Lecture 18:

Introduction to Physical Simulation

Computer Graphics and Imaging UC Berkeley CS184/284A

The majority of these slides courtesy of James O'Brien and Keenan Crane.

Newton's Law

CS184/284A Ren Ng

Physically Based Animation

Generate motion of objects using numerical simulation

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \Delta t \boldsymbol{v}^t + \frac{1}{2} (\Delta t)^2 \boldsymbol{a}^t$$

Example: Cloth Simulation

Example: Fluids

Macklin and Müller, Position Based Fluids TOG 2013

Particle Systems

Single particles are very simple

Large groups can produce interesting effects

Supplement basic ballistic rules

- Gravity
- Friction, drag
- Collisions
- Force fields
- Springs
- Interactions
- Others...

Karl Sims, SIGGRAPH 1990

Mass + Spring Systems: Example of Modeling a Dynamical System

Example: Mass Spring Rope

Credit: Elizabeth Labelle, https://youtu.be/Co8enp8CH34

Example: Hair

Example: Mass Spring Mesh

Huamin Wang, Ravi Ramamoorthi, and James F. O'Brien. "Data-Driven Elastic Models for Cloth: Modeling and Measurement". *ACM Transactions on Graphics*, 30(4):71:1–11, July 2011. Proceedings of ACM SIGGRAPH 2011, Vancouver, BC Canada.

A Simple Spring

Idealized spring

$$\mathbf{f}_{a \to b} = k_{s}(\mathbf{b} - \mathbf{a})$$

$$\boldsymbol{f}_{b \longrightarrow a} = -\boldsymbol{f}_{a \longrightarrow b}$$

Force pulls points together

Strength proportional to displacement (Hooke's Law) k_s is a spring coefficient: stiffness

Problem: this spring wants to have zero length

Non-Zero Length Spring

Spring with non-zero rest length

$$m{f}_{a o b} = k_S rac{m{b} - m{a}}{||m{b} - m{a}||} (||m{b} - m{a}|| - l)$$
 Rest length

Problem: oscillates forever

Dot Notation for Derivatives

If x is a vector for the position of a point of interest, we will use dot notation for velocity and acceleration:

 \boldsymbol{x}

$$\dot{x} = v$$

$$\ddot{x} = a$$

CS184/284A

Simple Motion Damping

Simple motion damping

$$f$$
 b
 $f = -k_d b$

- Behaves like viscous drag on motion
- Slows down motion in the direction of motion
- k_d is a damping coefficient

Problem: slows down all motion

 Want a rusty spring's oscillations to slow down, but should it also fall to the ground more slowly?

Internal Damping for Spring

Damp only the internal, spring-driven motion

$$\boldsymbol{f}_a = -k_d \frac{\boldsymbol{b} - \boldsymbol{a}}{||\boldsymbol{b} - \boldsymbol{a}||} (\dot{\boldsymbol{b}} - \dot{\boldsymbol{a}}) \cdot \frac{\boldsymbol{b} - \boldsymbol{a}}{||\boldsymbol{b} - \boldsymbol{a}||}$$

- Viscous drag only on change in spring length
 - Won't slow group motion for the spring system (e.g. global translation or rotation of the group)

Spring Constants

Consider two "resolutions" to model a single spring

Problem: constant k_s produces different force on bottom spring for these two different discretizations

CS184/284A

Spring Constants

Problem: constant k_s gives inconsistent results with different discretizations of our spring/mass structures

 E.g. 10x10 vs 20x20 mesh for cloth simulation would give different results, and we want them to be the same, just higher level of detail

Solution:

- Change in length is not what we want to measure
- We want to consider the strain = change in length as fraction of original length $\epsilon = \frac{\Delta l}{l_{\smallfrown}}$
- Implementation 1: divide spring force by spring length
- Implementation 2: normalize k_s by spring length

Sheets

Blocks

Others

Behavior is determined by structure linkages

This structure will not resist shearing

This structure will not resist out-of-plane bending...

CS184/284A

Behavior is determined by structure linkages

This structure will resist shearing but has anisotropic bias

This structure will not resist out-of-plane bending either...

Behavior is determined by structure linkages

This structure will resist shearing. Less directional bias.

This structure will not resist out-of-plane bending either...

They behave like what they are (obviously!)

This structure will resist shearing. Less directional bias.

