
Computer Graphics and Imaging
UC Berkeley CS184/284A

Lecture 9:

Intro to Ray-Tracing

Towards Photorealistic Rendering

Credit: Bertrand Benoit. “Sweet Feast,” 2009. [Blender /VRay]

Kanazawa & NgCS184/284A

Discussion: What Do You See?
3 min, 3 people, 3 observations

• Look closely, curiously, and write down 3 visual
features you want to know how to compute

• https://cgsociety.org/c/featured/6hgf/sweet-feast

Credit: Bertrand Benoit.
“Sw

eet Feast,” 2009. [Blender /VRay]

https://cgsociety.org/c/featured/6hgf/sweet-feast

Kanazawa & NgCS184/284A

Discussion: What Do You See?

Your observations

• Different focal points —
front of photo focused,
back is blurred

• Transparency in the glass,
tea

• Diffraction? Light
spreading in the highlight,
maybe around edges of
shadows

• Refraction through drink in
the back

• Light interacts with non-reflective
materials, like the napkin —
physical shape and attributes of
the cloth

• Sponge cake — like a volume, so
soft

• How light reflects light in the
custard; bumps in the food

• The mug behind is reflecting the
back of the mug in front that
none of us can see

• Caramel — light diffusing through
this; through the grapes too

Image credit: Bertrand Benoit. “Sweet Feast,” 2009. [Blender /VRay]

Radiometry & Photometry
Monte Carlo Integration
Global Illumination & Path Tracing
Material Modeling

Rasterization
Transforms & Projection
Texture Mapping
Visibility, Shading, Overall Pipeline

Intro to Geometry
Curves and Surfaces
Geometry Processing
Ray-Tracing & Acceleration Today

Course Roadmap
Rasterization Pipeline

Geometric Modeling

Lighting & Materials

Cameras & Imaging

Core Concepts
• Splines, Bezier Curves
• Topological Mesh Representations
• Subdivision, Geometry Processing

Core Concepts
• Sampling
• Antialiasing
• Transforms

Core Concepts
• Measuring Light
• Unbiased Integral Estimation
• Light Transport & Materials

Basic Ray-Tracing Algorithm

Kanazawa & NgCS184/284A

Ray Casting

Appel 1968 - Ray casting
1. Generate an image by casting one ray per pixel
2. Check for shadows by sending a ray to the light

Kanazawa & NgCS184/284A

Pinhole Camera Model

Ray Casting - Generating Eye Rays

eye point

image plane

light source

eye ray  
(starts at eye and

goes through pixel)

closest scene  
intersection point

note: more
intersection points

Kanazawa & NgCS184/284A

Pinhole Camera Model

Ray Casting - Shading Pixels (Local Only)

eye point

image plane

light source

eye ray  
(starts at eye and

goes through pixel)

perform shading calculation
here to compute color of pixel

(e.g. Blinn Phong model)

Kanazawa & NgCS184/284A

Recursive Ray Tracing

“An improved Illumination
model for shaded display”
T. Whitted, CACM 1980

Time:

• VAX 11/780 (1979) 74m

• PC (2006) 6s

• GPU (2012) 1/30s

Spheres and Checkerboard, T. Whitted, 1979

Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

Mirror ray
(specular reflection)

Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

 Refractive rays
(specular transmission)

Kanazawa & NgCS184/284A

Recursive Ray Tracing

eye point

image plane

light source
Shadow rays

Kanazawa & NgCS184/284A

Recursive Ray Tracing

• Trace secondary rays recursively until hit a non-specular surface (or max desired levels of recursion)

• At each hit point, trace shadow rays to test light visibility (no contribution if blocked)

• Final pixel color is weighted sum of contributions along rays, as shown

• Gives more sophisticated effects (e.g. specular reflection, refraction, shadows), but we will go much
further to derive a physically-based illumination model

eye point

image plane

light source

primary ray

secondary rays

shadow rays

Kanazawa & NgCS184/284A

Recursive Ray Tracing

Ray-Surface Intersection

Kanazawa & NgCS184/284A

Why?

