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Reminder: Quadrature-Based Numerical Integration

f(z) /a b f(x)dx

o — a T1 T2 I3 x4 = b

E.g. trapezoidal rule - estimate integral assuming function is
piecewise linear
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Multi-Dimensional Integrals
(Rendering Examples)



2D Integral: Recall Antialiasing By Area Sampling

a ] =
|
I

118111,

Point sampling Area sampling

Integrate over 2D area of pixel
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2D Integral: Irradiance from the Environment

Computing flux per unit area on surface, due to incoming
light from all directions.

E(p) — / ; LZ (p, CU) cosdw < Contribution to irradiance from light arriving
H

from direction W

Hemisphere: H?
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Light meter
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3D Integral: Motion Blur

Integrate over
area of pixel
and over
exposure time.

Cook et al. "1984"



5D Integral: Real Camera Pixel Exposure

'‘66DUBYIA| :upaID

GZ3ay*/a/m1ag77dny

.

Integrate over 2D lens pupil, 2D pixel, and over exposure time
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http://flic.kr/p/x4DEZh

5D Integral: Real Camera Pixel Exposure

Lens aperture

Sensor plane

Pixel area

1 [t
Qpixel = y / / / L(p" — p,t) cos™ 0 dp dp’ dt
to Alens A

pixel

CS184/284A Ren Ng



The Curse of Dimensionality



High-Dimensional Integration

Complete set of samples: N=nxnx--xn=n
_,_/
® “Curse of dimensionality” d
. : 1 1
Numerical integration error: Error ~ — =
n, N1/d

. : 1/2 1

Random sampling error: Error = Variance '~ ~

VN

In high dimensions, Monte Carlo integration requires fewer
samples than quadrature-based numerical integration

Global illumination = infinite-dimensional integrals
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Example: Discrete vs Monte Carlo - Shadows

1 sample per pixel 1 sample per pixel
Sample center of light Sample random point on light
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Example: Discrete vs Monte Carlo - Shadows

Sample center Sample random True answer
of light point on light
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Overview: Monte Carlo Integration

ldea: estimate integral based on random sampling of function
Advantages:

® General and relatively simple method

® Requires only function evaluation at any point

® Works for very general functions, including discontinuities

e Efficient for high-dimensional integrals — avoids “curse of
dimensionality”

Disadvantages:

® Noise. Integral estimate is random, only correct “on
average”

® Can be slow to converge — need a lot of samples
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Probability Review



Random Variables

X random variable. Represents a distribution of
potential values

X ~ p(r) probability density function (PDF). Describes
relative probability of a random process choosing
value I’

Example: uniform PDF: all values over a domain are equally likely

e.g. A six-sided die | ¢ ‘.
i

X takesonvalues 1, 2, 3, 4,5, 6 i ® O
. - & =

p(1) = p(2) = p3) = p(4) = p(5) = p(6) ez
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Probability Distribution Function (PDF)

n discrete values I;

With probability p;

Requirements of a probability distribution:

pi = 0
(4
p_pi=1 %
1=1 .
i ® ©
1 Pp—
Six-sided die example: p; = G . SRS

Think: D; is the probability that a random measurement of _X will yield the value XL
X takes on the value X ; with probability D;



Expected Value of a Random Variable

The average value that one obtains if repeatedly
drawing samples from the random distribution.

X drawn from distribution with
n discrete values I;
with probabilities p;

Expected value of X: FE|X]| = Z T;P;
i=1
. N d°."
Die example: E[X]| = Zl 5 .,‘;::

—(1+2+34+4+5+6)/6=3.5
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Continuous Probability Distribution Function

X ~ p(x) / \

A random variable X that can take any of a continuous
set of values, where the relative probability of a

particular value is given by a continuous probability
density function p(x).

Conditions on p(x):  p(z) > 0 and /p(x) dr =1
Expected value of X: FE|X| = /:Cp(a?) dx
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Function of a Random Variable

A function Y of a random variable X is also a random
variable:

X ~ p(x)
Y = f(X)

Expected value of a function of a random variable:

E[Y] = E[f(X)] = / f(2) p(z) da
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Monte Carlo Integration



Monte Carlo Integration

Simple idea: estimate the integral of a function by
averaging random samples of the function’s value.

f(x) /a b f(x)dx
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Monte Carlo Integration

Let us define the Monte Carlo estimator for the
definite integral of given function f(z)

Definite integral / f(x

Note: p(x) must
be nonzero for

Random variable X; ~ p(x) all x where

f(x) is nonzero

Monte Carlo estimator
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Example: Basic Monte Carlo Estimator

The basic Monte Carlo estimator is a simple special
case where we sample with a uniform random variable

Uniform random variable /(@)

Xz' ~ p(ZC) — ( (constant)

/abp(x)dle

b
:>/ Cdr =1 P)

1 b—a
b— a

:}C:
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Example: Basic Monte Carlo Estimator

The basic Monte Carlo estimator is a simple special
case where we sample with a uniform random variable

Basic Monte Carlo estimator (derivation)

N
FN — i Z f( Z) (MC Estimator)
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Example: Basic Monte Carlo Estimator

Let us define the Monte Carlo estimator for the
definite integral of given function f(z)

Definite integral / f(x

Uniform random variable X; ~p(x) = b o

: : b—a
Basic Monte Carlo estimator Fy = ~ Z f(X

1=1
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Unbiased Estimator

Definition: A randomized integral estimator is
unbiased if its expected value is the desired integral.

