Lecture 24:

Image Processing

Computer Graphics and Imaging
UC Berkeley CS184/284A

Credit: Kayvon Fatahalian created the majority of these lecture slides
Case Study: JPEG Compression
Low-frequency content is predominant in images of the real world

The human visual system is:

- Less sensitive to detail in chromaticity than in luminance
- Less sensitive to high frequency sources of error

Therefore, image compression of natural images can:

- Reduce perceived error by localizing error into high frequencies, and in chromaticity
Y’CbCr Color Space

Y’CbCr color space

• This is a perceptually-motivated color space akin to L*a*b* that we discussed in the color lecture

• Y’ is luma (lightness), Cb and Cr are chroma channels (blue-yellow and red-green difference from gray)

*Omitting discussion of nonlinear gamma encoding in Y’ channel
Example Image
Y’ Only (Luma)

Luma channel
Downsampled Y’

4x4 downsampeled luma channel
CbCr Only (Chroma)

CbCr channels
Downsampled CbCr

4x4 downsampling CbCr channels
Example: Compression in Y’ Channel

4x4 downsampled Y’, full-resolution CbCr
Example: Compression in CbCr Channels

Full-resolution Y’, 4x4 down sampled CbCr
JPEG: Chroma Subsampling in Y’CbCr Space

Subsample chroma channels (e.g. to 4:2:2 or 4:2:0 format)

4:2:2 representation: (retain 2/3 values)
• Store Y’ at full resolution
• Store Cb, Cr at half resolution in horizontal dimension

4:2:0 representation: (retain 1/2 values)
• Store Y’ at full resolution
• Store Cb, Cr at half resolution in both dimensions
JPEG: Discrete Cosine Transform (DCT)

$$\text{basis}[i, j] = \cos \left[\pi \frac{i}{N} \left(x + \frac{1}{2} \right) \right] \times \cos \left[\pi \frac{j}{N} \left(y + \frac{1}{2} \right) \right]$$

In JPEG, apply discrete cosine transform (DCT) to each 8x8 block of image values.

DCT computes projection of image onto 64 basis functions:

basis\[i, j\]

DCT applied to 8x8 pixel blocks of Y’ channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)
JPEG Quantization: Prioritize Low Frequencies

Result of DCT
(image encoded in cosine basis)

[\begin{bmatrix}
-26 & -3 & -6 & 2 & 2 & -1 & 0 & 0 \\
0 & -2 & -4 & 1 & 1 & 0 & 0 & 0 \\
-3 & 1 & 5 & -1 & -1 & 0 & 0 & 0 \\
-4 & 1 & 2 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}]

Quantization Matrix

Changing JPEG quality setting in your favorite photo app modifies this matrix ("lower quality" = higher values for elements in quantization matrix)

[\begin{bmatrix}
16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\
12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\
14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\
14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\
18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\
24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\
49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\
72 & 92 & 95 & 98 & 112 & 100 & 103 & 99
\end{bmatrix}]

Quantization produces small values for coefficients (only a few bits needed per coefficient)

Observe: quantization zeros out many coefficients

Slide credit: Wikipedia, Pat Hanrahan
JPEG: Compression Artifacts

Noticeable 8x8 pixel block boundaries

Noticeable error near large color gradients

Low quality

Medium quality

Low-frequency regions of image represented accurately even under high compression
Why might JPEG compression not be a good compression scheme for line-based illustrations or rasterized text?
Lossless Compression of Quantized DCT Values

Quantized DCT Values

<table>
<thead>
<tr>
<th>00</th>
<th>00</th>
<th>00</th>
<th>00</th>
<th>00</th>
<th>00</th>
<th>00</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

Basis functions

Entropy encoding: (lossless)

- Reorder values
- Run-length encode (RLE) 0’s
- Huffman encode non-zero values

[Image credit: Wikipedia]
JPEG Compression Summary

Convert image to Y’CbCr color space

Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)

For each color channel (Y’, Cb, Cr):
 For each 8x8 block of values
 Compute DCT
 Quantize results (information loss occurs here)
 Reorder values
 Run-length encode 0-spans
 Huffman encode non-zero values
Theme: Exploit Perception in Visual Computing

JPEG is an example of a general theme of exploiting characteristics of human perception to build efficient visual computing systems.

We are perceptually insensitive to color errors:

- Separate luminance from chrominance in color representations (e.g., Y’CbCr) and compress chrominance.

