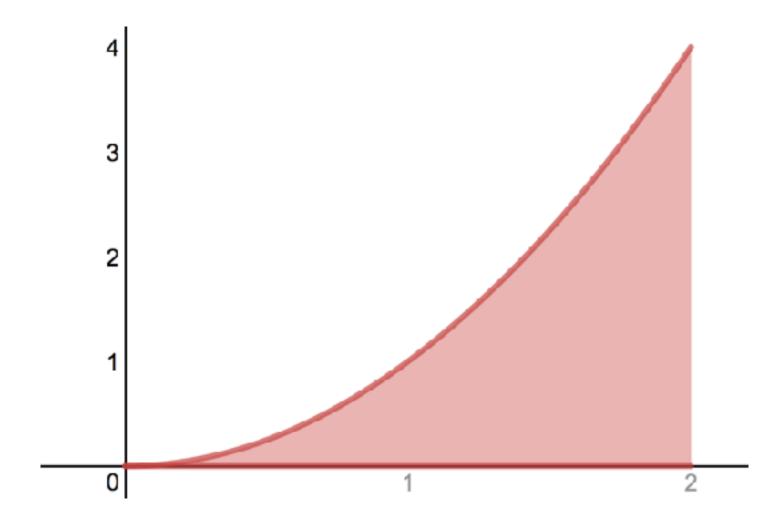
$$\implies p(x) = \frac{3x^2}{8}$$

Given:

$$f(x) = x^2 \quad x \in [0, 2]$$

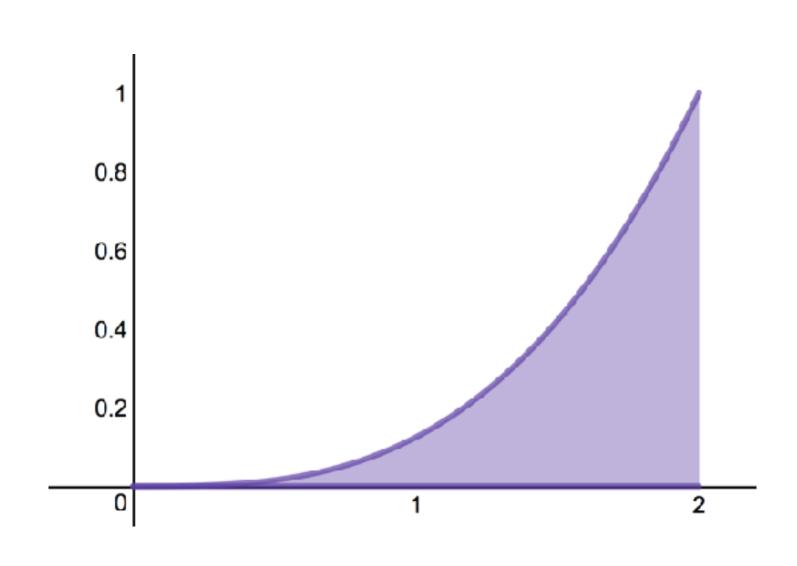
$$\Rightarrow p(x) = \frac{3x^2}{8}$$

Want to sample according to this



Step 1: Compute CDF:

$$P(x) = \int_0^x p(x) dx$$
$$= \frac{x^3}{8}$$



Given:

