
Computer Graphics and Imaging

UC Berkeley CS184/284A

Lecture 22:

Image Processing

Credit: Kayvon Fatahalian created the majority of these lecture slides

Case Study: JPEG Compression

JPEG Compression: The Big Ideas

Low-frequency content is predominant in images of the real world

The human visual system is:

• Less sensitive to detail in chromaticity than in luminance

• Less sensitive to high frequency sources of error

Therefore, image compression of natural images can:

• Reduce perceived error by localizing error into high frequencies,
and in chromaticity 
 
 

Slide credit: Pat Hanrahan

Ren NgCS184/284A

Y’CbCr Color Space

Y’CbCr color space

• This is a perceptually-
motivated color space
akin to L*a*b* that we
discussed in the color
lecture

• Y’ is luma (lightness), Cb
and Cr are chroma
channels (blue-yellow and
red-green difference
from gray)

Y’

Cb

Cr

Im
age credit: W

ikipedia*Omitting discussion of nonlinear gamma encoding in Y’ channel

Example Image

Original picture

Y’ Only (Luma)

Luma channel

Downsampled Y’

4x4 downsampled luma channel

CbCr Only (Chroma)

CbCr channels

Downsampled CbCr

4x4 downsampled CbCr channels

Example: Compression in Y’ Channel

4x4 downsampled Y’, full-resolution CbCr

Example: Compression in CbCr Channels

Full-resolution Y’, 4x4 down sampled CbCr

Original Image

Ren NgCS184/284A

JPEG: Chroma Subsampling in Y’CbCr Space

Subsample chroma channels  
(e.g. to 4:2:2 or 4:2:0 format)

4:2:2 representation: (retain 2/3 values)

• Store Y’ at full resolution

• Store Cb, Cr at half resolution in
horizontal dimension

4:2:0 representation: (retain 1/2 values)

• Store Y’ at full resolution

• Store Cb, Cr at half resolution in
both dimensions

JPEG: Discrete Cosine Transform (DCT)

i = 0

basis[i, j] =

DCT computes projection of
image onto 64 basis functions:

basis[i, j]

DCT applied to 8x8 pixel blocks
of Y’ channel, 16x16 pixel blocks
of Cb, Cr (assuming 4:2:0)

i = 7
j = 0 j = 7

In JPEG, Apply discrete cosine
transform (DCT) to each 8x8
block of image values

JPEG Quantization: Prioritize Low Frequencies

Quantization Matrix

=

Slide credit: Wikipedia, Pat Hanrahan

Result of DCT

(image encoded in cosine basis)

Quantization produces small values for coefficients (only a few
bits needed per coefficient)

Observe: quantization zeros out many coefficients

Changing JPEG quality setting in your favorite
photo app modifies this matrix (“lower quality” =
higher values for elements in quantization matrix)

JPEG: Compression Artifacts

Low quality Medium quality

Noticeable 8x8 pixel block boundaries

Noticeable error near large color gradients

Low-frequency regions of image represented accurately even under high compression

JPEG: Compression Artifacts

Quality Level 1Quality Level 3

Original Image Quality Level 9 Quality Level 6

Why might JPEG
compression not be a good
compression scheme for line-
based illustrations or
rasterized text?

Lossless Compression of Quantized DCT Values

Image credit: Wikipedia

Quantized DCT Values

Reordering
Entropy encoding: (lossless)

Reorder values

Run-length encode (RLE) 0’s

Huffman encode non-zero values

Basis functions

Ren NgCS184/284A

JPEG Compression Summary

Convert image to Y’CbCr color space

Downsample CbCr (to 4:2:2 or 4:2:0)	 (information loss occurs here)

For each color channel (Y’, Cb, Cr):

For each 8x8 block of values

Compute DCT

Quantize results 	 (information loss occurs here)

Reorder values

Run-length encode 0-spans

Huffman encode non-zero values 
 
 

Theme: Exploit Perception in Visual Computing

JPEG is an example of a general theme of exploiting
characteristics of human perception to build efficient visual
computing systems

We are perceptually insensitive to color errors:

• Separate luminance from chrominance in color
representations (e.g, Y’CbCr) and compress chrominance

We are less perceptually sensitive to high-frequency error

• Use a frequency-based encoding (cosine transform) and
compress high-frequency values

We perceive lightness non-linearly (not discussed in this lecture)

• Encode pixel values non-linearly to match perceived
brightness using gamma curve

Basic Image Processing Operations

Example Image Processing Operations

Blur

Example Image Processing Operations

Sharpen

Edge Detection

A “Smarter” Blur (Preserves Crisp Edges)

Denoising

Denoised

Original

Review: Convolution

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

-0.5 0.5

1Example: convolution with “box” function:

output signal filter input signal

f * g is a “smoothed” version of g

* In this gif f and g are swapped

Discrete 2D Convolution

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

Consider that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:

(f ⇤ g)(x, y) =
1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values.