This structure will resist out-of-plane bending Red springs should be much weaker

CS184/284A Ren Ng

Example: Mass Spring Dress + Character

Particle Simulation

Euler's Method

Euler's Method (a.k.a. Forward Euler, Explicit)

- Simple iterative method
- Commonly used
- Very inaccurate
- Most often goes unstable

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \Delta t \, \dot{\boldsymbol{x}}^t$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \, \dot{\boldsymbol{x}}^t$$

Euler's Method - Errors

With numerical integration, errors accumulate Euler integration is particularly bad

Example:

$$\mathbf{x}^{t+\Delta t} = \mathbf{x}^t + \Delta t \, \mathbf{v}(\mathbf{x}, t)$$

Solution path

Euler estimate with small time step

Euler estimate with large time step

Witkin and Baraff

Errors and Instability

Solving by numerical integration with finite differences leads to two problems

Errors

- Errors at each time step accumulate. Accuracy decreases as simulation proceeds
- Accuracy may not be critical in graphics applications

Instability

- Errors can compound, causing the simulation to diverge even when the underlying system does not
- Lack of stability is a fundamental problem in simulation, and cannot be ignored

CS184/284A

Instability of Forward Euler Method

Forward Euler (explicit)

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \Delta t \, \boldsymbol{v}(\boldsymbol{x}, t)$$

Two key problems:

- Inaccuracies increase as time step Δt increases
- Instability is a common, serious problem that can cause simulation to diverge

Witkin and Baraff

Instability Example (Spring)

When mass is moving inward:

- Force is decreasing
- Each time-step overestimates the velocity change (increases energy)

When mass gets to origin

Has velocity that is too high, now traveling outward

When mass is moving outward

- Force is increasing
- Each time-step underestimates the velocity change (increases energy)

At each motion cycle, mass gains energy exponentially

Combating Instability

Some Methods to Combat Instability

Modified Euler

Average velocities at start and endpoint

Adaptive step size

 Compare one step and two half-steps, recursively, until error is acceptable

Implicit methods

Use the velocity at the next time step (hard)

Position-based / Verlet integration

 Constrain positions and velocities of particles after time step

Modified Euler

Modified Euler

- Average velocity at start and end of step
- OK if system is not very stiff (k_s small enough)
- But, still unstable

$$\mathbf{x}^{t+\Delta t} = \mathbf{x}^t + \frac{\Delta t}{2} \left(\dot{\mathbf{x}}^t + \dot{\mathbf{x}}^{t+\Delta t} \right)$$

$$\dot{\mathbf{x}}^{t+\Delta t} = \dot{\mathbf{x}}^t + \Delta t \ \ddot{\mathbf{x}}^t$$

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \Delta t \ \dot{\boldsymbol{x}}^t + \frac{(\Delta t)^2}{2} \ \ddot{\boldsymbol{x}}^t$$

Adaptive Step Size

Adaptive step size

- Technique for choosing step size based on error estimate
- Highly recommended technique
- But may need very small steps!

Repeat until error is below threshold:

- Compute x_T an Euler step, size T
- Compute $x_{T/2}$ two Euler steps, size T/2
- Compute error || x_T − x_{T/2} ||
- If (error > threshold) reduce step size and try again

Slide credit: Funkhouser

Implicit Euler Method

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step

$$oldsymbol{x}^{t+\Delta t} = oldsymbol{x}^t + \Delta t \, \dot{oldsymbol{x}}^{t+\Delta t}$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \, \dot{\boldsymbol{x}}^{t+\Delta t}$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t+\Delta t)$$

$$\ddot{\boldsymbol{x}}^{t+\Delta t} = \mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t+\Delta t)$$

Implicit Euler Method

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step

$$egin{aligned} & oldsymbol{x}^{t+\Delta t} = oldsymbol{x}^t + \Delta t \ \mathsf{V}(oldsymbol{x}^{t+\Delta t}, \dot{oldsymbol{x}}^{t+\Delta t}, \dot{oldsymbol{x}}^{t+\Delta t}, t + \Delta t) \end{aligned}$$
 $\dot{oldsymbol{x}}^{t+\Delta t} = \dot{oldsymbol{x}}^t + \Delta t \ \mathsf{A}(oldsymbol{x}^{t+\Delta t}, \dot{oldsymbol{x}}^{t+\Delta t}, \dot{oldsymbol{x}}^{t+\Delta t}, t + \Delta t)$

- ullet Solve nonlinear problem for $oldsymbol{x}^{t+\Delta t}$ and $\dot{oldsymbol{x}}^{t+\Delta t}$
- Use root-finding algorithm, e.g. Newton's method
- Can be made unconditionally stable

Position-Based / Verlet Integration

Idea:

- After modified Euler forward-step, constrain positions of particles to prevent divergent, unstable behavior
- Use constrained positions to calculate velocity
- Both of these ideas will dissipate energy, stabilize

Pros / cons

- Fast and simple
- Not physically based, dissipates energy (error)
- Highly recommended (assignment)

