Lecture 8:

Mesh Representations &
Geometry Processing

Computer Graphics and Imaging
UC Berkeley CS184/284A



A Small Triangle Mesh

8 vertices, 12 triangles

CS184/284A Ng & Kanazawa



Mesh
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Digital Michelangelo Project

28,184,526 vertices

56,230,343 triangles
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Digital Geometry Processing
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Geometry Processing Pipeline

Scanh =—— Process =—3 Print




Geometry Processing
Tasks: 3 Examples




Mesh Upsampling — Subdivision
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Increase resolution via interpolation
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Mesh Downsampling - Simplification
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Xy,

Decrease resolution; try to preserve shape/appearance
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Mesh Regularization

Modify sample distribution to improve quality

CS184/284A Ng & Kanazawa



This Lecture

Study how to represent meshes (data structures)

Study how to process meshes (geometry processing)

CS184/284A Ng & Kanazawa



Mesh Representations



List of Triangles

(X1, Y1.21) : ®
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& \T7 ®
[0] [1] [R] ]
tris[O] | Xo. Yo 20 X2:Y2:22 X1:Y1:21 8

tris[1] | X0, Y0: 20 X3.Y3:23 X2,Y2.22
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Lists of Points / Indexed Triangle

®p ®Ps
A o P; :
verts:O: X0 Y0: 20 Ps
verts[l] [ X1, Y1, Z; N &
X211 Y2147 To
X3,Y3,23 |
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tInd[1]| 0,3,2 1
®Pio
® P9 a\E
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Comparison

Triangles
+ Simple

— Redundant information

Points + Triangles
+ Sharing vertices reduces memory usage

+ Ensure integrity of the mesh (moving a vertex
causes that vertex in all the polygons to move)
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Topology vs Geometry

Same geometry, different mesh topology
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Topological Mesh Information

Applications:

® Constant time access to neighbors
e.g. surface normal calculation, subdivision

e Editing the geometry
e.g. adding/removing vertices, faces, edges, etc.

Solution: Topological data structures

CS184/284A Ng & Kanazawa



Topological Validity: Manifold

Definition: a 2D manifold is a surface that when cut with a
small sphere always yields a disk.

Manifold Not manifold
With border With border
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Topological Validity: Manifold

Definition: a 2D manifold is a surface that when cut with a
small sphere always yields a disk.

If a mesh is manifold we can rely on these useful properties:
® An edge connects exactly two faces
® An edge connects exactly two vertices
® A face consists of a ring of edges and vertices
® A vertex consists of a ring of edges and faces

® Euler's polyhedron formula holds: #f — #e + #v = 2

(for a surface topologically equivalent to a sphere)
(Check for a cube: 6 - 12 + 8 = 2)
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Topological Validity: Orientation Consistency

Both facing front Inconsistent orientations
C C

Non-orientable
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Triangle-Neighbor Data Structure

struct Tri { v[i]
Vert  *v[3];
Tri * t[3];

}

struct Vert {
Point pt;
Tri *t;

CS184/284A Ng & Kanazawa



Triangle-Neighbor — Mesh Traversal

Find next triangle counter-clockwise around vertex v
from triangle t V1]

Tri *tccwvt(Vert *v, Tri *t)
{
if (v ==t->v[0])
return t[0];
If (v ==1t->v[1])
return t[1];
iIf (v ==1t->v[2])
return t[2];

CS184/284A Ng & Kanazawa



Half-Edge Data Structure

struct Halfedge { Key idea: two half-edges act as

Halfedge *twin, “glue” between mesh elements
Halfedge *next;

Vertex *vertex;
Edge *edge;
Face *face;

} ol o
struct Vertex { ;5’_)' g | twin
Point pt; = 7
Halfedge *halfedge; =

}
struct Edge {

Halfedge *halfedge;

1 vertex

struct Face { Each vertex, edge and face points
Halfedge "halfedge; to one of its half edges

}
CS184/284A Ng & Kanazawa



Half-Edge Facilitates Mesh Traversal

Use twin and next pointers to move around mesh

Process vertex, edge and/or face pointers

Example 1: process all vertices of a face

%

Halfedge* h = f->halfedge; o
do { Face 8
h
process(h->vertex); next ©
h = h->nhext;
}

