Course Roadmap

Rasterization Pipeline

Core Concepts

- Sampling
- Antialiasing
- Transforms

Geometric Modeling

Core Concepts

- Splines, Bezier Curves
- Topological Mesh Representations
- Subdivision, Geometry Processing

Lighting & Materials

Core Concepts

- Measuring Light
- Unbiased Integral Estimation
- Light Transport & Materials

Cameras & Imaging

Rasterization Transforms & Projection Texture Mapping Intro to Geometry **Curves and Surfaces Geometry Processing** Monte Carlo Integration **Material Modeling**

- Visibility, Shading, Overall Pipeline
- **Ray-Tracing & Acceleration**
- Radiometry & Photometry

- **Global Illumination & Path Tracing**

Lecture 11: Measuring Light: Radiometry and Photometry

Computer Graphics and Imaging UC Berkeley CS184/284A

Radiometry

Measurement system and units for illumination

Measure the spatial properties of light

• New terms: Radiant flux, intensity, irradiance, radiance

Perform lighting calculations in a physically correct manner

Assumption: geometric optics model of light

Photons travel in straight lines, represented by rays

Light

Visible electromagnetic spectrum

Image credit: Licensed under CC BY-SA 3.0 via Commons https://commons.wikimedia.org/wiki/File:EM_spectrum.svg#/media/File:EM_spectrum.svg

CS184/284A

Lights: How Do They Work?

Cree 11 W LED light bulb (60W incandescent replacement)

Physical process converts energy into photons

• Each photon carries a small amount of energy

Over some amount of time, light consumes some amount of energy, Joules

• Some is turned into heat, some into photons

Energy of photons hitting an object ~ exposure

Film, sensors, sunburn, solar panels, ...

Graphics: generally assume "steady state" flow

Rate of energy consumption is constant, so flux (power) and energy are often interchangeable

CS184/284A

Flux – How Fast Do Photons Flow Through a Sensor?

From London and Upton

CS184/284A

Radiant Energy and Flux (Power)

Radiant Energy and Flux (Power)

Definition: Radiant (luminous^{*}) energy is the energy of electromagnetic radiation. It is measured in units of joules, and denoted by the symbol:

Q [J = Joule]

Definition: Radiant (luminous*) flux is the energy emitted, reflected, transmitted or received, per unit time.

$$\Phi \equiv \frac{\mathrm{d}Q}{\mathrm{d}t} \, \left[\mathrm{W} = \mathrm{Watt} \right] \, \left[\mathrm{lm} \right]$$

* Definition slides will provide photometric terms in parentheses and give photometric units

CS184/284A

= lumen]*

Photometry

- All radiometric quantities have equivalents in photometry
- Photometry: accounts for response of human visual system
- E.g. Luminous flux Φ_v is the photometric quantity that corresponds to radiant flux Φ_e : integrate radiant flux over all wavelengths, weighted by eye's luminous efficiency curve $V(\lambda)$

https://upload.wikimedia.org/wikipedia/commons/a/a0/Luminosity.png

 $\Phi_v =$

CS184/284A

 $\Phi_e(\lambda)V(\lambda)$ **J**()

Example Light Measurements of Interest

Light Emitted From A Source Light Falling On A Surface

"Radiant Intensity"

"Irradiance"

CS184/284A

Light Traveling Along A Ray

"Radiance"

Radiant Intensity

Radiant Intensity

Definition: The radiant (luminous) intensity is the power per unit solid angle emitted by a point light source.

The candela is one of the seven SI base units (m, s, mole, A, K, cd, kg)

 $\left| \frac{W}{sr} \right| \left| \frac{lm}{sr} = cd = candela \right|$

Angles and Solid Angles

Angle: ratio of subtended arc length on circle to radius

•
$$\theta = rac{l}{r}$$

 \bullet Circle has $\,2\pi$ radians

Solid angle: ratio of subtended area on sphere to radius squared

•
$$\Omega = \frac{A}{r^2}$$

• Sphere has 4π steradians

Solid Angles in Practice

THE SIZE OF THE PART OF EARTH'S SURFACE DIRECTLY UNDER VARIOUS SPACE OBJECTS

http://xkcd.com/1276/

CS184/284A

Sun and moon both subtend ~60µ sr as seen from earth

- Surface area of earth:
 ~510M km²
- Projected area:

 $510 \text{Mkm}^2 \frac{60 \mu \text{sr}}{4\pi \text{sr}} = 510 \frac{15}{\pi}$ $\approx 2400 \text{km}^2$

Solid Angles in Practice

http://xkcd.com/1276/

CS184/284A

Differential Solid Angles

CS184/284A

$dA = (r d\theta)(r \sin \theta d\phi)$ $= r^2 \sin \theta d\theta d\phi$

 $\mathrm{d}\omega = \frac{\mathrm{d}A}{r^2} = \sin\theta\,\mathrm{d}\theta\,\mathrm{d}\phi$

Differential Solid Angles

CS184/284A

ω as a direction vector

CS184/284A

Will use ω to denote a direction vector (unit length)

Isotropic Point Source

CS184/284A

$\Phi = \int_{S^2} I \, \mathrm{d}\omega$ $= 4\pi I$

 $I = \frac{\Phi}{4\pi}$

Modern LED Light

Output: 815 lumens (11W LED replacement for 60W incandescent)

Luminous intensity?

