Lecture 22:

Image Processing

Computer Graphics and Imaging
UC Berkeley CS184/284A

Credit: Kayvon Fatahalian created the majority of these lecture slides

Case Study: JPEG Compression

JPEG Compression: The Big Ideas

Low-frequency content is predominant in images of the real world

The human visual system is:
® | ess sensitive to detail in chromaticity than in luminance

® |ess sensitive to high frequency sources of error

Therefore, image compression of natural images can:

® Reduce perceived error by localizing error into high frequencies,
and in chromaticity

Slide credit: Pat Hanrahan

Y'CbCr Color Space

Y'CbCr color space

® This is a perceptually-
motivated color space
akin to L*a*b* that we
discussed in the color
lecture

® Y' is luma (lightness), Cb
and Cr are chroma
channels (blue-yellow and
red-green difference
from gray)

*Omitting discussion of nonlinear gamma encoding in Y’ channel

CS184/284A

Ren Ng

eipadijIpA :HpaId abew

()}
-
-
o
o
Q.
©
k=
o)
-
O

Example Image

©
=
-
=
>
-
O
>

Luma channel

Downsampled Y’

K
c
c
S

£
U
©
£

3

d

2
Q.
£
(S
2
c
S
O

d

<
X

<

CbCr Only (Chroma)

Downsampled CbCr

4x4 downsampled CbCr channels

4x4 downsampled Y’, full-resolution CbCr

o
-
-
("

i -

O

>-

k=
-

9
)
N
O
Q.
&
O

O

Peﬁ
Q.
&
O
X

LL]

A
),
-
-
O

i o

@
-

@

o,

@

=
-
O

‘n
N
QO
-
Q.
=
O

@

@
Q.
=
O
X

LL

Full-resolution Y’, 4x4 down sampled CbCr

v
0
(C

E

-

=
o

T

O

JPEG: Chroma Subsampling in Y'CbCr Space

Subsample chroma channels
(e.g. to 4:2:2 or 4:2:0 format)

4:2:2 representation: (retain 2/3 values)
® Store Y' at full resolution

® Store Cb, Cr at half resolution in
horizontal dimension

4:2:0 representation: (retain 1/2 values)

® Store Y' at full resolution

® Store Cb, Cr at half resolution in
both dimensions

CS184/284A

Ren Ng

JPEG: Discrete Cosine Transform (DCT)

basis|i, j] = cos

1 =0

T,

~J

(LY AR VT

~.

o 1 %

ll
S

[

!1_1
i

1

2‘&

]) N

1)
yt3)

In JPEG, Apply discrete cosine
transform (DCT) to each 8x8
block of image values

DCT computes projection of
image onto 64 basis functions:

basisli, |l

DCT applied to 8x8 pixel blocks
of Y' channel, 16x16 pixel blocks
of Cb, Cr (assuming 4:2:0)

JPEG Quantization: Prioritize Low Frequencies

|

—415 —30 —61 27 56 -20 —2 0] [16 11 10 16 24 40 51 61
1 -22 —61 10 13 -7 -9 5 12 12 14 19 26 58 60 55
47 T 77 =25 20 10 5 —6 14 13 16 24 40 57 69 56
49 12 34 -15 -10 6 2 2| / |14 17 22 29 51 87 30 62
12 -7 -13 -4 -2 2 -3 3 18 22 37 56 63 109 103 77
| -8 3 2 -6 -2 1 4 2 24 35 55 64 31 104 113 92
-1 0 0 -2 -1 -3 4 -1 19 64 78 87 103 121 120 101
0 0 -1 -4 -1 0 1 2| |72 92 95 98 112 100 103 99 |

Result of DCT

: : : : Quantization Matrix
(image encoded in cosine basis)

Changing JPEG quality setting in your favorite

2% -3 -6 2 2 -10 0 - . , ,
0 -2 -4 1 1 0 00 photo app modifies this matrix (“lower quality” =
-3 1 5 -1 -1 0 00 higher values for elements in quantization matrix)
— —4 1 2 -l 0 000 JPEG Options
1 o 0 0 0 0 00 - -
() () () () 0 0 0 0 Matte: MNone ﬁ -u“-i
0 0 0 0 0 0 0 0 — Image Options | — Cancel
i 0 0 0 0 0 0 0 0 Quality. ’g—‘ High - A Preview

amall file large file
836.3K

Quantization produces small values for coefficients (only a few
bits needed per coefficient)

Observe: quantization zeros out many coefficients
Slide credit: Wikipedia, Pat Hanrahan

JPEG: Compression Artifacts

Noticeable 8x8 pixel block boundaries

Noticeable error near large color gradients

Low quality Medium quality

Low-frequency regions of image represented accurately even under high compression

JPEG: Compression Artifacts

|

Quality Level 3

Quality Level 1

[]

Quality Level 6

Why might JPEG
compression not be a good
compression scheme for line-
based illustrations or
rasterized text?

