Lecture 2:

Digital Drawing

Computer Graphics and Imaging
UC Berkeley CS184/284
Today: Drawing Triangles to the Screen by Sampling
Drawing Machines
CNC Sharpie Drawing Machine

Aaron Panone with Matt W. Moore

Laser Cutters
Oscilloscope
Cathode Ray Tube
Oscilloscope Art

Jerobeam Fenderson
https://www.youtube.com/watch?v=rtR63-ecUNo
Television - Raster Display CRT

Cathode Ray Tube

Raster Scan (modulate intensity)
Frame Buffer: Memory for a Raster Display

Image = 2D array of colors
A Sampling of Different Raster Displays
Flat Panel Displays

Low-Res LCD Display

CS184/284A

Color LCD, OLED, ...

Ren Ng
LCD (Liquid Crystal Display) Pixel

Principle: block or transmit light by twisting polarization
Illumination from backlight (e.g. fluorescent or LED)
Intermediate intensity levels by partial twist
LED Array Display

Light emitting diode array
BAMPFA: LED Array Display
DMD Projection Display

DIGITAL MICRO MIRROR DEVICE (DMD) (SLM - Spatial Light Modulator)

MICRO MIRRORS CLOSE UP

Y.K. Rabinowitz; EKB Technologies
DMD Projection Display

Array of micro-mirror pixels

DMD = Digital Micromirror Device
Electrophoretic (Electronic Ink) Display

Greenland or right-whale, he is the best existing authority. But Scoresby knew nothing and says nothing of the great sperm whale, compared with which the Greenland whale is almost unworthy mentioning. And here be it said, that the Greenland whale is an usurper upon the throne of the seas. He is not even by any means the largest of the whales. Yet, owing to the long priority of his claims, and the profound ignorance which, till some seventy years back, invested the then fabulous or utterly unknown sperm-whale, and which ignorance to this present day still reigns in all but some few scientific retreats and whale-ports; this usurpation has been every way complete. Reference to nearly all the leviathanic allusions in the great ports of past days, will satisfy you that the Greenland whale, without one rival, was to them the monarch of the seas. But the time has at last come for a new proclamation. This is Charing Cross; hear ye! good people all,—the Greenland whale is deposed,—the great sperm whale now reigneth!

There are only two books in being which at all pretend to put the living sperm whale before you, and at the same time, in the remotest degree succeed in the attempt. Those books are Beale’s and Bennett’s; both in their time surpasse to English South-Sea whale-ships, and both honest and reliable men. The original matter touching the sperm whale to be found in their volumes is necessarily small; but so far as it goes, it is of excellent quality, though...
Smartphone Screen Pixels (Closeup)

iPhone 6S

Galaxy S5
Drawing to Raster Displays
Polygon Meshes
Triangle Meshes
Triangle Meshes
Shape Primitives

Example shape primitives (OpenGL)
Graphics Pipeline = Abstract Drawing Machine

- Vertices
- Transformed vertices
- Fragments
- Shaded fragments
- OpenGL commands
- Per-vertex ops
- Rasterizer
- Per-fragment ops
- Frame buffer ops
- Pixels
- Triangles, lines, points, images
- Pixels in the framebuffer
Triangles - Fundamental Area Primitive

Why triangles?

- Most basic polygon
- Break up other polygons
- Optimize one implementation
- Triangles have unique properties
 - Guaranteed to be planar
 - Well-defined interior
- Well-defined method for interpolating values at vertices over triangle (barycentric interpolation)
Drawing a Triangle To The Framebuffer ("Rasterization")
What Pixel Values Approximate a Triangle?

Input: position of triangle vertices projected on screen

Output: set of pixel values approximating triangle

(2.2, 1.3)
(4.4, 11.0)
(15.3, 8.6)
Today, Let’s Start With
A Simple Approach: Sampling
Sampling a Function

Evaluating a function at a point is sampling.

We can discretize a function by periodic sampling.

```cpp
for( int x = 0; x < xmax; x++ )
    output[x] = f(x);
```

Sampling is a core idea in graphics. We’ll sample time (1D), area (2D), angle (2D), volume (3D) …

We’ll sample N-dimensional functions, even infinite dimensional functions.
Let’s Try Rasterization As 2D Sampling
Sample If Each Pixel Center Is Inside Triangle
Sample If Each Pixel Center Is Inside Triangle
Define Binary Function: $\text{inside}(\text{tri},x,y)$

$\text{inside}(t,x,y) = \begin{cases}
1 & (x,y) \text{ in triangle } t \\
0 & \text{otherwise}
\end{cases}$
Rasterization = Sampling A 2D Indicator Function

for(int x = 0; x < xmax; x++)
 for(int y = 0; y < ymax; y++)
 Image[x][y] = f(x + 0.5, y + 0.5);

Rasterize triangle tri by sampling the function
f(x,y) = inside(tri,x,y)
Implementation Detail: Sample Locations

Sample location for pixel (x,y)

- $(0,0)$
- $(w,0)$
- $(0,h)$
- (w,h)

- $(x+1/2,y+1/2)$
Evaluating \texttt{inside}(\texttt{tri}, x, y)
Triangle = Intersection of Three Half Planes
Each Line Defines Two Half-Planes

Implicit line equation

- \(L(x,y) = Ax + By + C \)

- On line: \(L(x,y) = 0 \)
- Above line: \(L(x,y) > 0 \)
- Below line: \(L(x,y) < 0 \)

\[\begin{align*}
> 0 & \quad \text{(Above line)} \\
= 0 & \quad \text{(On line)} \\
< 0 & \quad \text{(Below line)}
\end{align*} \]
Line Equation Derivation