CS184/284A Ng & Kanazawa



Half-Edge Facilitates Mesh Traversal

Example 2: process all edges around a vertex

Halfedge* h = v->halfedge;
do {

process(h->edge);

h = h->twin->nhext;

}

CS184/284A Ng & Kanazawa



Local Mesh Operations



Half-Edge - Local Mesh Editing

Basic operations for linked list: insert, delete

Basic ops for half-edge mesh: flip, split, collapse edges

Allocate / delete elements; reassign pointers

(Care needed to preserve mesh manifold property)
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Half-Edge - Edge Flip

® Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

C C

flip

O

a d a d

b b

® Long list of pointer reassignments

® However, no elements created/destroyed.
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Half-Edge - Edge Split

® |[nsert midpoint m of edge (c,b), connect to get
four triangles:

< split

b b

® This time have to add elements

® Again, many pointer reassignments
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Half-Edge - Edge Collapse

® Replace edge (c,d) with a single vertex m:

a a

collapse

T

b b

® This time have to delete elements

® Again, many pointer reassignments
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Global Mesh Operations: Geometry Processing

® Mesh subdivision
® Mesh simplification

® Mesh regularization
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Subdivision Surfaces



Subdivision Surfaces

Start with coarse polygon mesh (“control cage”)
® Subdivide each element
® Update vertices via local averaging
Many possible rule:

® Catmull-Clark (quads)

® | oop (triangles)

Common issues:
® interpolating or approximating?
® continuity at vertices?
Relatively easy for modeling; harder to guarantee continuity
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Core Idea: Let Subdivision Define The Surface

In Bezier curves, we saw:
® Evaluation by subdivision (de Casteljau algorithm)
® Or evaluation by algebra (Bernstein polynomials)
Insight that leads to subdivision surfaces:
® Free ourselves from the algebraic evaluation
® et subdivision fully define the surface
Many possible subdivision rules — different surfaces

® Technical challenge shifts to designing rules and proving
properties (e.g. convergence and continuity)

® Applying rules to compute surface is procedural

CS184/284A Ng & Kanazawa



Loop Subdivision



Loop Subdivision

Common subdivision rule for triangle meshes
“C2" smoothness away from extraordinary vertices

Approximating, not interpolating

uewJiyn4 uowlis
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Loop Subdivision Algorithm

® Split each triangle into four

® Assign new vertex positions according to weights:

1/8

3/8 3/8

n: vertex degree

u: 3/16 if n=3, 3/(8n) otherwise

1/8

New vertices Old vertices



Loop Subdivision Algorithm

Example, for degree 6 vertices
1/16 1/16

1/16 1/16

10/16
1/16 1/16
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Loop Subdivision Algorithm

Simon Fuhrman

CS184/284A Ng & Kanazawa



Semi-Reqgular Meshes
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Proof: Always an Extraordinary Vertex

Our mesh (topologically equivalent to sphere) has V vertices, E edges, and
T triangles

E=3/2T
® There are 3 edges per triangle, and each edge is part of 2 triangles
® Therefore E = 3/2T

T=2V-4
® Euler Convex Polyhedron Formula: T-E +V = 2
o => V=3/2T-T+2 => T=2V-4

If all vertices had 6 triangles, T = 2V
® There are 6 edges per vertex, and every edge connects 2 vertices
® Therefore, E=6/2V => 3/2T=6/2V => T=2V

T cannot equal both 2V - 4 and 2V, a contradiction

® Therefore, the mesh cannot have 6 triangles for every vertex

CS184/284A Ng & Kanazawa



Loop Subdivision via Edge Operations

First, split edges of original mesh in any order:

spllt

Next, flip new edges that touch a new & old vertex:

fllp

(Don’t forget to update vertex positions!)