Lossless Compression of Quantized DCT Values

—26 -3 -6 2 2 -10
o -2 -4 1 1 0 0
-3 1 5 -1 -1 0 0
-4 1 2 -1 0 0 0
| o 0 0 0 0 0

0 o o0 0 0 0 0

0 o 0 0 0 0 0

0 o 0 0 0 0 0

Quantized DCT Values

IOOOOOOOOl

L0 {20 [0 (ED

[[(000 () [
) i) I
R 0] [)]
E P o) B R
B B e] [R
EHEIEEEEE
== = =
EEEEEEE

Basis functions

Entropy encoding: (lossless)

Reorder values

Run-length encode (RLE) O’s

Huffman encode non-zero values

(N
1NN
\i\

Reordering

Image credit: Wikipedia

JPEG Compression Summary

Convert image to Y'CbCr color space

Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)

For each color channel (Y’, Cb, Cr):
For each 8x8 block of values

Compute DCT

Quantize results (information loss occurs here)

Reorder values
Run-length encode 0-spans

Huffman encode non-zero values

CS184/284A Ren Ng

Theme: Exploit Perception in Visual Computing

JPEG is an example of a general theme of exploiting
characteristics of human perception to build efficient visual
computing systems

We are perceptually insensitive to color errors:

® Separate luminance from chrominance in color
representations (e.g, Y'CbCr) and compress chrominance

We are less perceptually sensitive to high-frequency error

® Use a frequency-based encoding (cosine transform) and
compress high-frequency values

We perceive lightness non-linearly (not discussed in this lecture)

® Encode pixel values non-linearly to match perceived
brightness using gamma curve

Basic Image Processing Operations

Example Image Processing Operations

— a®an"' . ’ .
AL DR Y Sl = -
.) : . » . - - - ?
-“-.M." e ‘e * Mot e oo
.
. N

L e AL - 3
-y Y ey "f\a\‘-'f':.\ ‘-ﬁ,o ol U

-

Example Image Processing Operations

: . ' ¢ - | | :) S o,
< . - . -4 J < % . . \ " \ S AP - LY . e . Y £ - ! ’ 'y i N s O .‘\'.,.\'-..“ .r
. e e _ v - . . T) SANDODS . . . > - ! = - fndet 22 i, R)
. o b T e g
'..-". ..' “ y .< ;... v . A % ¥
- .,c.- e . s ? PR e o'-.'hw

“er e » . -
. oy -..“V ”* ey 5'6\“_-_‘.:" ‘~¢,Q Tl ¥ \A‘.“ .- LA AL |

PO
)
.

-

Sharpen

Edge Detection

A "Smarter” Blur (Preserves Crisp Edges)

Denoising

Denoised

Review: Convolution

O

(f*g)(x

1 TL

output signal filter input signal

Example: convolution with “box"” function:

B {1 x| < 0.5

flz) = 0 otherwise «

0.5 0.5

0.5
(f*g)(x) = / g(r — y)dy

O o 5 1 T T T T T T T T !
L. e SRR S |:] area under f(Ua(t) 1
08F---eveen- SRERTTRREY TP T e TR — f(t) L

06 _ S R DU S g(t)

—(fgxt)

f * g is a “smoothed” version of g o S S S S S NS R
- -Zi’ -1?5 -1i -05 Dl 05 1i 1?5 2l

* In this gif f and g are swapped

Discrete 2D Convolution

(f = I)(z,y) = Z f(i,) (x—i,y— j)

1,]=—0C T

output image filter input image

Consider f(Z7]) that is nonzero only when: —1 S Z,] S 1

Then:

(fxg)(@y)= > [, 5)I(x—iy—j)

1,)=—1

And we can represent 1(i,j) as a 3x3 matrix of values.

These values are often called “filter weights” or the “kernel”.

