Lecture 18:

Introduction to
Physical Simulation

Computer Graphics and Imaging
UC Berkeley CS184/284A

The majority of these slides courtesy of James O’Brien and Keenan Crane.

Newton’s Law

F' = ma

]

Force Mass Acceleration

CS184/284A Ren Ng

Physically Based Animation

ion of objects using numerical simulation

Generate mot

Ren Ng

CS184/284A

Example: Cloth Simulation

Example: Fluids

Macklin and Miiller, Position Based Fluids TOG 2013

Particle Systems

Single particles are very simple
Large groups can produce interesting effects
Supplement basic ballistic rules
® Gravity
® Friction, drag
® Collisions
® Force fields
® Springs
® |nteractions

® Others...

Karl Sims, SIGGRAPH 1990
CS184/284A Ren Ng

Mass + Spring Systems:

Example of Modeling a Dynamical System

Example: Mass Spring Rope

Credit: Elizabeth Labelle, https:

https://youtu.be/Co8enp8CH34

Example: Hair

___wu.ﬁ__‘_,.“ﬁw._.__w,h_._“___ \.\W\N\ \ \..‘, A/ 8 \ “'

Y-
W
v

>
O)
=

"=
Q.

W
N
N
S

>

Pe.
o
£
S
X

Ll

r s

Photograph imulation

"“‘
L AT
- |
-3

- ’:‘-t'\ RN
AR
: '/:

e = £ <
£ - LA .
. o

Huamin Wang, Ravi Ramamoorthi, and James F. O'Brien. "Data-Driven Elastic Models for Cloth: Modeling and
Measurement". ACM Transactions on Graphics, 30(4):71:1-11, July 2011. Proceedings of ACM SIGGRAPH 2011,
Vancouver, BC Canada.

A Simple Spring

ldealized spring

o\\W\-e f,_p=Fs(b—a)

Fb—a=—Ta—b

Force pulls points together
Strength proportional to displacement (Hooke’s Law)

ks is a spring coefficient: stiffness

Problem: this spring wants to have zero length

CS184/284A Ren Ng

Non-Zero Length Spring

Spring with non-zero rest length

o\\\W\ e

b —
i = kg (Hb—aH—l)
a—b Hb—aH

Rest length

Problem: oscillates forever

CS184/284A Ren Ng

Dot Notation for Derivatives

If x is a vector for the position of a point of interest,
we will use dot notation for velocity and acceleration:

€T
T — v
T = a

CS184/284A Ren Ng

Simple Motion Damping

Simple motion damping
‘o> f=—kab

® Behaves like viscous drag on motion

® Slows down motion in the direction of motion

® kyis a damping coefficient

Problem: slows down all motion

® Want a rusty spring’s oscillations to slow down, but
should it also fall to the ground more slowly?

CS184/284A Ren Ng

Internal Damping for Spring

Damp only the internal, spring-driven motion
b—a . b—a

— bh—a).
OVWWVe fu = ke b)y

® Viscous drag only on change in spring length

® Won't slow group motion for the spring system
(e.g. global translation or rotation of the group)

CS184/284A Ren Ng

Spring Constants

Consider two “resolutions” to model a single spring

vV V vV V
@
/2
z
" AL
@ @
@

Al T AlJ2

Problem: constant ks produces different force on bottom
spring for these two different discretizations

CS184/284A Ren Ng

Spring Constants

Problem: constant ks gives inconsistent results with different
discretizations of our spring/mass structures

® E.g. 10x10 vs 20x20 mesh for cloth simulation would give
different results, and we want them to be the same, just
higher level of detail

Solution:
® Change in length is not what we want to measure

® We want to consider the strain = change in length as fraction
of original length - Al

)

® Implementation 1: divide spring force by spring length
® Implementation 2: normalize k; by spring length

CS184/284A Ren Ng

Structures from Springs

O

BIOCkS O O O O

Others

oo e
N
N

CS184/284A

Structures from Springs

Behavior is determined by structure linkages

/

This structure will not resist shearing

This structure will not resist out-of-plane
bending...

/

CS184/284A Ren Ng

Structures from Springs

Behavior is determined by structure linkages

/ This structure will resist shearing
but has anisotropic bias

This structure will not resist out-of-plane
bending either...

/

CS184/284A Ren Ng

Structures from Springs

Behavior is determined by structure linkages

/ This structure will resist shearing.
Less directional bias.

This structure will not resist out-of-plane
bending either...

/

CS184/284A Ren Ng

Structures from Springs

They behave like what they are (obviously!)