Images cribbed from Keenan Crane, cribbed from Denis Zorin



Continuity of Loop Subdivision Surface

At extraordinary points
® Surface is at least C' continuous
Everywhere else (“ordinary” regions)

® Surface is C2 continuous

CS184/284A Ng & Kanazawa



Loop Subdivision Results
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Catmull-Clark Subdivision



Catmull-Clark Subdivision (Regular Quad Mesh)
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Catmull-Clark Subdivision (Regular Quad Mesh)
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Catmull-Clark Subdivision (Regular Quad Mesh)

CS184/284A

r------

=I Each subdivision step:

L 1| Add midpoint on each edge
i Connect all new vertices

Ng & Kanazawa



Catmull-Clark Vertex Update Rules (Quad Mesh)

Face point  ,_ ViTVvarVaTVha Edge point
° 04 4 o 'lo ¢
f vi+va+ fi+ 12 Z
€ = A Si 2
y,® °,. oo -
\ g ®  Vertex point
N
/i k v_f1+f2+f3+f4+2(m1+m2+m3+m4)+4P
P B 16
my CV my ?
f3 s f4 "l midpoint of edge, not “"edge point”
O O P old “vertex point”
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Catmull-Clark Subdivision (General Mesh)

Non-quad fc

Extraordina
vertex

valence 1= ¢
( Each subdivision step:

Add vertex in each face
Add midpoint on each edge

Connect all new vertices



Catmull-Clark Subdivision (General Mesh)

After

Before

How many extraordinary
vertices after first subdivision?

What are their valences?
CS1 84/284A HOW many non-quad faces? Ng & Kanazawa




Catmull-Clark Subdivision (General Mesh)

CS184/284A Ng & Kanazawa



Catmull-Clark Subdivision (General Mesh)

CS184/284A Ng & Kanazawa



Catmull-Clark Vertex Update Rules (General Mesh)

f = average of surrounding vertices

e:f1+f2+V1+V2

4 These rules reduce to
i earlier quad rules for
L) am p(n—3) ordinary vertices / faces
noon n

m = average of adjacent midpoints

f = average of adjacent tace points
n = valence ot vertex

p = old "vertex” point

CS184/284A Ng & Kanazawa



Continuity of Catmull-Clark Surface

At extraordinary points
® Surface is at least C' continuous
Everywhere else (“ordinary” regions)

® Surface is C2 continuous

CS184/284A Ng & Kanazawa



What About Sharp Creases?

From Pixar Short, “Geri's Game”
Hand is modeled as a Catmull Clark surface with creases between skin and fingernail




What About Sharp Creases?

Loop with Sharp Creases
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Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases
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Creases + Boundaries

Can create creases in subdivision surfaces by marking
certain edges as “sharp”. Boundary edges can be
handled the same way

® Use different subdivision rules for vertices along
these “sharp” edges

1 1 1 o 1
2 2 ] 1 ]
W W
Insert new midpoint vertex, Update existing vertices,
weights as shown weights as shown

CS184/284A Ng & Kanazawa



Subdivision in Action (“Geri's Game"”, Pixar)

Subdivision used for entire
character:

¢ Hands and head

® Clothing, tie, shoes

CS184/284A Ng & Kanazawa



Subdivision in Action (Pixar’s “"Geri's Game")




Mesh Simplification



How Do We Resample Meshes? (Reminder)

Edge split is (local) upsampling:

Edge collapse is (local) downsampling:

Edge flip is (local) resampling

A

Still need to intelligently decide whlch edges to modlfy'

CS184/284A Ng & Kanazawa



Mesh Simplification

Goal: reduce number of mesh elements while
maintaining overall shape

300 30

g

How to compute?
CS184/284A Ng & Kanazawa

30,000 triangles

¢




Estimate: Error Introduced by Collapsing An Edge?

® How much geometric error for collapsing an edge?

collapse

CS184/284A Ng & Kanazawa



Sketch of Quadric Error
Mesh Simplification




Simplification via Quadric Error

Iteratively collapse edges
Which edges? Assign score with quadric error metric*

® approximate distance to surface as sum of
distances to planes containing triangles

® iteratively collapse edge with smallest score

® greedy algorithm... great results!

* (Garland & Heckbert 1997)

CS184/284A Ng & Kanazawa



Quadric Error Matrix

Key idea:
® 4x4 ("quadric”) symmetric matrix encodes distance to plane
For planeax + by +cz+d =0
® Distance of query point (x, y, z) from plane is given by uTQu:
® u:=(x, Yy, z 1)Tis the query point in homogeneous coordinates

® And Q is a symmetric matrix as follows:

a’> ab ac ad

| ab b* be bd
Q= ac bc c* cd
ad bd cd d?

