Lecture 22:

Image Processing

Computer Graphics and Imaging
UC Berkeley CS184/284A

Credit: Kayvon Fatahalian created the majority of these lecture slides



Case Study: JPEG Compression



JPEG Compression: The Big Ideas

Low-frequency content is predominant in images of the real world

The human visual system is:
® | ess sensitive to detail in chromaticity than in luminance

® |ess sensitive to high frequency sources of error

Therefore, image compression of natural images can:

® Reduce perceived error by localizing error into high frequencies,
and in chromaticity

Slide credit: Pat Hanrahan



Y'CbCr Color Space

Y'CbCr color space

® This is a perceptually-
motivated color space
akin to L*a*b* that we
discussed in the color
lecture

® Y' is luma (lightness), Cb
and Cr are chroma
channels (blue-yellow and
red-green difference
from gray)

*Omitting discussion of nonlinear gamma encoding in Y’ channel
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Luma channel




Downsampled Y’
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CbCr Only (Chroma)




Downsampled CbCr

4x4 downsampled CbCr channels



4x4 downsampled Y’, full-resolution CbCr
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Full-resolution Y’, 4x4 down sampled CbCr
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JPEG: Chroma Subsampling in Y'CbCr Space

Subsample chroma channels
(e.g. to 4:2:2 or 4:2:0 format)

4:2:2 representation: (retain 2/3 values)
® Store Y' at full resolution

® Store Cb, Cr at half resolution in
horizontal dimension

4:2:0 representation: (retain 1/2 values)

® Store Y' at full resolution

® Store Cb, Cr at half resolution in
both dimensions
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JPEG: Discrete Cosine Transform (DCT)
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In JPEG, Apply discrete cosine
transform (DCT) to each 8x8
block of image values

DCT computes projection of
image onto 64 basis functions:

basisli, |l

DCT applied to 8x8 pixel blocks
of Y' channel, 16x16 pixel blocks
of Cb, Cr (assuming 4:2:0)



JPEG Quantization: Prioritize Low Frequencies

|

—415 —30 —61 27 56 -20 —2 0]  [16 11 10 16 24 40 51 61
1 -22 —61 10 13 -7 -9 5 12 12 14 19 26 58 60 55
47 T 77 =25 20 10 5 —6 14 13 16 24 40 57 69 56
49 12 34 -15 -10 6 2 2| / |14 17 22 29 51 87 30 62
12 -7 -13 -4 -2 2 -3 3 18 22 37 56 63 109 103 77
| -8 3 2 -6 -2 1 4 2 24 35 55 64 31 104 113 92
-1 0 0 -2 -1 -3 4 -1 19 64 78 87 103 121 120 101
0 0 -1 -4 -1 0 1 2| |72 92 95 98 112 100 103 99 |

Result of DCT

: : : : Quantization Matrix
(image encoded in cosine basis)

Changing JPEG quality setting in your favorite

2% -3 -6 2 2 -10 0 - . , ,
0 -2 -4 1 1 0 00 photo app modifies this matrix (“lower quality” =
-3 1 5 -1 -1 0 00 higher values for elements in quantization matrix)
— —4 1 2 -l 0 000 JPEG Options
1 o 0 0 0 0 00 - -
() () () () 0 0 0 0 Matte: MNone ﬁ -u“-i
0 0 0 0 0 0 0 0 — Image Options | — Cancel
i 0 0 0 0 0 0 0 0 Quality. ’g—‘ High - A Preview

amall file large file
836.3K

Quantization produces small values for coefficients (only a few
bits needed per coefficient)

Observe: quantization zeros out many coefficients
Slide credit: Wikipedia, Pat Hanrahan



JPEG: Compression Artifacts

Noticeable 8x8 pixel block boundaries

Noticeable error near large color gradients

Low quality Medium quality

Low-frequency regions of image represented accurately even under high compression



JPEG: Compression Artifacts

|

Quality Level 3

Quality Level 1

[ ]

Quality Level 6

Why might JPEG
compression not be a good
compression scheme for line-
based illustrations or
rasterized text?



Lossless Compression of Quantized DCT Values
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Quantized DCT Values
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Basis functions

Entropy encoding: (lossless)

Reorder values

Run-length encode (RLE) O’s

Huffman encode non-zero values
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Reordering

Image credit: Wikipedia



JPEG Compression Summary

Convert image to Y'CbCr color space

Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)

For each color channel (Y’, Cb, Cr):
For each 8x8 block of values

Compute DCT

Quantize results (information loss occurs here)

Reorder values
Run-length encode 0-spans

Huffman encode non-zero values
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Theme: Exploit Perception in Visual Computing

JPEG is an example of a general theme of exploiting
characteristics of human perception to build efficient visual
computing systems

We are perceptually insensitive to color errors:

® Separate luminance from chrominance in color
representations (e.g, Y'CbCr) and compress chrominance

We are less perceptually sensitive to high-frequency error

® Use a frequency-based encoding (cosine transform) and
compress high-frequency values

We perceive lightness non-linearly (not discussed in this lecture)

