Lecture 9:

Intro to Ray-Tracing

Computer Graphics and Imaging UC Berkeley CS184/284A

Towards Photorealistic Rendering

Credit: Bertrand Benoit. "Sweet Feast," 2009. [Blender /VRay]

Discussion: What Do You See?

3 min, 3 people, 3 observations

- Look closely, curiously, and write down 3 visual features you want to know how to compute

- https://cgsociety.org/c/featured/6hgf/sweet-feast

Discussion: What Do You See?

Your observations

- Different focal points front of photo focused, back is blurred
- Transparency in the glass, tea
- Diffraction? Light spreading in the highlight, maybe around edges of shadows
- Refraction through drink in the back
- Light interacts with non-reflective materials, like the napkin physical shape and attributes of the cloth
- Sponge cake - like a volume, so soft
- How light reflects light in the custard; bumps in the food
- The mug behind is reflecting the back of the mug in front that none of us can see
- Caramel - light diffusing through this; through the grapes too

Course Roadmap

Rasterization Pipeline

Core Concepts

- Sampling
- Antialiasing
- Transforms

Geometric Modeling

Core Concepts

- Splines, Bezier Curves
- Topological Mesh Representations
- Subdivision, Geometry Processing

Lighting \& Materials

Core Concepts

- Measuring Light
- Unbiased Integral Estimation
- Light Transport \& Materials

Cameras \& Imaging

Rasterization
Transforms \& Projection
Texture Mapping
Visibility, Shading, Overall Pipeline
Intro to Geometry
Curves and Surfaces
Geometry Processing
Ray-Tracing \& Acceleration
Today
Radiometry \& Photometry
Monte Carlo Integration
Global Illumination \& Path Tracing
Material Modeling

Basic Ray-Tracing Algorithm

Ray Casting

Appel 1968 - Ray casting

1. Generate an image by casting one ray per pixel
2. Check for shadows by sending a ray to the light

Ray Casting - Generating Eye Rays

Pinhole Camera Model

Ray Casting - Shading Pixels (Local Only)

Pinhole Camera Model

Recursive Ray Tracing

"An improved Illumination model for shaded display" T. Whitted, CACM 1980

Time:

- VAX 11/780 (1979) 74m
- PC (2006) 6s
- GPU (2012) 1/30s

Spheres and Checkerboard, T. Whitted, 1979

Recursive Ray Tracing

light source

Recursive Ray Tracing

light source

Recursive Ray Tracing

light source

Recursive Ray Tracing

Recursive Ray Tracing

- Trace secondary rays recursively until hit a non-specular surface (or max desired levels of recursion)
- At each hit point, trace shadow rays to test light visibility (no contribution if blocked)
- Final pixel color is weighted sum of contributions along rays, as shown
- Gives more sophisticated effects (e.g. specular reflection, refraction, shadows), but we will go much further to derive a physically-based illumination model

Recursive Ray Tracing

Ray-Surface Intersection

Ray Intersection With Triangle Mesh

Why?

- Rendering: visibility, shadows, lighting ...
- Geometry: inside/outside test

How to compute?

Let's break this down:

- Simple idea: just intersect ray with each triangle
- Simple, but slow (accelerate next time)
- Note: can have 0, 1 or multiple intersections

Ray Equation

Ray is defined by its origin and a direction vector

Example:

d

Ray equation:

Plane Equation

Plane is defined by normal vector and a point on plane

Example:

Plane Equation:

$a x+b y+c z+d=0$
all points on plane any point normal vector

Ray Intersection With Plane

Ray equation:

$$
\mathbf{r}(t)=\mathbf{o}+t \mathbf{d}, 0 \leq t<\infty
$$

Plane equation:

$$
\mathbf{p}:\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \cdot \mathbf{N}=0
$$

Solve for intersection

Set $\mathbf{p}=\mathbf{r}(t)$ and solve for t

$$
\begin{aligned}
& \left(\mathbf{p}-\mathbf{p}^{\prime}\right) \cdot \mathbf{N}=\left(\mathbf{o}+t \mathbf{d}-\mathbf{p}^{\prime}\right) \cdot \mathbf{N}=0 \\
& t=\frac{\left(\mathbf{p}^{\prime}-\mathbf{o}\right) \cdot \mathbf{N}}{\mathbf{d} \cdot \mathbf{N}} \quad \text { Check: } 0 \leq t<\infty
\end{aligned}
$$

Ray Intersection With Triangle

Triangle is in a plane

- Ray-plane intersection
- Test if hit point is inside triangle (Assignment 1!)
Many ways to optimize...