Position-Based / Verlet Integration

Algorithm 1 Position-based dynamics

```
1: for all vertices i do
             initialize \mathbf{x}_i = \mathbf{x}_i^0, \mathbf{v}_i = \mathbf{v}_i^0, w_i = 1/m_i
  3: end for
 4: loop
             for all vertices i do \mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t w_i \mathbf{f}_{\text{ext}}(\mathbf{x}_i)
 5:
             for all vertices i do \mathbf{p}_i \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i
 6:
             for all vertices i do genCollConstraints(\mathbf{x}_i \rightarrow \mathbf{p}_i)
 7:
             loop solverIteration times
 8:
                    projectConstraints(C_1, \ldots, C_{M+M_{Coll}}, \mathbf{p}_1, \ldots, \mathbf{p}_N)
 9:
             end loop
10:
             for all vertices i do
11:
                   \mathbf{v}_i \leftarrow (\mathbf{p}_i - \mathbf{x}_i)/\Delta t
12:
13:
                    \mathbf{x}_i \leftarrow \mathbf{p}_i
             end for
14:
             velocityUpdate(\mathbf{v}_1, \dots, \mathbf{v}_N)
15:
16: end loop
```

Position-Based Simulation Methods in Computer Graphics Bender, Müller, Macklin, Eurographics 2015

Particle Systems

Particle Systems

Model dynamical systems as collections of large numbers of particles

Each particle's motion is defined by a set of physical (or non-physical) forces

Popular technique in graphics and games

- Easy to understand, implement
- Scalable: fewer particles for speed, more for higher complexity

Challenges

- May need many particles (e.g. fluids)
- May need acceleration structures (e.g. to find nearest particles for interactions)

Particle System Animations

For each frame in animation

- [If needed] Create new particles
- Calculate forces on each particle
- Update each particle's position and velocity
- [If needed] Remove dead particles
- Render particles

Particle System Forces

Attraction and repulsion forces

- Gravity, electromagnetism, ...
- Springs, propulsion, ...

Damping forces

• Friction, air drag, viscosity, ...

Collisions

- Walls, containers, fixed objects, ...
- Dynamic objects, character body parts, ...

Already Discussed Springs

Internally-damped non-zero length spring

$$f_{a \to b} = k_s \frac{\mathbf{b} - \mathbf{a}}{||\mathbf{b} - \mathbf{a}||} (||\mathbf{b} - \mathbf{a}|| - l)$$

$$-k_d \frac{\mathbf{b} - \mathbf{a}}{||\mathbf{b} - \mathbf{a}||} (\dot{\mathbf{b}} - \dot{\mathbf{a}}) \cdot \frac{\mathbf{b} - \mathbf{a}}{||\mathbf{b} - \mathbf{a}||}$$

Simple Gravity

Gravity at earth's surface due to earth

- F = -mg
- m is mass of object
- g is gravitational acceleration, $g = -9.8 \text{m/s}^2$

$$F_g = -mg$$

 $g = (0, 0, -9.8) \text{ m/s}^2$

Gravitational Attraction

Newton's universal law of gravitation

Gravitational pull between particles

$$F_g = G \frac{m_1 m_2}{d^2}$$

$$G = 6.67428 \times 10^{-11} \,\mathrm{Nm}^2 \mathrm{kg}^{-2}$$

Example: Galaxy Simulation

Disk galaxy simulation, NASA Goddard

CS184/284A Ren Ng

Example: Particle-Based Fluids

Macklin and Müller, Position Based Fluids, TOG 2013

Example: Granular Materials

Bell et al, "Particle-Based Simulation of Granular Materials"

Example: Flocking Birds

Simulated Flocking as an ODE

Model each bird as a particle Subject to very simple forces:

- <u>attraction</u> to center of neighbors
- repulsion from individual neighbors
- <u>alignment</u> toward average trajectory of neighbors

Simulate evolution of large particle system numerically

Emergent complex behavior (also seen in fish, bees, ...)

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/)

Slide credit: Keenan Crane

Example: Crowds

Where are the bottlenecks in a building plan?

Example: Crowds + "Rock" Dynamics

CS184/284A Ren Ng

Suggested Reading

Physically Based Modeling: Principles and Practice

- Andy Witkin and David Baraff
- http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html

Numerical Recipes in C++

Chapter 16

Any good text on integrating ODE's

Just Scratching the Surface...

Physical simulation is a huge field in graphics, engineering, science

Today: intro to particle systems, solving ODEs

Partial differential equations

- Diffusion equation, heat equation, ...
- Used in graphics for liquids, smoke, fire, etc.

Rigid body

Simulation of sound

• • •

Example: Mass Spring Dress + Character

FEM (Finite Element Method) Instead of Springs

CS184/284A Ren Ng

Things to Remember

Physical simulation = mathematical modeling of dynamical systems & solution by numerical integration

Particle systems

- Flexible force modeling, e.g. spring-mass sytems, gravitational attraction, fluids, flocking behavior
- Newtonian equations of motion = ODEs
- Solution by numerical integration of ODEs: Explicit Euler, Implicit Euler, Adaptive, Position-Based / Verlet
- Error and instability, methods to combat instability

CS184/284A

Acknowledgments

Many thanks to James O'Brien, Keenan Crane and Tom Funkhouser for lecture resources.

CS184/284A Ren Ng