/ This structure will resist shearing.
Less directional bias.

bending

‘bs This structure will resist out-of-plane
/ Red springs should be much weaker

CS184/284A Ren Ng

Example: Mass Spring Dress + Character

Particle Simulation

Euler's Method

Euler's Method (a.k.a. Forward Euler, Explicit)
® Simple iterative method
® Commonly used
® Very inaccurate

® Most often goes unstable

mt—l—At

AN L

,’j}t_l_At L'Et At f:i‘t

CS184/284A Ren Ng

Euler’'s Method - Errors

With numerical integration, errors accumulate

Euler integration is particularly bad

TR = gt + Atv(x,t) ===...

Solution path

Example:

Euler estimate with small time step I_-n.-
Euler estimate with large time step _‘_A_‘_

Witkin and Baraff
CS184/284A Ren Ng

Errors and Instability

Solving by numerical integration with finite differences leads
to two problems

Errors

® Errors at each time step accumulate. Accuracy decreases
as simulation proceeds

® Accuracy may not be critical in graphics applications

Instability

® Errors can compound, causing the simulation to diverge
even when the underlying system does not

® Lack of stability is a fundamental problem in simulation,
and cannot be ignored

CS184/284A Ren Ng

Instability of Forward Euler Method

I
Forward Euler (explicit) N
p Sl
TR = gt + Atv(x,t) 2N

W \x\ \// ’///41
Two key problems: * /5/'
® |naccuracies increase as
time step At increases \
I \\\b\ A
® |nstability is a common, A AANANY

AN
serious problem that AN AK
can cause simulation to 7177,
diverge L]

jjedeg pue unuA

CS184/284A Ren Ng

Instability Example (Spring)

po\\V\W\-e fop="Fsb—a)

When mass is moving inward:

® Force is decreasing

® Each time-step overestimates the velocity change (increases energy)
When mass gets to origin

® Has velocity that is too high, now traveling outward
When mass is moving outward

® Force is increasing

® Each time-step underestimates the velocity change (increases energy)

At each motion cycle, mass gains energy exponentially

CS184/284A Ren Ng

Combating Instability

Some Methods to Combat Instability

Modified Euler
® Average velocities at start and endpoint
Adaptive step size

® Compare one step and two half-steps, recursively, until
error is acceptable

Implicit methods
® Use the velocity at the next time step (hard)
Position-based / Verlet integration

® Constrain positions and velocities of particles after
time step

CS184/284A Ren Ng

Modified Euler

Modified Euler
® Average velocity at start and end of step
o OK if system is not very stiff (ks small enough)

® But, still unstable

t+At __ ZBt At (th ',btJrAt)

X

,fbt_l_At __ .’i}t At Zi‘t

(AL)”

A = 2t - At 2 - 5 T

CS184/284A Ren Ng

Adaptive Step Size

Adaptive step size

® Technique for choosing step size
based on error estimate

® Highly recommended technique

® But may need very small steps!
Repeat until error is below threshold:

® Compute xr an Euler step, size T

® Compute xt/2 two Euler steps, size T/2

® Compute error || xt — x1/2]||

® |f (error > threshold) reduce step size
and try again

Slide credit: Funkhouser

Implicit Euler Method

Implicit methods
® |Informally called backward methods

® Use derivatives in the future, for the current step

mt—I—At _ .’L‘t 14 At a.jt—l_At

ii}'t_l_At _ Zi:‘t _I_ At ,f.l:,‘t—l_At

CS184/284A Ren Ng

Implicit Euler Method

Implicit methods
® |Informally called backward methods

® Use derivatives in the future, for the current step

- 1+AL

t+At and T

® Solve nonlinear problem for
® Use root-finding algorithm, e.g. Newton’s method

® Can be made unconditionally stable

CS184/284A Ren Ng

Position-Based / Verlet Integration

ldea:

® After modified Euler forward-step, constrain positions
of particles to prevent divergent, unstable behavior

® Use constrained positions to calculate velocity

® Both of these ideas will dissipate energy, stabilize
Pros / cons

® Fast and simple

® Not physically based, dissipates energy (error)

® Highly recommended (assignment)