$$f(x) = x^2 \quad x \in [0, 2]$$

$$p(x) = \frac{3}{8}x^2$$

$$P(x) = \frac{x^3}{8}$$

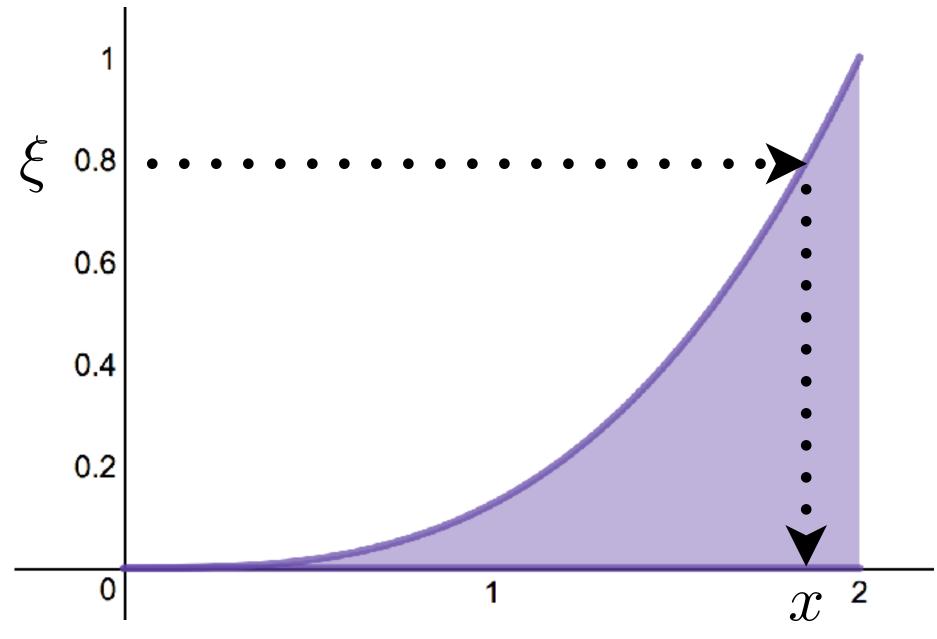
Step 2: Sample from p(x)

$$\xi = P(x) = \frac{x^3}{8}$$

$$x = \sqrt[3]{8\xi}$$

Applying the inversion method

Remember ξ is uniform random number in [0,1)



Things to Remember

Monte Carlo integration

- Unbiased estimators
- Good for high-dimensional integrals
- Estimates are visually noisy and need many samples
- Importance sampling can reduce variance (noise) if probability distribution "fits" underlying function

Sampling random variables

- Inversion method, rejection sampling
- Sampling in 1D, 2D, disks, hemispheres

Acknowledgments

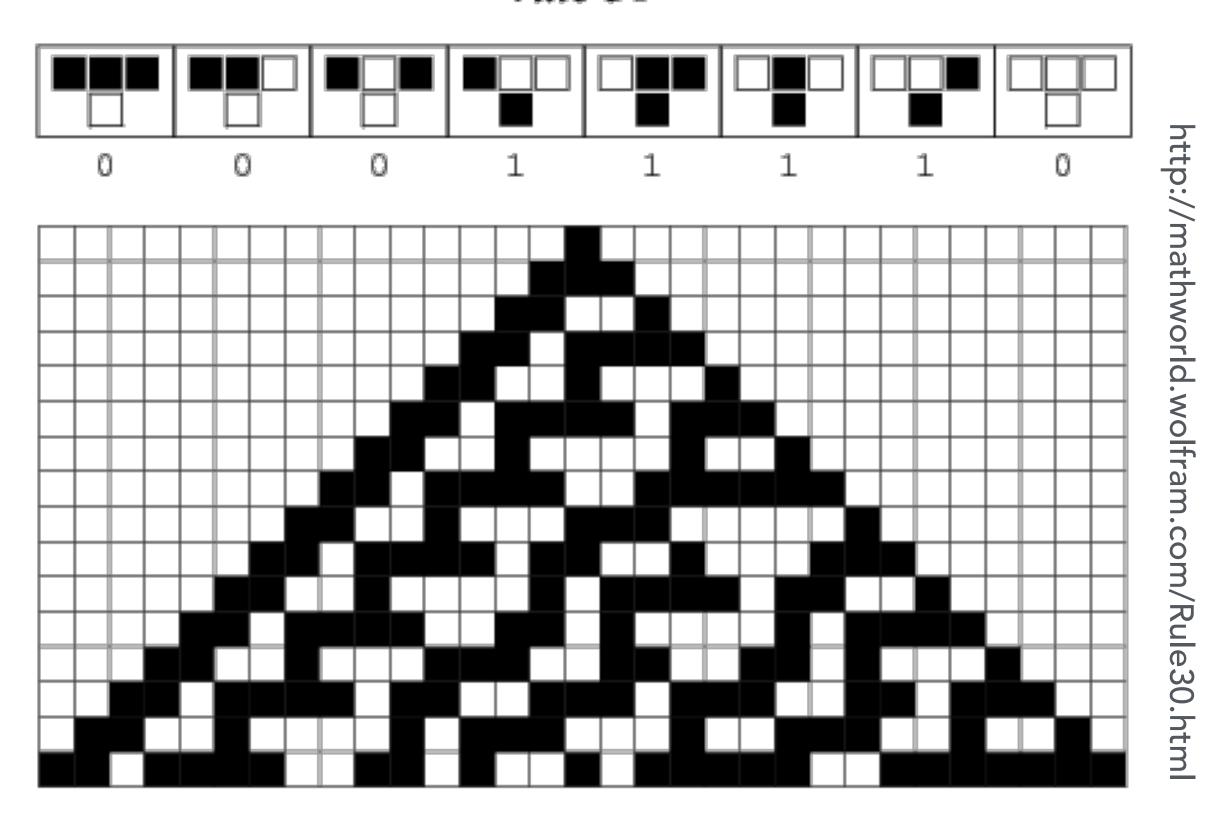
Many thanks to Kayvon Fatahalian, Matt Pharr, and Pat Hanrahan, who created the majority of these slides. Thanks also to Keenan Crane.