These values are often called “filter weights” or the “kernel”.

output image filter input image

(f ⇤ I)

Ren NgCS184/284A

Simple 3x3 Box Blur
float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,

 1./9, 1./9, 1./9,

 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

Will ignore boundary pixels
today and assume output
image is smaller than input
(makes convolution loop
bounds much simpler to write)

7x7 Box Blur
Original

Blurred

Ren NgCS184/284A

Gaussian Blur

Obtain filter coefficients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

▪ Produces weighted sum of neighboring pixels
(contribution falls off with distance)

-Truncate filter beyond certain distance

7x7 Gaussian Blur
Original

Blurred

Compare: 7x7 Box Blur
Original

Blurred

Ren NgCS184/284A

What Does Convolution with this Filter Do?

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Sharpens image!

3x3 Sharpen Filter
Original

Sharpened

What Does Convolution with these Filters Do?

Extracts horizontal
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical

gradients

Gradient Detection Filters
Horizontal gradients

Vertical gradients
Note: you can think of a filter as a
“detector” of a pattern, and the
magnitude of a pixel in the output
image as the “response” of the
filter to the region surrounding
each pixel in the input image (this
is a common interpretation in
computer vision)

Sobel Edge Detection

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

Gx
2 +Gy

2

Pixel-wise operation on images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

Gx
2 +Gy

2

Algorithmic Cost of  
Convolution-Based Image Processing

Ren NgCS184/284A

Cost of Convolution with N x N Filter?
float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,

 1./9, 1./9, 1./9,

 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

In this 3x3 box blur example:

Total work per image = 9 x WIDTH x HEIGHT

For N x N filter: N2 x WIDTH x HEIGHT

Separable Filters

A filter is separable if is the product of two other filters

• Examples: a 2D box blur

• Exercise: write 2D gaussian and vertical/horizontal gradient
detection filters as product of 1D filters (they are separable!)

1

9

2

4
1 1 1
1 1 1
1 1 1

3

5 =
1

3

2

4
1
1
1

3

5 ⇤ 1

3

⇥
1 1 1

⇤

Key property: 2D convolution with separable filter can be
written as two 1D convolutions!

Fast 2D Box Blur via Two 1D Convolutions
int WIDTH = 1024

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float tmp_buf[WIDTH * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1./3, 1./3, 1./3};

for (int j=0; j<(HEIGHT+2); j++)

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int ii=0; ii<3; ii++)

 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];

 tmp_buf[j*WIDTH + i] = tmp;

 }

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];

 output[j*WIDTH + i] = tmp;

 }

}

For NxN filter: 2N x WIDTH x HEIGHT

Total work per image = 6 x WIDTH x HEIGHT

Extra cost of this approach?

Storage!

Challenge: can you achieve this work
complexity without incurring this cost?

Ren NgCS184/284A

Recall: Convolution Theorem

* =

x =

Spatial 
Domain

Frequency 
Domain

Fourier 
Transform

Inv. Fourier 
Transform

Ren NgCS184/284A

Efficiency?

When is it faster to implement a filter by convolution
in the spatial domain?

When is it faster to implement a filter by multiplication
in the frequency domain?