CS184/284A Ren Ng

Position-Based / Verlet Integration

Algorithm 1 Position-based dynamics

1: for all vertices i do

2: initialize x; = X0, vi = VO, w; = 1 /m;
3: end for
4: loop
5: for all vertices i do v; < v; + Atw;fext (X;)
6: for all vertices i do p; < X; + Arv;
7: for all vertices i do genCollConstraints(x; — p;)
8: loop solverlteration times
9: projectConstraints(Cy, ... ,Cyr4+-Megy s P15 - - - s PN)
10: end loop
11: for all vertices i do
12: v < (pi —X;) /At
13: X; < Pi

14: end for
15: velocityUpdate(vy,...,vy)
16: end loop

Position-Based Simulation Methods in Computer Graphics
Bender, Miiller, Macklin, Eurographics 2015

CS184/284A Ren Ng

Particle Systems

Particle Systems

Model dynamical systems as collections of
large numbers of particles

Each particle’s motion is defined by a set of
physical (or non-physical) forces

Popular technique in graphics and games
® Easy to understand, implement

® Scalable: fewer particles for speed,
more for higher complexity

Challenges
® May need many particles (e.g. fluids)

® May need acceleration structures (e.g.
to find nearest particles for interactions)

CS184/284A Ren Ng

Particle System Animations

For each frame in animation
® [If needed] Create new particles
® Calculate forces on each particle

® Update each particle’s position
and velocity

® [If needed] Remove dead particles

® Render particles

CS184/284A

Particle System Forces

Attraction and repulsion forces

® Gravity, electromagnetism, ...

® Springs, propulsion, ...
Damping forces

® Friction, air drag, viscosity, ...
Collisions

® Walls, containers, fixed objects, ...

® Dynamic objects, character body parts, ...

CS184/284A Ren Ng

Already Discussed Springs

Internally-damped non-zero length spring

b —
fa—p=Fs ([|b—al| =)
= L
b—a . b— a
—kq (b—a)-
|b — al |b—a|

CS184/284A Ren Ng

Simple Gravity

Gravity at earth’s surface due to earth
o F = -mg
® m is mass of object

® g is gravitational acceleration,
g = —-9.8m/s?

b, =—mg
g=(0,0,-9.8) m/s"

CS184/284A Ren Ng

Gravitational Attraction

Newton'’s universal law of gravitation
® Gravitational pull between particles

1T
d2
G = 6.67428 x 10~ Nm?kg 2

F,=G

CS184/284A Ren Ng

Example: Galaxy Simulation

Disk galaxy simulation, NASA Goddard

CS184/284A

Example: Particle-Based Fluids

v

Macklin and Miiller, Position Based Fluids , TOG 2013

Example: Granular Materials

Ehi v ol

= 'nr‘a- I “

- S < > o 3
= & TN -y
s L il
O ~ e ngl

OB g ST
.)T

Bell et al, "Particle-Based Simulation of Granular Materials”

Example: Flocking Birds

Simulated Flocking as an ODE

Model each bird as a particle
Subject to very simple forces:

® attraction to center of neighbors

® repulsion from individual neighbors

® alignment toward average trajectory of neighbors

Simulate evolution of large particle system numerically

Emergent complex behavior (also seen in fish, bees, ...)

| l,
A | |

&

attraction repulsion alignment

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/) Slide credit: Keenan Crane

http://www.red3d.com/cwr/boids/

Example: Crowds

Where are the bottlenecks in a building plan?

Example: Crowds + “Rock” Dynamics

CS184/284A

Suggested Reading

Physically Based Modeling: Principles and Practice
¢ Andy Witkin and David Baraff

® http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html

Numerical Recipes in C++
® Chapter 16
Any good text on integrating ODE's

http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html

Just Scratching the Surface...

Physical simulation is a huge field in graphics,
engineering, science

Today: intro to particle systems, solving ODEs
Partial differential equations

e Diffusion equation, heat equation, ...

® Used in graphics for liquids, smoke, fire, etc.
Rigid body

Simulation of sound

CS184/284A Ren Ng

Example: Mass Spring Dress + Character

FEM (Finite Element Method) Instead of Springs

CS184/284A Ren Ng

Things to Remember

Physical simulation = mathematical modeling of
dynamical systems & solution by numerical integration

Particle systems

® Flexible force modeling, e.g. spring-mass sytems,
gravitational attraction, fluids, flocking behavior

® Newtonian equations of motion = ODEs

® Solution by numerical integration of ODEs: Explicit
Euler, Implicit Euler, Adaptive, Position-Based /
Verlet

® Error and instability, methods to combat instability

CS184/284A Ren Ng

Acknowledgments

Many thanks to James O’Brien, Keenan Crane and Tom
Funkhouser for lecture resources.

CS184/284A Ren Ng