CS184/284A Ren Ng

Extra

Pseudo-Random Number Generation

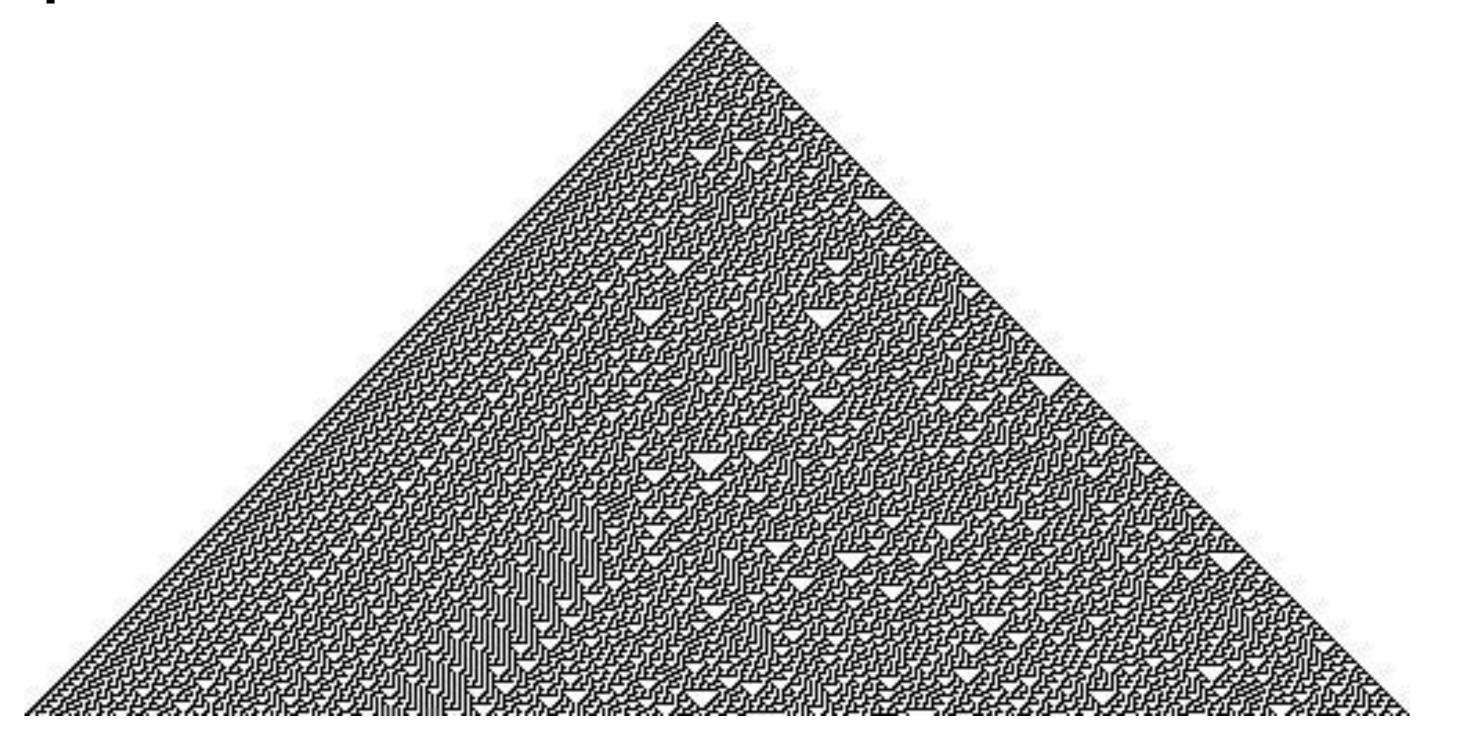
Example: cellular automata #30



CS184/284A Ren Ng

Pseudo-Random Number Generation

Example: cellular automata #30



Center line values are a high-quality random bit sequence Once used for random number generator in Mathematica