We are less perceptually sensitive to high-frequency error:

- Use a frequency-based encoding (cosine transform) and compress high-frequency values.

We perceive lightness non-linearly (not discussed in this lecture):

- Encode pixel values non-linearly to match perceived brightness using gamma curve.
Basic Image Processing Operations
Example Image Processing Operations

Blur
Example Image Processing Operations

Sharpen
Edge Detection
A “Smarter” Blur (Preserves Crisp Edges)
Denoising
Review: Convolution

\[(f * g)(x) = \int_{-\infty}^{\infty} f(y) g(x - y) dy\]

Example: convolution with "box" function:

\[f(x) = \begin{cases}
1 & |x| \leq 0.5 \\
0 & \text{otherwise}
\end{cases}\]

\[(f * g)(x) = \int_{-0.5}^{0.5} g(x - y) dy\]

\[f * g\] is a “smoothed” version of \(g\)

* In this gif \(f\) and \(g\) are swapped
Discrete 2D Convolution

\[
(f * I)(x, y) = \sum_{i, j = -\infty}^{\infty} f(i, j)I(x - i, y - j)
\]

Consider \(f(i, j)\) that is nonzero only when: \(-1 \leq i, j \leq 1\)

Then:

\[
(f * g)(x, y) = \sum_{i, j = -1}^{1} f(i, j)I(x - i, y - j)
\]

And we can represent \(f(i, j)\) as a 3x3 matrix of values.

These values are often called “filter weights” or the “kernel”.
Simple 3x3 Box Blur

```c
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
                   1./9, 1./9, 1./9,
                   1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        for (int jj=0; jj<3; jj++)
            for (int ii=0; ii<3; ii++)
                tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
        output[j*WIDTH + i] = tmp;
    }
}
```

Will ignore boundary pixels today and assume output image is smaller than input (makes convolution loop bounds much simpler to write)

CS184/284A

Ren Ng
7x7 Box Blur

Original

Blurred
Gaussian Blur

Obtain filter coefficients from sampling 2D Gaussian

\[f(i, j) = \frac{1}{2\pi \sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}} \]

- Produces weighted sum of neighboring pixels (contribution falls off with distance)
 - Truncate filter beyond certain distance

\[
\begin{bmatrix}
0.075 & 0.124 & 0.075 \\
0.124 & 0.204 & 0.124 \\
0.075 & 0.124 & 0.075
\end{bmatrix}
\]
7x7 Gaussian Blur

Original

Blurred
Compare: 7x7 Box Blur

Original

Blurred
What Does Convolution with this Filter Do?

\[
\begin{bmatrix}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{bmatrix}
\]

Sharpens image!
3x3 Sharpen Filter

Original

Sharpened
What Does Convolution with these Filters Do?

\[
\begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{bmatrix}
\quad \quad
\begin{bmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{bmatrix}
\]

Extracts horizontal gradients

Extracts vertical gradients
Gradient Detection Filters

Horizontal gradients

Vertical gradients

Note: you can think of a filter as a “detector” of a pattern, and the magnitude of a pixel in the output image as the “response” of the filter to the region surrounding each pixel in the input image (this is a common interpretation in computer vision)
Sobel Edge Detection

\[
G_x = \begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{bmatrix} \ast I
\]

\[
G_y = \begin{bmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{bmatrix} \ast I
\]

- Find pixels with large gradients

\[
G = \sqrt{G_x^2 + G_y^2}
\]
Algorithmic Cost of Convolution-Based Image Processing
Cost of Convolution with N x N Filter?

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

In this 3x3 box blur example:
Total work per image = 9 x WIDTH x HEIGHT

For N x N filter: \(N^2\) x WIDTH x HEIGHT
Separable Filters

A filter is separable if it is the product of two other filters.

- Examples: a 2D box blur

\[
\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \ast \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}
\]

- Exercise: write 2D gaussian and vertical/horizontal gradient detection filters as product of 1D filters (they are separable!)

Key property: 2D convolution with separable filter can be written as two 1D convolutions!
int WIDTH = 1024
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = {1./3, 1./3, 1./3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }

Total work per image = 6 \times WIDTH \times HEIGHT

For NxN filter: 2N \times WIDTH \times HEIGHT

Extra cost of this approach?

