
Computer Graphics and Imaging
UC Berkeley CS184/284A

Lecture 10:

Accelerating Ray-Scene Intersection

Ray Tracing – Performance Challenges

San Miguel Scene, 10.7M triangles

Jun Yan, Tracy Renderer

Ren NgCS184/284A

Ray Tracing – Performance Challenges

Simple ray-scene intersection

• Exhaustively test ray-intersection with every object

Problem:

• Exhaustive algorithm = #pixels ⨉ #objects

• Very slow!

Ren NgCS184/284A

Ray Tracing – Acceleration

• Brute-force algorithm = #pixels ⨉ #objects

• Acceleration structures ≈ #pixels ⨉ log (#objects)

Bounding Volumes

Ren NgCS184/284A

Bounding Volumes

Quick way to avoid intersections: bound complex
object with a simple volume

• Object is fully contained in the volume

• If it doesn’t hit the volume, it doesn’t hit the object

• So test bvol first, then test object if it hits

Ren NgCS184/284A

Optimize Ray-Plane Intersection For Axis-Aligned Planes?

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
(p0 � o) ·N

d ·N

3 subtractions, 6 multiplies, 1 division

t =
(p0 � o) ·N

d ·N =) t =
p0

x � ox

dx

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N
1 subtraction, 1 division

General

Perpendicular
to x-axis

Ren NgCS184/284A

Ray-Intersection With Box

Could intersect with 6 faces individually
Better way: box is the intersection of 3 slabs

2D example; 3D is the same! Compute intersections with
slabs and take intersection of tmin/tmax intervals

Ray Intersection with Axis-Aligned Box

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Note: tmin < 0

Intersections with y planes Intersections with x planes

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Final intersection result

How do we know when the ray misses the box?

Uniform Spatial Partitions (Grids)

Ren NgCS184/284A

Preprocess – Build Acceleration Grid

1. Find bounding box

Ren NgCS184/284A

Preprocess – Build Acceleration Grid

1. Find bounding box
2. Create grid

Ren NgCS184/284A

Preprocess – Build Acceleration Grid

1. Find bounding box
2. Create grid
3. Store each object

in overlapping
cells

Ren NgCS184/284A

Ray-Scene Intersection

Step through grid in
ray traversal order
(3D line - 3D DDA)
For each grid cell
 Test intersection
 with all objects
 stored at that cell

Ren NgCS184/284A

Grid Resolution?

One cell

• No speedup

Ren NgCS184/284A

Grid Resolution?

Too many cells

• Inefficiency due to
extraneous grid
traversal

Ren NgCS184/284A

Grid Resolution?

Heuristic:

• #cells = C * #objs

• C ≈ 27 in 3D

Ren NgCS184/284A

Careful! Objects Overlapping Multiple Cells

What goes wrong here?

• First intersection
found (red) is not
the nearest!

Solution?

• Check intersection
point is inside cell

Optimize

• Cache intersection
to avoid re-testing
(mailboxing)

Ren NgCS184/284A

Uniform Grids – When They Work Well

Deussen et al; Pharr & Humphreys, PBRT

Grids work well on large collections of objects
that are distributed evenly in size and space

Ren NgCS184/284A

Jun Yan, Tracy Renderer

Uniform Grids – When They Fail

“Teapot in a stadium” problem

Non-Uniform Spatial Partitions:
Spatial Hierarchies

Ren NgCS184/284A

Spatial Hierarchies

A

A

Ren NgCS184/284A

B

A

Spatial Hierarchies

A

B

Ren NgCS184/284A

C

Spatial Hierarchies

A

BC

B

A

Ren NgCS184/284A

D

C

Spatial Hierarchies

A

BC

D

B

A

Ren NgCS184/284A

4 5

D 3

2 C

Spatial Hierarchies

A

BC

D

1

2

3
4

5

1 B

A

Ren NgCS184/284A

Spatial Partitioning Variants

BSP-TreeKD-Tree

Note: you could have these in both 2D and 3D. In lecture we will illustrate
principles in 2D, but for assignment you will implement 3D versions.