Line Tangent Vector

\[T = P_1 - P_0 = (x_1 - x_0, y_1 - y_0) \]
Line Equation Derivation

Perp$(x, y) = (-y, x)$

General Perpendicular Vector in 2D
Line Equation Derivation

Line Normal Vector

\[N = \text{Perp}(T) = (- (y_1 - y_0), x_1 - x_0) \]
$V = P - P_0 = (x - x_0, y - y_0)$
Line Equation

\[L(x, y) = V \cdot N = -(x - x_0)(y_1 - y_0) + (y - y_0)(x_1 - x_0) \]
Line Equation Tests

\[L(x, y) = V \cdot N > 0 \]
Line Equation Tests

\[L(x, y) = V \cdot N = 0 \]
Line Equation Tests

$L(x, y) = V \cdot N < 0$
Point-in-Triangle Test: Three Line Tests

\[P_i = (X_i, Y_i) \]

\[dX_i = X_{i+1} - X_i \]

\[dY_i = Y_{i+1} - Y_i \]

\[L_i(x, y) = -(x - X_i) dY_i + (y - Y_i) dX_i \]

\[= A_i x + B_i y + C_i \]

\[L_i(x, y) = 0 : \text{point on edge} \]

\[< 0 : \text{outside edge} \]

\[> 0 : \text{inside edge} \]

Compute line equations from pairs of vertices
Point-in-Triangle Test: Three Line Tests

\[P_i = (X_i, Y_i) \]

\[dX_i = X_{i+1} - X_i \]
\[dY_i = Y_{i+1} - Y_i \]

\[L_i(x, y) = -(x - X_i) dY_i + (y - Y_i) dX_i \]
\[= A_i x + B_i y + C_i \]

\[L_i(x, y) = 0 \text{ : point on edge} \]
\[< 0 \text{ : outside edge} \]
\[> 0 \text{ : inside edge} \]
Point-in-Triangle Test: Three Line Tests

\[P_i = (X_i, Y_i) \]

\[dX_i = X_{i+1} - X_i \]
\[dY_i = Y_{i+1} - Y_i \]

\[L_i(x, y) = -(x - X_i) dY_i + (y - Y_i) dX_i \]
\[= A_i x + B_i y + C_i \]

\[L_i(x, y) = 0 \quad \text{: point on edge} \]
\[< 0 \quad \text{: outside edge} \]
\[> 0 \quad \text{: inside edge} \]

\[L_1(x, y) > 0 \]
Point-in-Triangle Test: Three Line Tests

$P_i = (X_i, Y_i)$

dX_i = X_{i+1} - X_i

dY_i = Y_{i+1} - Y_i

$L_i(x, y) = -(x - X_i) dY_i + (y - Y_i) dX_i$

$= A_i x + B_i y + C_i$

$L_i(x, y) = 0$: point on edge

< 0 : outside edge

> 0 : inside edge

$L_2(x, y) > 0$
Point-in-Triangle Test: Three Line Tests

Sample point $s = (sx, sy)$ is inside the triangle if it is inside all three lines.

$$\text{inside}(sx, sy) = \begin{align*}
L_0(sx, sy) &> 0 \& \& \\
L_1(sx, sy) &> 0 \& \& \\
L_2(sx, sy) &> 0;
\end{align*}$$

Note: actual implementation of $\text{inside}(sx, sy)$ involves \leq checks based on edge rules.
Some Details
Edge Cases (Literally)

Is this sample point covered by triangle 1, triangle 2, or both?
OpenGL/Direct3D Edge Rules

When sample point falls on an edge, the sample is classified as within triangle if the edge is a "top edge" or "left edge"

Top edge: horizontal edge that is above all other edges

Left edge: an edge that is not exactly horizontal and is on the left side of the triangle. (triangle can have one or two left edges)

Source: Direct3D Programming Guide, Microsoft
Incremental Triangle Traversal (Faster?)

P₀

P₁

P₂
Modern Approach: Tiled Triangle Traversal

- Traverse triangle in blocks
- Test all samples in block in parallel

Advantages:
- Simplicity of wide parallel execution overcomes cost of extra point-in-triangle tests (most triangles cover many samples, especially when super-sampling)
- Can skip sample testing work: entire block not in triangle ("early out"), entire block entirely within triangle ("early in")

All modern GPUs have special-purpose hardware for efficient point-in-triangle tests
Signal Reconstruction on Real Displays
Real LCD Screen Pixels (Closeup)

iPhone 6S

Galaxy S5

Notice R,G,B pixel geometry! But in this class, we will assume a colored square full-color pixel.
Aside: What About Other Display Methods?

Color print: observe half-tone pattern
Assume Display Pixels Emit Square of Light

Each image sample sent to the display is converted into a little square of light of the appropriate color: (a pixel = picture element)

* LCD pixels do not actually emit light in a square of uniform color, but this approximation suffices for our current discussion
So, If We Send The Display This Sampled Signal
The Display Physically Emits This Signal
Compare: The Continuous Triangle Function
What’s Wrong With This Picture?

Jaggies!
Jaggies (Staircase Pattern)

Is this the best we can do?

CS184/284A
Discussion: What Value Should a Pixel Have?

Potential topics for your pair discussion:

- Ideas for “higher quality” pixel formula?
- What are all the relevant factors?
- What’s right/wrong about point sampling?
- Why do jaggies look “wrong”?
Things to Remember

Drawing machines

- Many possibilities
- Why framebuffers and raster displays?
- Why triangles?

We posed rasterization as a 2D sampling process

- Test a binary function \(\text{inside}(\text{triangle}, x, y) \)
- Evaluate triangle coverage by 3 point-in-edge tests
- Finite sampling rate causes “jaggies” artifact (next time we will analyze in more detail)
Acknowledgments

Thanks to Kayvon Fatahalian, Pat Hanrahan, Mark Pauly and Steve Marschner for slide resources.