Assume isotropic: Intensity = 815 lumens / 4pi sr = 65 candelas

If focused into 20° diameter cone. Intensity = ??

Spectral Power Distribution - More in Color Lectures

CS184/284A

Light Fixture Measurements - Goniometric Diagram

Poul Henningsen's Artichoke Lamp

CS184/284A

http://www.louispoulsen.com/

PH Artichoke Lamps in Rivercenter for the Performing Arts, Georgia

http://www.louispoulsen.com/

Rendering with Goniometric Diagrams

http://resources.mpi-inf.mpg.de/atrium/

Irradiance

Irradiance

Definition: The irradiance (illuminance) is the power per unit area incident on a surface point.

$$E(\mathbf{x}) \equiv \frac{\mathrm{d}\Phi(\mathbf{x})}{\mathrm{d}A}$$
$$\left[\frac{\mathrm{W}}{\mathrm{m}^2}\right] \left[\frac{\mathrm{lm}}{\mathrm{m}^2} = \mathrm{lux}\right]$$

CS184/284A

Typical Values of Illuminance [lm/m²]

Brightest sunlight Overcast day (midday) Interior near window (daylight) **Residential artificial lighting** Sunrise / sunset Illuminated city street Moonlight (full) Starlight

120,000 lux 15,000 1,000 300 40 10 0.02 0.0003

Light meter

Lambert's Cosine Law

Top face of cube receives a certain amount of power

$$E = \frac{\Phi}{A}$$

Top face of 60° rotated cube receives half power

 $E = \frac{1}{2} \frac{\Phi}{A}$

Irradiance at surface is proportional to cosine of angle between light direction and surface normal.

CS184/284A

In general, power per unit area is proportional to $\cos\theta = l \cdot n$

$$E = \frac{\Phi}{A}\cos\theta$$

Why Do We Have Seasons?

Summer (Northern hemisphere)

Earth's axis of rotation: ~23.5° off axis

CS184/284A

Winter (Northern hemisphere)

Irradiance Falloff

Assume light is emitting flux Φ in a uniform angular distribution

Compare irradiance at surface of two spheres:

intensity

here: E

CS184/284A

Radiance

Radiance

Light Traveling Along A Ray

1. Radiance is the fundamental field quantity that describes the distribution of light in an environment

- Radiance is the quantity associated with a ray
- Rendering is all about computing radiance
- 2. Radiance is invariant along a ray in a vacuum

Surface Radiance

Definition: The radiance (luminance) is the power emitted, reflected, transmitted or received by a surface, per unit solid angle, per unit projected area.

 $\cos \theta$ accounts for projected surface area

Incident Surface Radiance

Equivalent: Incident surface radiance (luminance) is the irradiance per unit solid angle arriving at the surface.

 $L(\mathbf{p}, \omega) = \frac{\mathrm{d}E'(\mathbf{p})}{\mathrm{d}\omega\cos\theta}$

i.e. it is the light arriving at the surface along a given ray (point on surface and incident direction).

CS184/284A

Exiting Surface Radiance

Equivalent: Exiting surface radiance (luminance) is the intensity per unit projected area leaving the surface.

 $L(\mathbf{p}, \omega) = \frac{\mathrm{d}I(\mathbf{p}, \omega)}{\mathrm{d}A\cos\theta}$

e.g. for an area light it is the light emitted along a given ray (point on surface and exit direction).

CS184/284A

Incident & Exiting Surface Radiance Differ!

Need to distinguish between incident radiance and exitant radiance functions at a point on a surface

In general: $L_i(\mathbf{p},\omega) \neq L_o(\mathbf{p},\omega)$

CS184/284A

Field Radiance or Light Field

Definition: The field radiance (luminance) at a point in space in a given direction is the power per unit solid angle per unit area perpendicular to the direction.

CS184/284A

Typical Values of Luminance [cd/m²]

Surface of the sun Sunlight clouds **Clear sky Cellphone display Overcast sky** Scene at sunrise Scene lit by moon Threshold of vision

CS184/284A

2,000,000,000 nits 30,000 3,000 500 300 30 0.001 0.000001

Calculating with Radiance

Irradiance from the Environment

Computing flux per unit area on surface, due to incoming light from all directions.