Simple 3x3 Box Blur

float input[(WIDTH+2) * (HEIGHT+2)]; Will ignore boundary pixels

float output[WIDTH * HEIGHT]; today and assume output
image is smaller than input

. (makes convolution loop
float weights[] = {1./9, 1./9, 1./9, bounds much simpler to write)

1./9, 1./9, 1./9,
1./9, 1./9, 1./9};

for (int j=0; JF<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
for (int ii=0; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

}

CS184/284A Ren Ng

7x7 Box Blur

Original

:

Gaussian Blur

Obtain filter coefficients from sampling 2D Gaussian
1 i245°

f(lpj) — 27_‘_0_26 202

B Produces weighted sum of neighboring pixels
(contribution falls off with distance)

— Truncate filter beyond certain distance

075 124 .075
124 204 124

075 124 .075

CS184/284A Ren Ng

7x7 Gaussian Blur

Original

:

Compare: 7x7 Box Blur

Original

:

What Does Convolution with this Filter Do?

0 —1 0
-1 o5 -1
0 -1 0

Sharpens image!

CS184/284A Ren Ng

3x3 Sharpen Filter

Original

DD IO T A "’*EZJF"— o AETE IR AE

‘—.,',-- by -‘r'] . v-v-

arPQHEd — e e e] .03 [1 IR [N

AiS 1L -lf;-..?m..lf

. TRES &S g L u, . IR To & e SR Y i 50 -Anif-.] N A E ' Y 115_.4. e
_.. 'Y" .;. tiai .‘ . » ,.’ . —][w' AL rb' ‘---. .Ca' - -..).L.;L“Jlk. J“‘

| ’ I A SAESL L R EC ..4‘.""" 2 S B A poSem | D5 E | B30
YK'._«’}J!&-,,. g 3 . '_ : 1!’ .I" 3 5T Gl B AR Eﬂlﬂ" 1
| ol | i) "E’M‘ﬂﬂ U IO 8 -] Setat] B 155
o | JL."“ HE o = '.'[!s'ic-."-_ﬁml—”’i’ﬂ' JE= g R | .'i- A I
) "_]r.f:'i;' I 23 (R G =0 .‘_'f]-“_;.] JEINN aR a0) T
' B B o IR . A G TR R IR PRI DR TR R Y etiaes RN SIEEE] B

CEm U (RO 1A R P RO LR e (o m&;ﬂb‘.ﬁ -3,
| RS R O R | I ARSI EEETIL]L 4 T 1'
;rr'-'-“.]t:??m!-_:-f-]:"“‘!! ial ..-]:'_.;:.‘.T.',-l't'.';_".;l._:.;.'IL- |
Jd EEE |] S0 N I] 050 Es T B P BN

S BN i | "1 —u (RS X ."]f' 20) B 1) A
T 2% 3 I L G (s P B S [amen] - AT [Semieren o
B EEET PR N TN [T [L::J('.:?:‘.!' e | EE2 B 2

“' ar

|4

.
. -

-

What Does Convolution with these Filters Do?

—1 0 1 -1 -2 -1
—2 0 2 0 0 U
—1 0 1 1 2 1
Extracts horizontal Extracts vertical

gradients gradients

) AR NN Horizontal gradients

|
|
|
'

e — W **

S — V C'tiCal gradients

., ———
- e - T S T — g —— R S

- | A - —— R — A — S — - M W -

e —— e e ——— Note: you can think of a filter as a

Ee T e | “detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the
filter to the region surrounding
each pixel in the input image (this
Is @ common interpretation in
computer vision)

Sobel Edge Detection

P
X
|
|
DO
-
DO
%
e

x 1

.
~<

|

-

-

-

B Find pixels with large gradients

G=1/G+G,>
\

Pixel-wise operation on images

Algorithmic Cost of
Convolution-Based Image Processing

Cost of Convolution with N x N Filter?

float input[(WIDTH+2) * (HEIGHT+2)]; In this 3x3 box blur example:
float output[WIDTH * HEIGHT]; Total work per image = 9 x WIDTH x HEIGHT

float weights[] = {1./9, 1./9, 1./9, For N x N filter: N2 x WIDTH x HEIGHT

1./9, 1./9, 1./9,
1./9, 1./9, 1./9};

for (int j=0; jJ<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
for (int ii=@; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

CS184/284A Ren Ng

Separable Filters

A filter is separable if is the product of two other filters

® Examples: a 2D box blur

1 1 1 1

1 1 1
—111:—1*§[111}
Yl 1] Y1

® Exercise: write 2D gaussian and vertical/horizontal gradient
detection filters as product of 1D filters (they are separable!)

X I . —

Key property: 2D convolution with separable filter can be
written as two 1D convolutions!