® Q contains 10 unique coefficients (small storage)
CS184/284A Ng & Kanazawa



Quadric Error Matrix: Derivation

® Suppose in coordinates we have { a’ ab ac ad w

® a query point (x,y,z2) 0 — ab b* be bd
® a normal (a,b,c) { ac bc ¢ CCQi J
® an offset d := —(x,,y,,2,) ® (a,b,c) ad bd cd d

® Then in homogeneous coordinates, let
® u:=(xyz1)
e v:=(a,b,c,d)

® Signed distance to plane is then
D = uvl = vuT = ax+by+cz+d

® Squared distance is D2 = (uvT)(vuT) = u (vTv) uT := uTQu

CS184/284A Ng & Kanazawa



Quadric Error At Vertex

Approximate distance to vertex’s triangles as sum of
distances to each triangle’s plane.

Encode this as a single quadric matrix for the vertex
that is the sum of quadric error matrices for all
triangles

Qv =) Q

1=1




Quadric Error of Edge Collapse

® How much does it cost to collapse an edge?

® |ldea: compute edge midpoint, measure quadric error

collapse

® Better idea: choose point that minimizes quadric error

® More details: Garland & Heckbert 1997.

CS184/284A Ng & Kanazawa



Quadric Error Simplification: Algorithm

® Compute quadric error matrix Q for each triangle
® Set Q at each vertex to sum of Qs from neighbor triangles
® Set Q at each edge to sum of Qs at endpoints

® Find point at each edge minimizing quadric error t

® Until we reach target # of triangles:

® collapse edge (i,j) with smallest cost to get new vertex m
¢ add Q; and Q; to get quadric Q, at vertex m

® update cost of edges touching
vertex m




Quadric Error Mesh Simplification

afadabadnd

5,804

£6, HOPPSH pue puejien

30,000 triangles 3,000 300 30
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Mesh Regularization



What Makes a “Good"” Triangle Mesh?

One rule of thumb: triangle shape /\

More specific condition: Delaunay = "GOO “BAD”

» "Circumcircle interiors contain no vertices.” ,_

Not always a good condition, but often*

e Good for simulation

* Not always best for shape approximation

*See Shewchuk, “"What is a Good Linear Element”



What Else Constitutes a Good Mesh?

Rule of thumb: regular vertex degree
Triangle meshes: ideal is every vertex with valence 6:

EGGOOD EEOK!! E‘BAD!!
Why? Better trlangle shape, important for (e g.)
subdivision: // subdivide

’ -m

/]| | | )

/ / F 11 ©
£r 0 [\
/ / .,
-l | -

*See Shewchuk, “"What is a Good Linear Element”



Isotropic Remeshing

Try to make triangles uniform in shape and size

CS184/284A Ng & Kanazawa



How Do We Improve Degree?

Edge flips!
If total deviation from degree 6 gets smaller, flip it!
flip
~~

Iterative edge flipping acts like “discrete diffusion” of degree

No (known) guarantees; works well in practice

CS184/284A Ng & Kanazawa



How Do We Make Triangles “More Round”?

Delaunay doesn’t mean equilateral triangles

Can often improve shape by centering vertices:

average

—_— >

[Crane, “Digital Geometry Processing with Discrete Exterior Calculus”]
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Isotropic Remeshing Algorithm*

Repeat four steps:
® Split edges over 4/3rds mean edge legth
® Collapse edges less than 4/5ths mean edge length
® Flip edges to improve vertex degree

® Center vertices tangentially

ZASERIBES T

*Based on Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”



MeshLab Demo



Things to Remember

Triangle mesh representations
® Triangles vs points+triangles
e Half-edge structure for mesh traversal and editing
Geometry processing basics
® Local operations: flip, split, and collapse edges
® Upsampling by subdivision (Loop, Catmull-Clark)
® Downsampling by simplification (Quadric error)

® Regularization by isotropic remeshing

CS184/284A Ng & Kanazawa
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