http://mathworld.wolfram.com/Rule30.html

Pseudo-Random Number Generation

CS184/284A Ren Ng

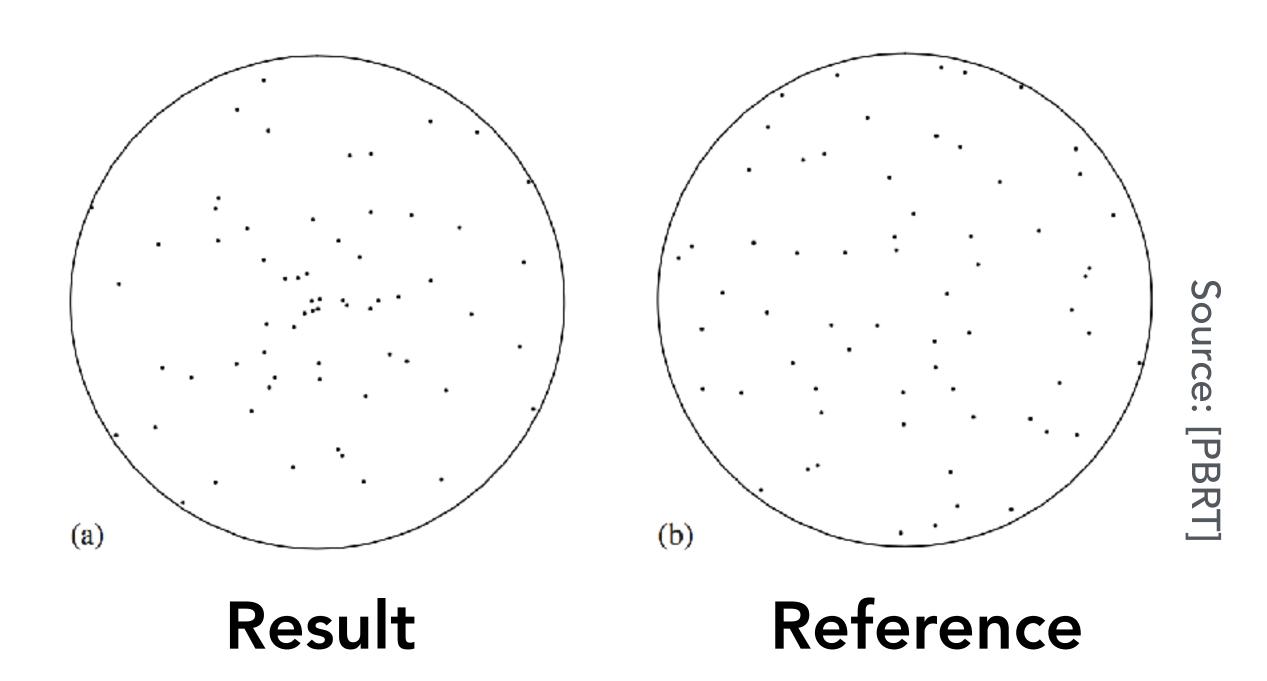
Random Sampling of Disks & Hemispheres

Sampling Unit Circle: Simple but Wrong Method

 θ = uniform random angle between 0 and 2π

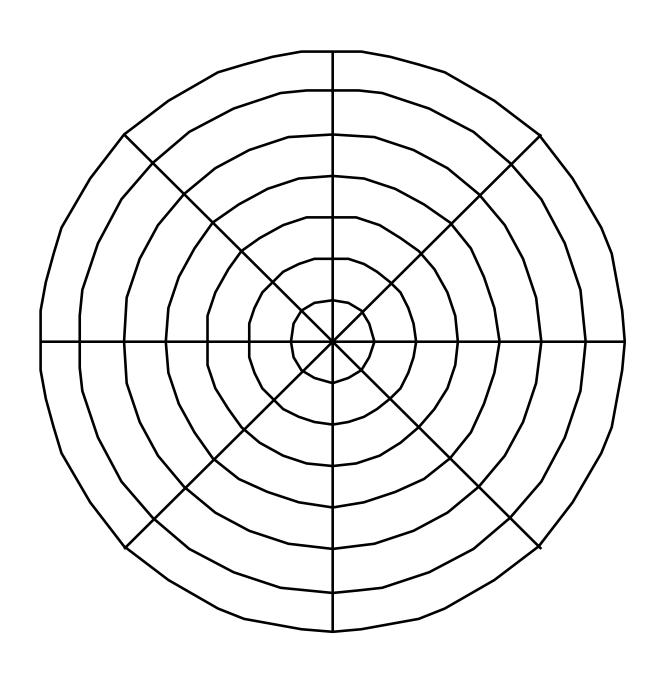
 γ = uniform random radius between 0 and 1