• Rendering: visibility, shadows,
lighting …

• Geometry: inside/outside test
How to compute?
Let’s break this down:

• Simple idea: just intersect ray with each triangle

• Simple, but slow (accelerate next time)

• Note: can have 0, 1 or multiple intersections

Ray Intersection With Triangle Mesh

Kanazawa & NgCS184/284A

Ray Equation

unit directionorigin“time”point along ray

Ray equation:

0 t < 1

Example:

Ray is defined by its origin and a direction vector

Kanazawa & NgCS184/284A

Plane Equation

Plane is defined by normal vector and a point on plane

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Example:

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Plane Equation:

normal vectorany pointall points on plane

Kanazawa & NgCS184/284A

Ray Intersection With Plane

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Ray equation:

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Plane equation: r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Solve for intersection

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
(p0 � o) ·N

d ·N r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Check:

Kanazawa & NgCS184/284A

Ray Intersection With Triangle

Triangle is in a plane

• Ray-plane intersection

• Test if hit point is inside
triangle (Assignment 1!)

Many ways to optimize…

Kanazawa & NgCS184/284A

Can Optimize: e.g. Möller Trumbore Algorithm

Kanazawa & NgCS184/284A

Ray Intersection With Sphere

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Ray:

p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

Sphere: p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

Solve for intersection:
p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

Kanazawa & NgCS184/284A

Ray Intersection With Implicit Surface

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Ray:

General implicit surface: p : f(p) = 0

f(o+ td) = 0
Substitute ray equation:

p : f(p) = 0

f(o+ td) = 0

Solve for real, positive roots

Accelerating Ray-Surface
Intersection

Kanazawa & NgCS184/284A

Ray Tracing – Performance Challenges

Simple ray-scene intersection

• Exhaustively test ray-intersection with every object

Problem:

• Exhaustive algorithm = #pixels ⨉ #objects

• Very slow!

Ray Tracing – Performance Challenges

San Miguel Scene, 10.7M triangles

Jun Yan, Tracy Renderer

Ray Tracing – Performance Challenges

Plant Ecosystem, 20M triangles
Deussen et al; Pharr & Humphreys, PBRT

Discussion: Accelerating Ray-Scene Intersection

In pairs, brainstorm accelerations, small or big ideas.
Write down 3-4 ideas.

Deussen et al; Pharr & Humphreys, PBRT

~1 million pixels, ~20 million triangles

Kanazawa & NgCS184/284A

• Heuristics for which triangle to
look at first

• Ignore triangles behind the camera

• Get lazy with small triangles and
blur faraway regions

• Copy and paste computation if
many similar parts of trees

• Inspired by quick sort, try to
bound these are the only triangles
in this area — and maybe do so
recursively

• If image is sparse, apply
compressive sensing somehow?

Discussion: Accelerating Ray-Scene Intersection

Brainstorm 3 or 4 accelerations, small or big ideas.

• Quad tree to hierarchically organize
the scene

• “Parenting” objects - idea of
hierarchical representation of scene

• Stop recursion after a few steps for
non-detailed areas

• Reverse the ray — start from the
camera — why?

• Perform blocking to improve cache
performance

• Selective ray-tracing — optimize for
specific visual effects trace only the
relevant rays from those surfaces

Bounding Volumes

Kanazawa & NgCS184/284A

Bounding Volumes

Quick way to avoid intersections: bound complex
object with a simple volume

• Object is fully contained in the volume

• If it doesn’t hit the volume, it doesn’t hit the object

• So test bvol first, then test object if it hits

Kanazawa & NgCS184/284A

Ray-Intersection With Box

Could intersect with 6 faces individually
Better way: box is the intersection of 3 slabs

2D example; 3D is the same! Compute intersections with
slabs and take intersection of tmin/tmax intervals

Ray Intersection with Axis-Aligned Box

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Note: tmin < 0

Intersections with y planes Intersections with x planes

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Final intersection result

How do we know when the ray misses the box?

Kanazawa & NgCS184/284A

Optimize Ray-Plane Intersection For Axis-Aligned Planes?

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
(p0 � o) ·N

d ·N

3 subtractions, 6 multiplies, 1 division

t =
(p0 � o) ·N

d ·N =) t =
p0

x � ox

dx

r(t) = o+ td, 0 t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N
1 subtraction, 1 division

General

Perpendicular
to x-axis

To Be Continued

Kanazawa & NgCS184/284A

Acknowledgments

Thanks to Pat Hanrahan, Kayvon Fatahalian, Mark
Pauly and Steve Marschner for lecture resources.