® Encode pixel values non-linearly to match perceived
brightness using gamma curve



Basic Image Processing Operations



Example Image Processing Operations
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Example Image Processing Operations
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Edge Detection




A "Smarter” Blur (Preserves Crisp Edges)




Denoising

Denoised




Review: Convolution

O

(f*g)(x

1 TL

output signal filter input signal

Example: convolution with “box"” function:

B {1 x| < 0.5

flz) = 0 otherwise «

0.5 0.5

0.5
(f*g)(x) = / g(r — y)dy

O o 5 1 T T T T T T T T !
L. .......... e SRR S |:] area under f(Ua(t) 1
08F---eveen- SRERTTRREY TP T e TR — f(t) L

06 _ .......... S R DU S g(t)

—(fgxt)

f * g is a “smoothed” version of g o S S S S S NS R
- -Zi’ -1?5 -1i -05 Dl 05 1i 1?5 2l

* In this gif f and g are swapped



Discrete 2D Convolution

(f = I)(z,y) = Z f(i, ) (x—i,y— j)

1,]=—0C T

output image filter input image

Consider f(Z7 ]) that is nonzero only when: —1 S Z,] S 1

Then:

(fxg)(@y)= > [, 5)I(x—iy—j)

1,)=—1

And we can represent 1(i,j) as a 3x3 matrix of values.

These values are often called “filter weights” or the “kernel”.



Simple 3x3 Box Blur

float input[ (WIDTH+2) * (HEIGHT+2)]; Will ignore boundary pixels

float output[WIDTH * HEIGHT]; today and assume output
image is smaller than input

. (makes convolution loop
float weights[] = {1./9, 1./9, 1./9, bounds much simpler to write)

1./9, 1./9, 1./9,
1./9, 1./9, 1./9};

for (int j=0; JF<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
for (int ii=0; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[ j*WIDTH + i] = tmp;

}

CS184/284A Ren Ng



7x7 Box Blur

Original

:




Gaussian Blur

Obtain filter coefficients from sampling 2D Gaussian
1 i245°

f(lpj) — 27_‘_0_26 202

B Produces weighted sum of neighboring pixels
(contribution falls off with distance)

— Truncate filter beyond certain distance

075 124 .075
124 204 124

075 124 .075
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7x7 Gaussian Blur

Original

:




Compare: 7x7 Box Blur

Original

:




What Does Convolution with this Filter Do?

0 —1 0
-1 o5 -1
0 -1 0

Sharpens image!
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3x3 Sharpen Filter

Original
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What Does Convolution with these Filters Do?

—1 0 1 -1 -2 -1
—2 0 2 0 0 U
—1 0 1 1 2 1
Extracts horizontal Extracts vertical

gradients gradients



) AR NN Horizontal gradients
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e —— e e ——— Note: you can think of a filter as a

Ee T e | “detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the
filter to the region surrounding
each pixel in the input image (this
Is @ common interpretation in
computer vision)




Sobel Edge Detection

P
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B Find pixels with large gradients

G=1/G+G,>
\

Pixel-wise operation on images




Algorithmic Cost of
Convolution-Based Image Processing



Cost of Convolution with N x N Filter?

float input[ (WIDTH+2) * (HEIGHT+2)]; In this 3x3 box blur example:
float output[WIDTH * HEIGHT]; Total work per image = 9 x WIDTH x HEIGHT

float weights[] = {1./9, 1./9, 1./9, For N x N filter: N2 x WIDTH x HEIGHT

1./9, 1./9, 1./9,
1./9, 1./9, 1./9};

for (int j=0; jJ<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
for (int ii=@; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[ j*WIDTH + i] = tmp;

CS184/284A Ren Ng



Separable Filters

A filter is separable if is the product of two other filters

® Examples: a 2D box blur

1 1 1 1

1 1 1
—111:—1*§[111}
Yl 1] Y1

® Exercise: write 2D gaussian and vertical/horizontal gradient
detection filters as product of 1D filters (they are separable!)

X I . —

Key property: 2D convolution with separable filter can be
written as two 1D convolutions!




Fast 2D Box Blur via Two 1D Convolutions

int WIDTH = 1024

int HEIGHT = 1024; Total work per image = 6 x WIDTH x HEIGHT
float input[ (WIDTH+2) * (HEIGHT+2)];
float tmp buf[WIDTH * (HEIGHT+2)]; For NxN filter: 2N x WIDTH x HEIGHT
float output[WIDTH * HEIGHT];
float weights[] = {1./3, 1./3, 1./3}; Extra cost of this approach?
for (int j=0; j<(HEIGHT+2); j++) Storage!
for (int i=0; i<WIDTH; i++) { Challenge: can you achieve this work
float tmp = @.f; complexity without incurring this cost?

for (int 1i=0@; ii<3; ii++)
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + i] = tmp;

for (int j=0; Jj<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) ({
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp_ buf[(j+jj)*WIDTH + i] * weights[jj];
output[j*WIDTH + i] = tmp;



Recall: Convolution Theorem

Spatial
Domain
Fourier l Inv. Fourier
Transform Transform
Frequency _
Domain X

CS184/284A Ren Ng



Efficiency?