Return point: $(r \cos \theta, r \sin \theta)$



Need to Sample Uniformly in Area

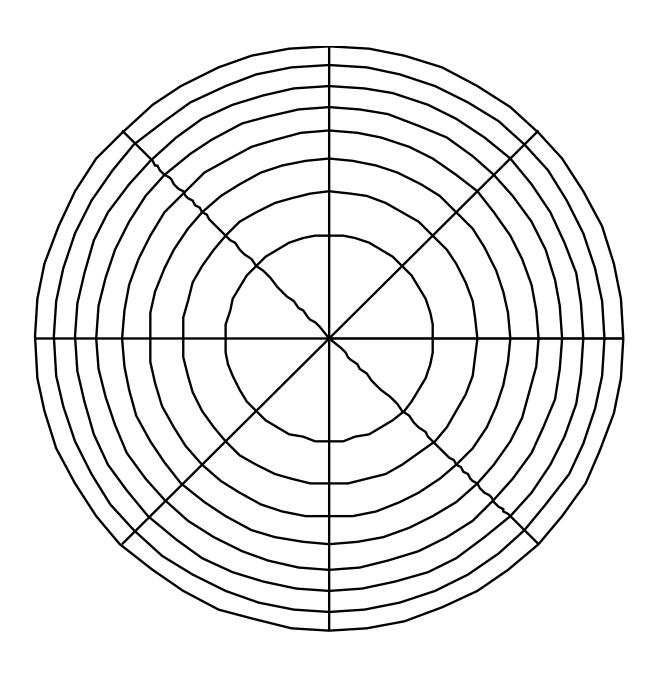
Incorrect Not Equi-areal



$$\theta = 2\pi \xi_1$$

$$r=\xi_2$$

Correct Equi-areal

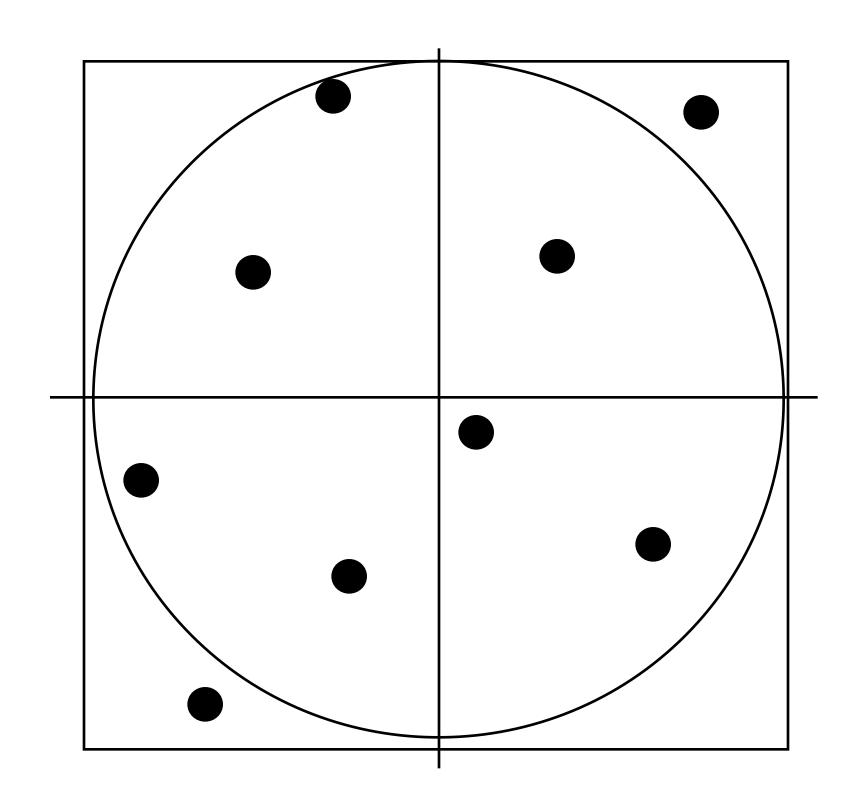


$$\theta = 2\pi \xi_1$$

$$r = \sqrt{\xi_2}$$

^{*} See Shirley et al. p.331 for full explanation using inversion method

Rejection Sampling Circle's Area



```
do {
  x = 1 - 2 * rand01();
  y = 1 - 2 * rand01();