Oct-Tree

Ren NgCS184/284A

KD-Trees

Internal nodes store

• split axis: x-, y-, or z-axis

• split position: coordinate of split plane along axis

• children: reference to child nodes
Leaf nodes store

• list of objects

• mailbox information

Ren NgCS184/284A

KD-Tree Pre-Processing

A

BC

D

• Find bounding box

• Recursively split cells,
axis-aligned planes

• Until termination
criteria met (e.g. max
#splits or min #objs)

• Store obj references
with each leaf node

Ren NgCS184/284A

4 5

D 3

2 C

KD-Tree Pre-Processing

A

BC

D

1 B

A Root

Internal Nodes

Leaf Nodes

Only leaf nodes store
references to geometry

1

2

3
4

5

Ren NgCS184/284A

KD-Tree Pre-Processing

Choosing the split plane

• Simple: midpoint, median split

• Ideal: split to minimize expected cost of ray
intersection

Termination criteria?

• Simple: common to prescribe maximum tree depth
(empirical 8 + 1.3 log N, N = #objs) [PBRT]

• Ideal: stop when splitting does not reduce
expected cost of ray intersection

Ren NgCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

A

BC

D

1 B

A

Ren NgCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

A

BC

1 B

A

tmin

tmax

tsplit

Internal node: split

D

Ren NgCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

1 B

A

tmin

tmax

Leaf node: intersect
all objects

D

A

Ren NgCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

1 B

A

tmin

tmax

tsplit

Internal node: split

D

A

Ren NgCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

1 B

A

tmin

tmax

Leaf node: intersect
all objects

D

A

Ren NgCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

1 B

A

tmin

tmax

tsplit

Internal node: split

D

A

Ren NgCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

1 B

A

tmin

tmax

A
Leaf node: intersect
all objects

D

Ren NgCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

D

1 B

A

thit

Intersection found
A

Ren NgCS184/284A

KD-Trees Traversal – Recursive Step

W.L.O.G. consider x-axis split with ray moving right

tsplit = (xsplit � ox)/dx

tsplit = (xsplit � ox)/dx

tsplit = (xsplit � ox)/dx

tsplit = (xsplit � ox)/dx

tsplit = (xsplit � ox)/dx

Intersect(L,tmin,tsplit)
Intersect(R,tsplit,tmax)

Intersect(L,tmin,tmax) Intersect(R,tmin,tmax)

Object Partitions &

Bounding Volume Hierarchy (BVH)

Ren NgCS184/284A

Spatial vs Object Partitions

Spatial partition (e.g.KD-tree)
• Partition space into non-

overlapping regions
• Objects can be contained

in multiple regions

Object partition (e.g. BVH)
• Partition set of objects

into disjoint subsets
• Bounding boxes for each

set may overlap in space

Ren NgCS184/284A

Bounding Volume Hierarchy (BVH)

Root

Ren NgCS184/284A

Bounding Volume Hierarchy (BVH)

Ren NgCS184/284A

Bounding Volume Hierarchy (BVH)

Ren NgCS184/284A

C D

B

Bounding Volume Hierarchy (BVH)

A

A
B

C

D

Ren NgCS184/284A

Bounding Volume Hierarchy (BVH)

Internal nodes store

• Bounding box

• Children: reference to child nodes
Leaf nodes store

• Bounding box

• List of objects
Nodes represent subset of primitives in scene

• All objects in subtree

Ren NgCS184/284A

BVH Pre-Processing

• Find bounding box

• Recursively split set of
objects in two subsets

• Stop when there are
just a few objects in
each set

• Store obj reference(s)
in each leaf node

Ren NgCS184/284A

BVH Pre-Processing

Choosing the set partition

• Choose a spatial dimension to partition over (e.g. x,y,z)

• Simple #1: Split objects around spatial midpoint

• Simple #2: Split at location of median object

• Ideal: split to minimize expected cost of ray
intersection

Termination criteria?