When is it faster to implement a filter by convolution
in the spatial domain?

When is it faster to implement a filter by multiplication
in the frequency domain?

CS184/284A Ren Ng



Data-Dependent Filters



Median Filter

®  Replace pixel with median of its neighbors
— Useful noise reduction filter: unlike

gaussian blur, one bright pixel doesn’t

drag up the average for entire region

®  Not linear, not separable
— Filter weights are 1 or O
(depending on image content)

1px median filter
uint8 input[ (WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; J<HEIGHT; j++)
for (int i=0; i<WIDTH; i++)
output[ j*WIDTH + 1i] =
// compute median of pixels
// 1in surrounding 5x5 pixel window

3pX médian filter 10px median filter



Bilateral Filter

l ‘ l

. o .

Example use of bilateral filter: removing noise while preserving image edges



Intuition

-
L BTN
¥

miv A

Y

Isotropic filtering Anisotopic, data dependent filtering
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Bilateral Filter

Gaussian blur kernel Input image
ZfH]x_Zvy_] xyH )I(ZIZ‘—Z,y—])
For all pixels in sulport Re-weight based on difference
region of Gaussian kernel in input image pixel values

B Value of output pixel (x,y) is the weighted sum of all pixels in the support
region of a truncated gaussian kernel

B But weight is combination of both spatial distance and intensity difference.
(another non-linear, data-dependent filter)

B The bilateral filter is an “edge preserving” filter: down-weight contribution of
pixels on the other side of strong edges. f(x) defines what “strong edge

means”
B Spatial distance weight term f(x) could itself be a gaussian

- Or very simple: f(x) =0 if x > threshold, 1 otherwise



Bi I ate ra I F i Ite r Pixels with significantly different

intensity relative to p contribute little to
Inout pixel filtered result (they are on the “other
nput pxetp side of the edge”)

Input image G(): gaussian about input pixel p f(): Influence of support region

Test your
understanding:
What would change
on this slide if pixel p
were on the lower
side of the edge?

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002



Bilateral Filter: Kernel Depends on Image Content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.



Data-Driven Image Processing:
“Image Manipulation by Example”



Denoising with Non-Local Means

Large weight for input pixels that have similar neighborhood as p
® |ntuition: filtered result is the average of pixels “like” this one
® Most similar pixel has no reason to be nearby at all!!
® |n example below-right: g1 and g2 have hlgh weight, g3 has Iow weight

‘.*‘('dl\" "’}.ﬁ""'.
X ‘o“lﬂl\(w

| ,i,ﬁr}k % fP .
v Paan 2 ‘. |

W e & i b o we



Denoising Using Non-Local Means

Main idea: replace pixel with average value of nearby pixels that have a similar
surrounding region.

® Assumption: images have repeating structure “——_“““T
NL[I](p) = » w(p,a)I(q) .
q€S(p) N, i

region about p

1 INp—Ng |l -
w(p,q) = ol h2 ‘
P S A A ) N SR DU N |

® Np and Nqg are vectors of pixel values in square window around pixels p and g
(highlighted regions in figure)

All points in search | _ iNq '

o | 2 difference between Np and Ng = “similarity” of surrounding regions
® Cp is just a normalization constant to ensure weights sum to one for pixel p.

® S is the search region around p (given by dotted red line in figure)



Texture Synthesis

image
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Algorithm: Non-Parametric Texture Synthesis

Main idea: For a given pixel p, find a probability distribution
function for possible values of p, based on its neighboring pixels.

Define neighborhood N, to be the NxN pixels around p

To synthesize each pixel p:
1. Find other N x N patches (N;) in the image that are most similar to N,
2. Center pixels of the closest patches are candidates for p
3. Randomly sample from candidates weighted by distance d(Np,Ng)

Candidate N
neighborhoods

Source Growing synthesized texture

[Efros and Leung 99]



Non-Parametric Texture Synthesis

Synthesized Textures
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Increasing size of neighborhood search window: w(p)
[Efros and Leung 99]



More Texture Synthesis Examples

Synthesized Textures

Source textures

ut it becornes harder to lau
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ras Lew se lesta rimne 1 He fas quest nging of, at beouw

Naive tiling solution

[Efros and Leung 99]



Image Completion Example

Completion Result

Goal: fill in masked region with
“plausible” pixel values.

See PatchMatch algorithm [Barnes 2009]
for a fast randomized algorithm for
finding similar patches

Masked Region Image credit: [Barnes et al. 2009]



Things to Remember

JPEG as an example of exploiting perception in visual systems
® Chroma subsampling and DCT transform
Image processing via convolution
® Different operations by changing filter kernel weights
® Fast separable filter implementation: multiple 1D filters
Data-dependent image processing techniques
e Bilateral filtering, Efros-Leung texture synthesis

To learn more: consider C5194-26 “"Computational Photography”
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