Fast 2D Box Blur via Two 1D Convolutions

int WIDTH = 1024

int HEIGHT = 1024; Total work per image = 6 x WIDTH x HEIGHT
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp buf[WIDTH * (HEIGHT+2)]; For NxN filter: 2N x WIDTH x HEIGHT
float output[WIDTH * HEIGHT];
float weights[] = {1./3, 1./3, 1./3}; Extra cost of this approach?
for (int j=0; j<(HEIGHT+2); j++) Storage!
for (int i=0; i<WIDTH; i++) { Challenge: can you achieve this work
float tmp = @.f; complexity without incurring this cost?

for (int 1i=0@; ii<3; ii++)
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + i] = tmp;

for (int j=0; Jj<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) ({
float tmp = 0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp_ buf[(j+jj)*WIDTH + i] * weights[jj];
output[j*WIDTH + i] = tmp;

Recall: Convolution Theorem

Spatial
Domain
Fourier l Inv. Fourier
Transform Transform
Frequency _
Domain X

CS184/284A Ren Ng

Efficiency?

When is it faster to implement a filter by convolution
in the spatial domain?

When is it faster to implement a filter by multiplication
in the frequency domain?

CS184/284A Ren Ng

Data-Dependent Filters

Median Filter

® Replace pixel with median of its neighbors
— Useful noise reduction filter: unlike

gaussian blur, one bright pixel doesn’t

drag up the average for entire region

® Not linear, not separable
— Filter weights are 1 or O
(depending on image content)

1px median filter
uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; J<HEIGHT; j++)
for (int i=0; i<WIDTH; i++)
output[j*WIDTH + 1i] =
// compute median of pixels
// 1in surrounding 5x5 pixel window

3pX médian filter 10px median filter

Bilateral Filter

l ‘ l

. o .

Example use of bilateral filter: removing noise while preserving image edges

Intuition

-
L BTN
¥

miv A

Y

Isotropic filtering Anisotopic, data dependent filtering

CS184/284A Ren Ng

Bilateral Filter

Gaussian blur kernel Input image
ZfH]x_Zvy_] xyH)I(ZIZ‘—Z,y—])
For all pixels in sulport Re-weight based on difference
region of Gaussian kernel in input image pixel values

B Value of output pixel (x,y) is the weighted sum of all pixels in the support
region of a truncated gaussian kernel

B But weight is combination of both spatial distance and intensity difference.
(another non-linear, data-dependent filter)

B The bilateral filter is an “edge preserving” filter: down-weight contribution of
pixels on the other side of strong edges. f(x) defines what “strong edge

means”
B Spatial distance weight term f(x) could itself be a gaussian

- Or very simple: f(x) =0 if x > threshold, 1 otherwise

Bi I ate ra I F i Ite r Pixels with significantly different

intensity relative to p contribute little to
Inout pixel filtered result (they are on the “other
nput pxetp side of the edge”)

Input image G(): gaussian about input pixel p f(): Influence of support region

Test your
understanding:
What would change
on this slide if pixel p
were on the lower
side of the edge?

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Bilateral Filter: Kernel Depends on Image Content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

Data-Driven Image Processing:
“Image Manipulation by Example”

Denoising with Non-Local Means

Large weight for input pixels that have similar neighborhood as p
® |ntuition: filtered result is the average of pixels “like” this one
® Most similar pixel has no reason to be nearby at all!!
® |n example below-right: g1 and g2 have hlgh weight, g3 has Iow weight

‘.*‘('dl\" "’}.ﬁ""'.
X ‘o“lﬂl\(w

| ,i,ﬁr}k % fP .
v Paan 2 ‘. |

W e & i b o we

Denoising Using Non-Local Means

Main idea: replace pixel with average value of nearby pixels that have a similar
surrounding region.

® Assumption: images have repeating structure “——_“““T
NL[I](p) = » w(p,a)I(q) .
q€S(p) N, i

region about p

1 INp—Ng |l -
w(p,q) = ol h2 ‘
P S A A) N SR DU N |

® Np and Nqg are vectors of pixel values in square window around pixels p and g
(highlighted regions in figure)

All points in search | _ iNq '

o | 2 difference between Np and Ng = “similarity” of surrounding regions
® Cp is just a normalization constant to ensure weights sum to one for pixel p.

® S is the search region around p (given by dotted red line in figure)

Texture Synthesis

image

ion texture i

low-resolut

Input

Input

high-resolution texture that appears “like” the

Desired output

High-resolution texture generated by

Source texture
(low resolution)

texture

on

tiling of low-resolut

haive

l - ‘/". - ‘}ll.. - ‘}". .. \ - “/‘.

i.,-a.\ i»-a.\ .,wn.\ ; ..ntt\

. - ~
cJAI‘i.\

.m.r.. /.,a. e /sa. r Jc,a. : Jo.a. r Jo.a.. :
s N
GVI A\ - lVM I‘A-rl lv.. l‘}-ll JVM I‘A-ll lVi Aﬂlll AT

.lfwt.-\ ..A.,wtl\ :...»wtl\..v.lfwtl\ .pr‘n-\..v.).fwtlxnv
fn://f.f//ff//f.f//ff//f.f/zfl
N N o Ny J&.. . Ny o J:q.., ,.N,.w.c...