Fact: the general and basic Monte Carlo estimators are
unbiased (proof on next slide)

Why do we want unbiased estimators?
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Proof That Monte Carlo Estimator Is Unbiased

CS184/284A

Properties of
expected values:

The expected value of
the Monte Carlo
estimator is the desired
integral.
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Variance of a Random Variable

Definition
VY] = E[(Y — E[Y])]
= E[Y?] — E[Y]?

Variance decreases Imearly with number of samples

Vv —ZY NQZV = —NV[Y] = NV[Y]

Properties of variance

VY Y| =) VY] ViaY] = a® VY]
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More Random Samples Reduces Variance

1 shadow ray 16 shadow rays
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Definite Integral Can Be N-Dimensional

Example in 3D:

I1 Y1 <1
||| fey)dedya:
To Yo <0

Uniform 3D random variable*
1 1 1

L1 —TZo Y1 — Yo <1 — <0

Basic 3D MC estimator*

Frn = (xl T ZEO)(yl]\_f yO)(Zl T ZO) ;f(Xz)

Xi ~p(x,y,2) =

* Generalizes to arbitrary N-dimensional PDFs

CS184/284A
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Example: Monte Carlo Estimate
Of Direct Lighting Integral




Direct Lighting (Irradiance) Estimate

E(p) = / L(p,w) cos 6 dw ldea: sample directions over
hemisphere uniformly in solid
L(p,w) anglep 4
Estimator:
1
Xi~pw) plw)= 5
-
Y = f(X5)

Y; = L(p,w;)cos 0,

27TN
Fv =%y,
N N;
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Direct Lighting (Irradiance) Estimate

Sample directions over hemisphere uniformly in solid angle
E(p) :/L(p,w) cos 6 dw

Given surface point p
Initialize Monte Carlo estimator F'v to O

For each of N samp|es: A ray tracer evaluates radiance along a ray

Generate random direction: QJ/

Compute incoming radiance [.; arriving at p from direction W);

) 27T
Increment the Monte Carlo estimator: 'y := F'a - ~ L, cos b,
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Direct Lighting - Solid Angle Sampling

Light

Blocker

Trace 100 rays per pixel
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Hemispherical Solid Angle

Sampling 100 rays
(random directions drawn

uniformly from hemisphere)




The MC estimator uses different random

directions at each pixel. Only some
directions point towards the light.

(Estimator is a random variable)




Observation: incoming radiance is zero
for most directions in this scene

Idea: integrate only over the area of the light
(directions where incoming radiance could be non-zero)



Sampling Light Source Area ———=——=————
100 rays ha »




Solid Angle Sampling vs Light Area Sampling

Sampling solid angle Sampling light source area

100 random directions on hemisphere 100 random points on area of light source
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Importance Sampling




Importance Sampling

Simple idea: sample the integrand according to how much we
expect it to contribute to the integral.

Basic Monte Carlo:

f(x) /b f(z)dx

Inefficient to sample heavily here! b —a N
(small contribution to integral) f (X )
N )
1=1
- x (x; are sampled uniformly)
p(x) Importance-Sampled Monte Carlo:
n
1 3 /()
N £

i—1 ()

X (x; are sampled proportional to p)

“If | sample x less frequently, each sample
Note: p(x) must be non-zero where f(x) is non-zero should count for more.”
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Effect of Sampling Distribution “Fit”

f(x)
g p2(x)

p1(x)

What is the behavior of f(x)/p1(x)? f(x)/p2(x)?
How does this impact the variance of the estimator?



Solid Angle Sampling vs Light Area Sampling

Sampling solid angle Sampling light source area

100 random directions on hemisphere 100 random points on area of light source
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Changing Basis of Integration: Sampling Hemisphere

E(p) :/L(p,w) cos 0 dw
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Changing Basis of Integration: Sampling Light Source Area

cos 6 cos 6’
p— / / 4 / n vari
Fip) = / Lol @) VAR, D) e A e
of light
] dA cos O’
w p—
p’ — p|?

Binary visibility function:
1 if p’ is visible from p, 0 otherwise
(accounts for light occlusion)

Outgoing radiance from light
point p, in direction w' towards p
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Monte Carlo Estimate by Sampling Light Source Area

cos 0 cos 6’

E(p) =/ Lo(p',w") V(p,p') P dA’

Randomly sample light source area
A' (assume uniformly over area)

Y A— / p(p')dA’ =1
/".. /\% /
o 3 b \."0 / 1
S p(p) =+
N/
w' = p —p' Monte Carlo Estimator
A &
N N , Fn = Y
,/ N\ Y =P =P Nzl
[ ——— . cos 6; cos 0,
~ ,--,-.- }/Z — LO (pia wz’) V(p pz) 2
D P — pi
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Solid Angle Sampling vs Light Area Sampling

Sampling solid angle Sampling light source area

100 random directions on hemisphere 100 random points on area of light source

CS184/284A Ren Ng




How to Draw Samples From a
Desired Probability Distribution?
One Approach: Inversion Method




Task: Draw A Random Value From a Given PDF

Task:

Given a PDF for a discrete random variable,
probability ; for each value T,

Draw a random value _X from this PDF.