Storage!
Challenge: can you achieve this work complexity without incurring this cost?
Recall: Convolution Theorem

Spatial Domain

Fourier Transform

Frequency Domain

* =

Inv. Fourier Transform

NS184/284A

Ng & Kanazawa
Efficiency?

When is it faster to implement a filter by convolution in the spatial domain?

When is it faster to implement a filter by multiplication in the frequency domain?
Data-Dependent Filters
Median Filter

- Replace pixel with median of its neighbors
 - Useful noise reduction filter: unlike gaussian blur, one bright pixel doesn’t drag up the average for entire region

- Not linear, not separable
 - Filter weights are 1 or 0 (depending on image content)

```c
uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++)
  for (int i=0; i<WIDTH; i++)
    output[j*WIDTH + i] =
      // compute median of pixels
      // in surrounding 5x5 pixel window
```

original image
1px median filter
3px median filter
10px median filter
Bilateral Filter

Example use of bilateral filter: removing noise while preserving image edges
Intuition

Isotropic filtering

Anisotropic, data dependent filtering
Bilateral Filter

- Value of output pixel \((x,y)\) is the weighted sum of all pixels in the support region of a truncated gaussian kernel.

- But weight is combination of both spatial distance and intensity difference. (another non-linear, data-dependent filter)

- The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels on the other side of strong edges. \(f(x)\) defines what “strong edge means”

- Spatial distance weight term \(f(x)\) could itself be a gaussian
 - Or very simple: \(f(x) = 0 \text{ if } x > \text{threshold}, 1 \text{ otherwise}\)
Bilateral Filter

Input pixel p

Pixels with significantly different intensity relative to p contribute little to filtered result (they are on the “other side of the edge”)

Test your understanding: What would change on this slide if pixel p were on the lower side of the edge?

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002
Data-Driven Image Processing: “Image Manipulation by Example”
Denoising with Non-Local Means

Large weight for input pixels that have similar neighborhood as p

- Intuition: filtered result is the average of pixels “like” this one
 - Most similar pixel has no reason to be nearby at all!!
- In example below-right: q1 and q2 have high weight, q3 has low weight
Main idea: replace pixel with average value of nearby pixels that have a similar surrounding region.

- Assumption: images have repeating structure
 \[
 NL[I](p) = \sum_{q \in S(p)} w(p, q) I(q)
 \]
 \[
 w(p, q) = \frac{1}{C_p} e^{-\frac{\|N_p - N_q\|^2}{h^2}}
 \]

- \(N_p\) and \(N_q\) are vectors of pixel values in square window around pixels \(p\) and \(q\) (highlighted regions in figure)

- L2 difference between \(N_p\) and \(N_q\) = “similarity” of surrounding regions

- \(C_p\) is just a normalization constant to ensure weights sum to one for pixel \(p\).

- \(S\) is the search region around \(p\) (given by dotted red line in figure)
Texture Synthesis

Input: low-resolution texture image
Desired output: high-resolution texture that appears “like” the input

Source texture
(low resolution)

High-resolution texture generated by naive tiling of low-resolution texture
Algorithm: Non-Parametric Texture Synthesis

Main idea: For a given pixel \(p \), find a probability distribution function for possible values of \(p \), based on its neighboring pixels.

Define neighborhood \(N_p \) to be the \(N \times N \) pixels around \(p \)

To synthesize each pixel \(p \):
1. Find other \(N \times N \) patches (\(N_q \)) in the image that are most similar to \(N_p \)
2. Center pixels of the closest patches are candidates for \(p \)
3. Randomly sample from candidates weighted by distance \(d(N_p,N_q) \)
Non-Parametric Texture Synthesis

Increasing size of neighborhood search window: $w(p)$

[Efros and Leung 99]
More Texture Synthesis Examples

Source textures

Synthesized Textures

Naive tiling solution

[Efros and Leung 99]
Image Completion Example

Goal: fill in masked region with "plausible" pixel values.

Things to Remember

JPEG as an example of exploiting perception in visual systems
 • Chroma subsampling and DCT transform

Image processing via convolution
 • Different operations by changing filter kernel weights
 • Fast separable filter implementation: multiple 1D filters

Data-dependent image processing techniques
 • Bilateral filtering, Efros-Leung texture synthesis

To learn more: consider CS194-26 “Computational Photography”
Acknowledgments

Many thanks to Kayvon Fatahalian for this lecture!