Can Optimize: e.g. Möller Trumbore Algorithm

$$
\begin{aligned}
& \overrightarrow{\mathbf{O}}+t \overrightarrow{\mathbf{D}}=\left(1-b_{1}-b_{2}\right) \overrightarrow{\mathbf{P}}_{0}+b_{1} \overrightarrow{\mathbf{P}}_{1}+b_{2} \overrightarrow{\mathbf{P}}_{2} \\
& \text { Where: } \\
& {\left[\begin{array}{c}
t \\
b_{1} \\
b_{2}
\end{array}\right]=\frac{1}{\overrightarrow{\mathbf{S}}_{1} \bullet \overrightarrow{\mathbf{E}}_{1}}\left[\begin{array}{c}
\overrightarrow{\mathbf{S}}_{2} \bullet \overrightarrow{\mathbf{E}}_{2} \\
\overrightarrow{\mathbf{S}}_{1} \bullet \overrightarrow{\mathbf{S}} \\
\overrightarrow{\mathbf{S}}_{2} \bullet \overrightarrow{\mathbf{D}}
\end{array}\right]} \\
& \begin{array}{l}
\overrightarrow{\mathbf{E}}_{1}=\overrightarrow{\mathbf{P}}_{1}-\overrightarrow{\mathbf{P}}_{0} \\
\overrightarrow{\mathbf{E}}_{2}=\overrightarrow{\mathbf{P}}_{2}-\overrightarrow{\mathbf{P}}_{0} \\
\overrightarrow{\mathbf{S}}=\overrightarrow{\mathbf{O}}-\overrightarrow{\mathbf{P}}_{0}
\end{array} \\
& \text { Cost = (} 1 \text { div, } 27 \text { mul, } 17 \text { add) } \\
& \overrightarrow{\mathbf{S}}_{1}=\overrightarrow{\mathbf{D}} \times \overrightarrow{\mathbf{E}}_{2} \\
& \overrightarrow{\mathbf{S}}_{2}=\overrightarrow{\mathbf{S}} \times \overrightarrow{\mathbf{E}}_{1}
\end{aligned}
$$

Ray Intersection With Sphere

Ray: $\mathbf{r}(t)=\mathbf{o}+t \mathbf{d}, 0 \leq t<\infty$
Sphere: p: $(\mathbf{p}-\mathbf{c})^{2}-R^{2}=0$
Solve for intersection:

$$
\begin{aligned}
& (\mathbf{o}+t \mathbf{d}-\mathbf{c})^{2}-R^{2}=0 \\
& a t^{2}+b t+c=0, \text { where } \\
& a=\mathbf{d} \cdot \mathbf{d} \\
& b=2(\mathbf{o}-\mathbf{c}) \cdot \mathbf{d} \\
& c=(\mathbf{o}-\mathbf{c}) \cdot(\mathbf{o}-\mathbf{c})-R^{2}
\end{aligned}
$$

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Ray Intersection With Implicit Surface

Ray: $\mathbf{r}(t)=\mathbf{o}+t \mathbf{d}, 0 \leq t<\infty$
General implicit surface: $\mathbf{p}: f(\mathbf{p})=0$
Substitute ray equation: $f(\mathbf{o}+t \mathbf{d})=0$
Solve for real, positive roots

$$
\begin{array}{r}
\left(x^{2}+\frac{9 y^{2}}{4}+z^{2}-1\right)^{3}= \\
x^{2} z^{3}+\frac{9 y^{2} z^{3}}{80}
\end{array}
$$

CS184/284A

Accelerating Ray-Surface Intersection

Ray Tracing - Performance Challenges

Simple ray-scene intersection

- Exhaustively test ray-intersection with every object

Problem:

- Exhaustive algorithm = \#pixels \times \#objects
- Very slow!

Ray Tracing - Performance Challenges

San Miguel Scene, 10.7M triangles

Ray Tracing - Performance Challenges

Plant Ecosystem, 20M triangles

Discussion: Accelerating Ray-Scene Intersection
 ~ 1 million pixels, ~ 20 million triangles

In pairs, brainstorm accelerations, small or big ideas. Write down 3-4 ideas.

Discussion: Accelerating Ray-Scene Intersection

Brainstorm 3 or 4 accelerations, small or big ideas.

- Heuristics for which triangle to look at first
- Ignore triangles behind the camera
- Get lazy with small triangles and blur faraway regions
- Copy and paste computation if many similar parts of trees
- Inspired by quick sort, try to bound these are the only triangles in this area - and maybe do so recursively
- If image is sparse, apply compressive sensing somehow?
- Quad tree to hierarchically organize the scene
- "Parenting" objects - idea of hierarchical representation of scene
- Stop recursion after a few steps for non-detailed areas
- Reverse the ray - start from the camera - why?
- Perform blocking to improve cache performance
- Selective ray-tracing - optimize for specific visual effects trace only the relevant rays from those surfaces

Bounding Volumes

Bounding Volumes

Quick way to avoid intersections: bound complex object with a simple volume

- Object is fully contained in the volume
- If it doesn't hit the volume, it doesn't hit the object
- So test bvol first, then test object if it hits

Ray-Intersection With Box

Could intersect with 6 faces individually
Better way: box is the intersection of 3 slabs

Ray Intersection with Axis-Aligned Box

2D example; 3D is the same! Compute intersections with slabs and take intersection of $\mathrm{t}_{\text {min }} / \mathrm{t}_{\text {max }}$ intervals

Intersections with x planes

Intersections with y planes

Final intersection result How do we know when the ray misses the box?

Optimize Ray-Plane Intersection For Axis-Aligned Planes?

General

$$
t=\frac{\left(\mathbf{p}^{\prime}-\mathbf{o}\right) \cdot \mathbf{N}}{\mathbf{d} \cdot \mathbf{N}}
$$

3 subtractions, 6 multiplies, 1 division

Perpendicular to x -axis

$$
t=\frac{\mathbf{p}_{x}^{\prime}-\mathbf{o}_{x}}{\mathbf{d}_{x}}
$$

1 subtraction, 1 division

To Be Continued

Acknowledgments

Thanks to Pat Hanrahan, Kayvon Fatahalian, Mark Pauly and Steve Marschner for lecture resources.