= .
:,”A -a VA - v “w - -
aﬂ.f«.\av.,..“f; w.rel\r.. Hf«..\ U.««..l\f..

yJ.«rF/,v / l—f.&f.,.#/ / lfrqfr‘v / l-r.{ﬁ.ﬁ., / I!Ji»..r" N l—J&»f‘W / l
%o Jc.a. S Jc.a.. Jca.. Jv.x... : Jva..: ~% Je.

N . N : . v
b2 .V .V .uv. .V .V 2
4rhr;au.rvaafhf;aw.fhrﬁa,..Hf..,v.,.«.uf..,

-I.&»le // lv..(n«/.ﬁ/ / l!..&/FJ' / lv.;.-»f’ / l?.rg.pt.l / lva.{f.#’ / l

-

Q-

Algorithm: Non-Parametric Texture Synthesis

Main idea: For a given pixel p, find a probability distribution
function for possible values of p, based on its neighboring pixels.

Define neighborhood N, to be the NxN pixels around p

To synthesize each pixel p:
1. Find other N x N patches (N;) in the image that are most similar to N,
2. Center pixels of the closest patches are candidates for p
3. Randomly sample from candidates weighted by distance d(Np,Ng)

Candidate N
neighborhoods

Source Growing synthesized texture

[Efros and Leung 99]

Non-Parametric Texture Synthesis

Synthesized Textures

R P e
WJW///,'/// " % '

7)) o .
o A 3 | GiG i Y
= i s e e e e SR ARt

e ’ M &
9 S e B - G TAL I %
o S e P | A. Yooroopoorscimminst s
o } | E S P L e i
3 L) e i N
» T 8 R it N I

R
e T o L S e

SSRSILEES T ot =
] —_—-—-—_ o i 5 e e o '

Increasing size of neighborhood search window: w(p)
[Efros and Leung 99]

More Texture Synthesis Examples

Synthesized Textures

Source textures

ut it becornes harder to lau
round itself, at "this daily
ving rooras,” as House Der
2scribed it last fall. He fail
Jthe left a ringing question
wie wears of Monica Lewnir
inda Tripp?" That now seer
?olitical cornedian Al Frar
axt phase of the stoxy will

B AWLLL L LU TR L UL TISELL J1 UG UG LEW JLUE »
st ndatrears coune Tring roomns " as Heft he fastnd it
315 dat noears cortseas ribed it last ot hest bedian A1, F
econical Homd it h Al. Heft ars af as da Lewindailf]
lian A1 Ths " as Lewning questies last aticarsticall. He
is dianu A1 Jast fal counda Lew, at "this dailyears d ily
wdianicall. Hoorxewing rooms,” as House De fale £ De
und itical couneestscribed itlast fall. He fall. Hefft
5 oxoheoned itnd ithe left a ringing questica Lewain.
Acars coecoms,” astore years of Monica Lewinow seee
a Thas Fring roorne stooniscat nowea re left a roouse

bougstof BMie lelft s Lést fast ngine lauuesticars Hef
wditeip? Teouself, a ringind itfonestidit a ring que:
.astical cois orxe years of Moung fall. He ribof Mouse
yee years ofanda Tripp?” That hedian A1 Lest fasee yea
ada Tripp? 1olitical cornedian Alét he f29 5¢ 1ing que
olitical conw xe years of the storears ofas 1 Fratnica L
ras Lew se lesta rimne 1 He fas quest nging of, at beouw

Naive tiling solution

[Efros and Leung 99]

Image Completion Example

Completion Result

Goal: fill in masked region with
“plausible” pixel values.

See PatchMatch algorithm [Barnes 2009]
for a fast randomized algorithm for
finding similar patches

Masked Region Image credit: [Barnes et al. 2009]

Things to Remember

JPEG as an example of exploiting perception in visual systems
® Chroma subsampling and DCT transform
Image processing via convolution
® Different operations by changing filter kernel weights
® Fast separable filter implementation: multiple 1D filters
Data-dependent image processing techniques
e Bilateral filtering, Efros-Leung texture synthesis

To learn more: consider C5194-26 “"Computational Photography”

CS184/284A Ren Ng

Acknowledgments

Many thanks to Kayvon Fatahalian for this lecture!

CS184/284A Ren Ng