Step 1:

J
Calculate cumulative PDF: P; — Zpi
i=1

Note: must have

0< P, <1
P, =1
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Task: Draw A Random Value From a Given PDF

Task:

Given a PDF for a discrete random variable,
probability ; for each value T,

Draw a random value _X from this PDF.

Step 2:

Given a uniform random variable £ € |0, 1)

choose X = z; P,
such that Pi—l < f < Pz €

How to compute? Binary search.
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Cumulative Density Function (CDF) - Continuous Case

PDF p(x) Uniform distribution
on unit interval




Sampling Continuous PDF Using Its CDF

Called the "“inversion method”

Cumulative probability distribution function

P(x) =Pr(X < x)

Construction of samples:

Solve for x = P~ (£)

Must know the formula for:

1. The integral of p(x) - CDF

2. The inverse function P~ (z)
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Example: Sample Proportional to x2

4

Given:
Want to sample

f(CC) — $2 T E [O’ 2] according to this
graph:

CS184/284A Ren Ng



Example: Sample Proportional to x2

4

Given:
Want to sample

f(CC) — $2 T E [O’ 2] according to this
graph:

Step 0: compute PDF by normalizing

p(z) =cf(x) =ca”
2 2 3 |2
S
Also ].:/ p(ﬁlj’)daj‘:/ CQde(L‘: - — _C
0 0 3 0 3
o0
8
312
= p(z) = —
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Example: Sample Proportional to x2

Given: 3
Want t |
f(CC) — mz T < [07 2] ac?::rdi(:\;at:‘i:is 2
3x°

Step 1: Compute CDF:

X
3
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Example: Sample Proportional to x2

Given:
flx) =2 z€]|0,2]
3, Applying the inversion method
p(ﬂi‘) - éx Rememberfis uniform random number in [0,1)
3
X
P — —
(@) ==

Step 2: Sample from p()

73
3

§ = P(x)
v = /8¢
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Things to Remember

Monte Carlo integration
® Unbiased estimators
® Good for high-dimensional integrals
® Estimates are visually noisy and need many samples

® Importance sampling can reduce variance (noise) if
probability distribution “fits” underlying function

Sampling random variables
® |[nversion method, rejection sampling
® Sampling in 1D, 2D, disks, hemispheres

CS184/284A Ren Ng



Acknowledgments

Many thanks to Kayvon Fatahalian, Matt Pharr, and Pat
Hanrahan, who created the majority of these slides.
Thanks also to Keenan Crane.

CS184/284A Ren Ng



Extra



Pseudo-Random Number Generation

Example: cellular automata #30
rule 30

HEE BN B B R .
n u

1 1 1 1

|WIY QE3|NY,/ WO Weljjom pliomylew //:diy
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Pseudo-Random Number Generation

Example: cellular automata #30

OR%

7

Rl

e

|WIY 0SO|NY /WO weljjom pliomyrew//:diy

Center line values are a high-quality random bit sequence
Once used for random number generator in Mathematica

CS184/284A
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Pseudo-Random Number Generation

>

s

P

eV,

7 “9

" A_—

9P __‘

W@ l‘Ov -
y W\ -
A 3 P> g .

g

Credit: Rich

ard Ling

Ren Ng
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Random Sampling of
Disks & Hemispheres



Sampling Unit Circle: Simple but Wrong Method

0 = uniform random angle between 0 and 27T

:7‘ = uniform random radius between 0 and 1

Return point: (7“ COS (9, I SIn (9)

[1¥9d] :®34n0oS

Result Reference
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Need to Sample Uniformly in Area

Incorrect Correct
Not Equi-areal Equi-areal

=g = Ve

* See Shirley et al. p.331 for full explanation using inversion method



Rejection Sampling Circle’s Area

o
° ¢ do {
x =1 - 2 * randO01l () ;
e v =1 -2 * randO1 () ;
® } while (x*x + y*y > 1.);

Efficiency of technique: area of circle / area of square
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Uniform Sampling of Hemisphere

Generate random direction on hemisphere (all dirs. equally likely)
1

T or

Direction computed from uniformly distributed point on 2D square:

(517 52) — (\/1 o S% 608(27-‘-62)7 \/1 o g% Sin(Zﬂ-é:Q)? 51)

p(w)

1.0

08 o

L 1) ° () o ¢
o °® °
o ° ¢
o °
: ® ¢ ° K
06 ® o
) | o [ ) Y ) o
I ® °
I L (]
04" ¢ o ©
e o ° ° o
L . ‘ .
° o o
o ©® ®

0.2* o ()

Full derivation: see PBRT 3rd Ed. 13.6.1