Hemisphere: H^2

Light meter

CS184/284A

ribution to irradiance from light arriving direction ω

Irradiance from Uniform Hemispherical Light

$E(\mathbf{p}) = \int_{H^2} L \cos \theta \, \mathrm{d}\omega$ $= L \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \cos \theta \sin \theta \, \mathrm{d}\theta \, \mathrm{d}\phi$ $= L \pi$

Note: integral of cosine over hemisphere is only 1/2 the area of the hemisphere.

CS184/284A

Irradiance from a Uniform Area Source

$$E(\mathbf{p}) = \int_{H^2} L(\mathbf{p}, \omega) \cos \theta \, \mathrm{d}\omega$$

$$= L \int_{\Omega} \cos \theta \, \mathrm{d}\omega$$

$$= L \Omega^{\perp}$$

Projected solid angle:

- Cosine-weighted solid angle
- Area of object O projected onto unit sphere, then projected onto plane

CS184/284A

 $\mathrm{d}\omega^{\perp} = |\cos\theta| \,\mathrm{d}\omega$

Uniform Disk Source Overhead

$$\Omega^{\perp} = \pi \sin^2 \alpha$$

CS184/284A

Algebraic Derivation

 $\Omega^{\perp} = \int_{0}^{2\pi} \int_{0}^{\alpha} \cos\theta \sin\theta \,\mathrm{d}\theta \,\mathrm{d}\phi$ $= 2\pi \frac{\sin^{2}\theta}{2} \Big|_{0}^{\alpha}$ $= \pi \sin^{2}\alpha$

Measuring Radiance

A Pinhole Camera Samples Radiance

Photograph pixels measure radiance for rays passing through pinhole in different directions

Spherical Gantry ⇒ 4D Light Field

Take photographs of an object from all points on an enclosing sphere

Captures all light leaving an object – like a hologram

Multi-Camera Array ⇒ 4D Light Field

CS184/284A

Two-Plane Light Field

2D Array of Cameras

CS184/284A

2D Array of Images

Radiometry & Photometry Terms & Units

Radiometric & Photometric Terms & Units

Physics		Radiometry	Units	Photometry	Units
Energy (5	Radiant Energy	Joules (W∙sec)	Luminous Energy	Lumen·sec
Flux (Power)	Þ	Radiant Power	W	Luminous Power	Lumen (Candela sr)
Angular Flux Density	Ι	Radiant Intensity	W/sr	Luminous Intensity	Candela (Lumen/sr)
Spatial J Flux Density	Ŧ	Irradiance (in) Radiosity (out)	W/m²	Illuminance (in) Luminosity (out)	Lux (Lumen/m²)
Spatio-Angular		Radiance	W/m²/sr	Luminance	Nit (Candela/m²)

"Thus one nit is one lux per steradian is one candela per square meter is one lumen per square meter per steradian. Got it?" — James Kajiya

Things to Remember

Radiometry vs photometry: physics vs human response

Spatial measures of light:

- Flux, intensity, irradiance, radiance
- Pinhole cameras and light field cameras

Lighting calculations

- Integration on sphere / hemisphere
- Cosine weight: project from hemisphere onto disk
- Photon counting

BRDF: 4D function for material reflection at a point

CS184/284A

Acknowledgments

Many thanks to Kayvon Fatahalian, Matt Pharr, Pat Hanrahan, and Steve Marschner for presentation resources.

Light Fixture Measurements

CS184/284A

Cartesian Diagram

http://www.louispoulsen.com/

Light Fixture Measurements

Poul Henningsen's Artichoke Lamp

CS184/284A

http://www.louispoulsen.com/

Quantitative Photometry

The Invention of Photometry

Bouguer's classic experiment

- Compare a light source and a candle
- Move until appear equally bright
- Intensity is proportional to ratio of distances squared

Definition of a candela

- Originally a "standard" candle
- Currently 555 nm laser with power 1/683 W/sr
- One of seven SI base units

CS184/284A

Counting Photons

Given a sensor/light, we can count how many photons it receives/emits

- Over a period of time, gives the energy Q and flux (power) Φ received/ emitted by the sensor/light
- Energy carried by a photon: $Q = \frac{hc}{\lambda}$, where $h \approx 6.626 \times 10^{-34} \text{m}^2 \text{ kg / s}$

c = 299,792,458 m/s

 $\lambda =$ wavelength of photon

- ~ 3.6 E-19J for a 555nm green photon
- ~ 2.8 E18 green photons for 1W of radiant energy

CS184/284A

Modern LED Light: Estimate Efficiency?

Input power: 11 W Output: 815 lumens (~80 lumens / Watt)

Incandescent bulb? Input power: 60W Output: ~700 lumens (~12 lumens / Watt)

Modern LED Light: Estimate Efficiency?

Input power: 11 W If all power into light with 555nm average wavelength, get 3.1E19 photons/s

Intensity rating is 815 lumens, equivalent to 555nm laser at 815/683W. If average wavelength is 555nm, get 3.3E18 photons/s.

Efficiency*: 3.3E18/3.1E19 = 11%