} while (x*x + y*y > 1.);
```

Efficiency of technique: area of circle / area of square

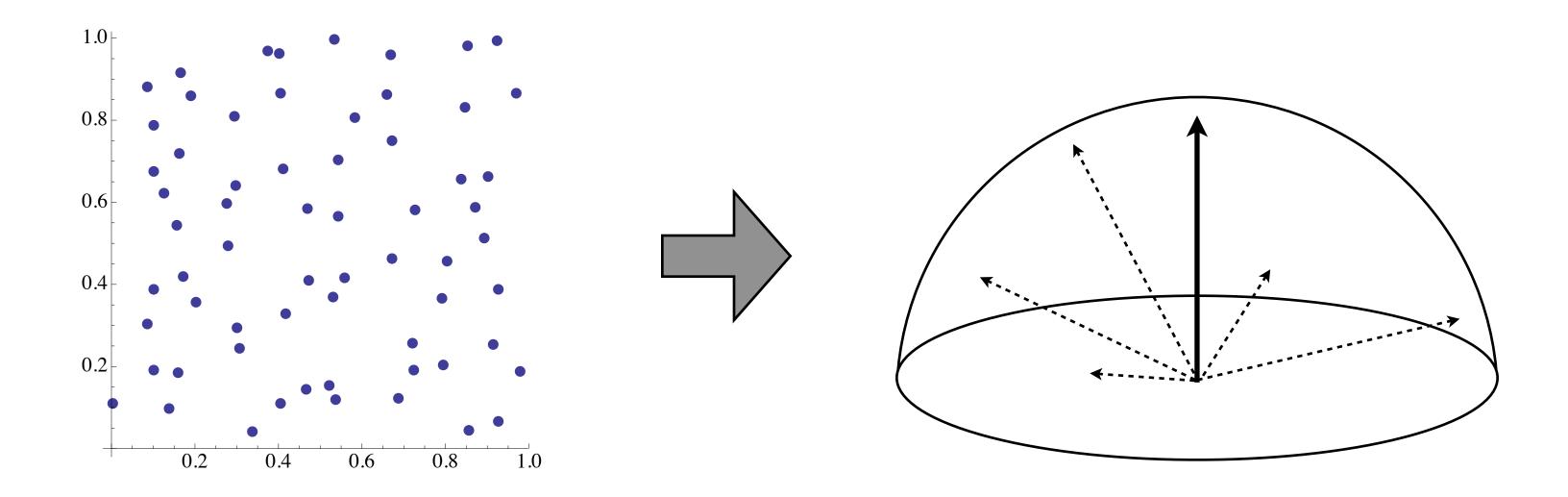
Uniform Sampling of Hemisphere

Generate random direction on hemisphere (all dirs. equally likely)

$$p(\omega) = \frac{1}{2\pi}$$

Direction computed from uniformly distributed point on 2D square:

$$(\xi_1, \xi_2) \to (\sqrt{1 - \xi_1^2} \cos(2\pi \xi_2), \sqrt{1 - \xi_1^2} \sin(2\pi \xi_2), \xi_1)$$



Full derivation: see PBRT 3rd Ed. 13.6.1