• Simple: stop when node contains few elements (e.g. 5)

• Ideal: stop when splitting does not reduce expected
cost of ray intersection

Ren NgCS184/284A

BVH Recursive Traversal

 
 
 
Intersect (Ray ray, BVH node)
 if (ray misses node.bbox) return;
 if (node is a leaf node)
 test intersection with all objs;
 return closest intersection;
 hit1 = Intersect (ray, node.child1);
 hit2 = Intersect (ray, node.child2);
 return closer of hit1, hit2;

node

child1 child2

Optimizing Hierarchical Partitions
(How to Split?)

Ren NgCS184/284A

How to Split into Two Sets? (BVH)

Ren NgCS184/284A

How to Split into Two Sets? (BVH)

Ren NgCS184/284A

How to Split into Two Sets? (BVH)

Split at median element?
Child nodes have equal numbers of elements

Ren NgCS184/284A

How to Split into Two Sets? (BVH)

A better split?
Smaller bounding boxes, avoid overlap and empty space

Ren NgCS184/284A

Which Hierarchy Is Fastest?

Key insight: a good partition minimizes the average
cost of tracing a ray

Ren NgCS184/284A

Which Hierarchy Is Fastest?

What is the average cost of tracing a ray?

For leaf node:

Cost(node) = cost of intersecting all triangles
 = C_isect * TriCount(node)

 C_isect = cost of intersecting a triangle
 TriCount(node) = number of triangles in node

Ren NgCS184/284A

Which Hierarchy Is Fastest?

What is the average cost of tracing a ray?

For internal node:

 Cost(node) = C_trav
 + Prob(hit L)*Cost(L)
 + Prob(hit R)*Cost(R)

 C_trav = cost of traversing a cell
 Cost(L) = cost of traversing left child
 Cost(R) = cost of traversing right child

Optimizing Hierarchical Partitions
Example: Surface Area Heuristic

Algorithm

Ren NgCS184/284A

Ray Intersection Probability

The probability of a random ray hitting a convex shape
A enclosed by another convex shape B is the ratio of
their surface areas, SA / SB.

SA

SB

P (hitA|hitB) =
SA

SB

Ren NgCS184/284A

Estimating Cost with Surface Area Heuristic (SAH)

Probabilities of ray intersecting a node

• If assume uniform ray distribution, no occlusions, then
probability is proportional to node’s surface area

Cost of processing a node

• Common approximation is #triangles in node’s subtree

Cost(cell) = C_trav + SA(L)*TriCount(L) + SA(R)*TriCount(R)

SA(node) = surface area of bbox of node

C_trav = ratio of cost to traverse vs. cost to intersect tri

 C_trav = 1:8 in PBRT [Pharr & Humphreys]

 C_trav = 1:1.5 in a highly optimized version

Partition Implementation

Constrain search to axis-aligned spatial partitions
• Choose an axis
• Choose a split plane on that axis
• Partition objects into two halves by centroid
• 2N–2 candidate split planes for node with N primitives. (Why?)

Partition Implementation (Efficient)
Efficient modern approximation: split spatial extent of
primitives into B buckets (B is typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z:
 initialize buckets
 For each object p in node:
 b = compute_bucket(p.centroid)
 b.bbox.union(p.bbox);
 b.prim_count++;
 For each of the B–1 possible partitioning planes evaluate SAH
Execute lowest cost partitioning found (or make node a leaf)

Ren NgCS184/284A

Cost-Optimization Applies to Spatial Partitions Too

• Discussed optimization of BVH construction

• But principles are general and apply to spatial
partitions as well

• E.g. to optimize KD-Tree construction

• Goal is to minimize average cost of intersecting
ray with tree

• Can still apply Surface Area Heuristic

• Note that surface areas and number of nodes in
children differ from BVH

Ren NgCS184/284A

Things to Remember

Linear vs logarithmic ray-intersection techniques
Many techniques for accelerating ray-intersection

• Spatial partitions: Grids and KD-Trees

• Object partitions: Bounding Volume Hierarchies
Optimize hierarchy construction based on minimizing
cost of intersecting ray against hierarchy

• Leads to Surface Area Heuristic for best partition

Ren NgCS184/284A

Acknowledgments

Thanks to Pat Hanrahan, Kayvon Fatahalian, Mark
Pauly and Steve Marschner for lecture resources.