Data-Dependent Filters

Median Filter

uint8 input[(WIDTH+2) * (HEIGHT+2)];

uint8 output[WIDTH * HEIGHT];

for (int j=0; j<HEIGHT; j++)

 for (int i=0; i<WIDTH; i++)

 output[j*WIDTH + i] =

 // compute median of pixels

 // in surrounding 5x5 pixel window

▪ Replace pixel with median of its neighbors

- Useful noise reduction filter: unlike

gaussian blur, one bright pixel doesn’t
drag up the average for entire region

▪ Not linear, not separable

- Filter weights are 1 or 0

(depending on image content)

Bilateral Filter

Example use of bilateral filter: removing noise while preserving image edges

Ren NgCS184/284A

Intuition

Isotropic filtering Anisotopic, data dependent filtering

Bilateral Filter

▪ Value of output pixel (x,y) is the weighted sum of all pixels in the support
region of a truncated gaussian kernel

▪ But weight is combination of both spatial distance and intensity difference.
(another non-linear, data-dependent filter)

▪ The bilateral filter is an “edge preserving” filter: down-weight contribution of
pixels on the other side of strong edges. f (x) defines what “strong edge
means”

▪ Spatial distance weight term f (x) could itself be a gaussian

- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Re-weight based on difference
in input image pixel values

For all pixels in support
region of Gaussian kernel

BF[I](x, y) =
X

i,j

f(kI(x� i, y � j)� I(x, y)k)G(i, j)I(x� i, y � j)

Gaussian blur kernel Input image

Bilateral Filter
Input pixel p

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Input image G(): gaussian about input pixel p f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Pixels with significantly different
intensity relative to p contribute little to
filtered result (they are on the “other
side of the edge”)

Test your
understanding:  

What would change
on this slide if pixel p

were on the lower
side of the edge?

Bilateral Filter: Kernel Depends on Image Content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

Data-Driven Image Processing:

“Image Manipulation by Example”

Denoising with Non-Local Means

Large weight for input pixels that have similar neighborhood as p

• Intuition: filtered result is the average of pixels “like” this one

• Most similar pixel has no reason to be nearby at all!!

• In example below-right: q1 and q2 have high weight, q3 has low weight

p

q1
q2

q3w(p, q3)

w(p, q2)
w(p, q1)

Denoising Using Non-Local Means

Main idea: replace pixel with average value of nearby pixels that have a similar
surrounding region.

• Assumption: images have repeating structure

• Np and Nq are vectors of pixel values in square window around pixels p and q
(highlighted regions in figure)

• L2 difference between Np and Nq = “similarity” of surrounding regions

• Cp is just a normalization constant to ensure weights sum to one for pixel p.

• S is the search region around p (given by dotted red line in figure)

p

q

Np

NqAll points in search
region about p

NL[I](p) =
X

q2S(p)

w(p, q)I(q)

w(p, q) =
1

Cp
e�

kNp�Nqk2

h2

Texture Synthesis

Input: low-resolution texture image

Desired output: high-resolution texture that appears “like” the input

Source texture

(low resolution)

High-resolution texture generated by
naive tiling of low-resolution texture

Algorithm: Non-Parametric Texture Synthesis

Main idea: For a given pixel p, find a probability distribution
function for possible values of p, based on its neighboring pixels.

Define neighborhood Np to be the NxN pixels around p

p

[Efros and Leung 99]

To synthesize each pixel p:

1. Find other N x N patches (Nq) in the image that are most similar to Np

2. Center pixels of the closest patches are candidates for p

3. Randomly sample from candidates weighted by distance d(Np,Nq)

Np

Candidate Nq  
neighborhoods

Source Growing synthesized texture

Non-Parametric Texture Synthesis

Increasing size of neighborhood search window: w(p)

So
ur

ce
 te

xt
ur

es

Synthesized Textures

5x5 11x11 15x15 23x23

[Efros and Leung 99]

More Texture Synthesis Examples
Synthesized TexturesSource textures

Naive tiling solution

[Efros and Leung 99]

Image Completion Example

Original Image

Masked Region

Completion Result

Image credit: [Barnes et al. 2009]

See PatchMatch algorithm [Barnes 2009]
for a fast randomized algorithm for
finding similar patches

Goal: fill in masked region with
“plausible” pixel values.

Ren NgCS184/284A

Things to Remember

JPEG as an example of exploiting perception in visual systems

• Chroma subsampling and DCT transform

Image processing via convolution

• Different operations by changing filter kernel weights

• Fast separable filter implementation: multiple 1D filters

Data-dependent image processing techniques

• Bilateral filtering, Efros-Leung texture synthesis

To learn more: consider CS194-26 “Computational Photography”

Ren NgCS184/284A

Acknowledgments

Many thanks to Kayvon Fatahalian for this lecture!

