Lecture 1:

Introduction

Computer Graphics and Imaging UC Berkeley CS184/284A

Welcome to CS184 / 284A!

Prof. Ren Ng

- Ph.D. 2006 on Digital Light Field Photography (evolving camera design using graphics technology)
- Founder of Lytro, a light field camera company
- Research interests: computational imaging systems, computer graphics, computer vision, human vision
- Fun fact: born Malaysian, became Australian, naturalized American. Had all speaking accents!

Welcome to CS184 / 284A!

Prof. James F. O'Brien

- Ph.D. GaTech 2000 on fracture propagation with application to destruction visual effects.
- Research: Computer graphics, computer animation, simulations of physical systems, human perception, rendering, image synthesis, machine learning, virtual reality, and media forensics.
- Industry: Klothed, Pixelux, Dreamworks, Avametric, Juice Technologies
- Enjoys: Photography, traveling, scuba, camping, beat saber, woodworking, and glassblowing.

Welcome to CS184 / 284A!

Your Names: An Important Request

We want to get to know you

It starts with your names

We want to remember, but there are many of us

Please help us with this rule:

• Every time you participate in class, section, office hours, please remind us your name.

Example: "Hi, this is Susan. My question is about..."

Thank you very much!

CS184/284A: Computer Graphics & Imaging

Why Study Computer Graphics?

Course Overview

Logistics

What is Computer Graphics?

com • put • er graph • ics /kəm 'pyoodər 'grafiks/ n. The use of computers to synthesize and manipulate visual information.

CS184/284A O'Brien & Ng

Why Visual Information?

Why	Study	Comput	er Grap	hics and	I Imaging?

Jurassic Park (1993)

Moments That Changed The Movies: Jurassic Park https://www.youtube.com/watch?v=KWsbcBvYqN8

Toy Story (1995)

The Matrix (1999)

The Matrix (1999)

The Campanile

Debevec, Taylor and Malik SIGGRAPH 1996

https://www.pauldebevec.com/Campanile/

CS184/284A O'Brien & Ng

Motion Capture

Andy Serkis in The Two Towers

CS184/284A O'Brien & Ng

Avatar (2009)

Titanic (1997)

Sucker Punch (2009)

Interstellar (2014)

Event Horizon Telescope collaboration et al.

Event Horizon Telescope collaboration et al.

Games

Halo 5 (2015)

Red Dead Redemption 2, Rockstar, 2019

Games

Unreal Engine 5 Demo Realtime in PS5 (2020)

Battlefield 5 (2018)

Battlefield 5 (2018)

Games

Mirror's Edge (2008)

Child of Light (2014)

Ōkami (2006)

Assassin's Creed: Odyssey (2018)

Training Simulations

From CAE Inc.

Visual Simulation

Driving simulator
Toyota Higashifuji Technical Center

da Vinci surgical robot Intuitive Surgical

Flight simulator, driving simulator, surgical simulator, ...

Virtual Reality

HTC Vive headset and controllers

Virtual Reality

Augmented Reality

Microsoft Hololens augmented reality headset concept

Augmented Reality

Stereo Vison

Ikea - 75% of catalog is rendered imagery

Photograph

Simulation

Tesla Model X concept (2012)

Tesla Model X production

Credit: EV <u>obsession.com</u>, James Ayre

Mill Blackbird

Architectural Design

Bilbao Guggenheim, Frank Gehry

Architectural Design

Heydar Aliyev Center, Zaha Hadid Architects

Visualization

Science, engineering, medicine, journalism, ...

Typography

The Quick Brown Fox Jumps Over The Lazy Dog

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 0123456789

Baskerville

Desktop metaphor

- Input: Keyboard, mouse
- Ouput: Cathode-ray tube

Ivan Sutherland, Sketchpad Light pen, vector display

Doug Engelbart Mouse

2D drawing and animation are ubiquitous in computing. Typography, icons, images, transitions, transparency, ...

2D drawing and animation are ubiquitous in computing. Typography, icons, images, transitions, transparency, ...

Digital Illustration

Meike Hakkart

http://maquenda.deviantart.com/art/Lion-done-in-illustrator-327715059

Computer-Aided Design

SolidWorks SketchUp

For mechanical, architectural, electronic, optical, ...

Fabrication

Computational Thermoforming

Christian Schuller, Daniele Panozzo, Anselm Grundhofer, Henning Zimmer, Evgeni Sorkine, Olga Sorkine-Hornung

Photography

NASA | Walter Iooss | Steve McCurry Harold Edgerton | NASA | National Geographic

Digital and Computational Cameras

Panaromic stitching, HDR photos, light field cameras, ...

Ubiquitous Imaging

Cameras everywhere

Imaging in Mapping

Maps, satellite imagery, street-level imaging,...

Imaging in Mapping

Maps, satellite imagery, street-level imaging,...

Imaging for Computer Vision

ImageNet: 15M images, 22K categories

http://image-net.org

Imaging for Robotics

Google's "Arm Farm"

Foundations of Graphics and Imaging

These applications require sophisticated theory and systems

Science and Mathematics

- Physics of light, color, optics, ...
- Math of curves, surfaces, geometry, perspective, ...

Technology and Systems

- Input devices, GPUs, displays, ...
- Cameras, lenses, sensors, ...

Art and Psychology

- Perception: color, stereo, motion, image quality, ...
- Art and design: composition, form, lighting, ...

Course Goals

Overview of core ideas in graphics and imaging

- Modeling the world, image synthesis
- 3D graphics: geometry, rendering, animation
- Image capture, manipulation and display

Acquire core concepts and skills

- Representations (geometry, images, transforms, ...)
- Algorithms (sampling, subdivision, ray-tracing, ...)
- Technology (GPUs, displays, cameras, ...)

Course Topics

Drawing Digital Images (Rasterization)

Filtering and Sampling

No Jaggies

Modeling Geometry

Modeling Material Properties

Modeling Lighting

Light Transport and Image Synthesis

Photograph (CCD) vs. computer rendering

How Do Cameras Work?

Glenn Derene, Popular Mechanics

CS184/284A O'Brien & Ng

Animation and Physical Simulation

Virtual Reality

Hands-On Learning

Course Assignments

1. Digital Drawing (2 weeks)

2. Geometry (2 weeks)

3. Ray-Tracing (4 weeks)

4. Animation (2 weeks)

Final Project

- 4 weeks, let your creativity take flight! (we will have suggested projects)
- Proposal; checkpoint; presentation, video, report

Credit: Pixar, Up

Final Project - Examples

Final Project - Examples

Final Project - Examples

Course Logistics

Prerequisites

Math

- Vectors, matrices, basic linear algebra
- Helpful: exposure to statistics, signal processing,
 Fourier transform

Programming

- Data structures (CS61B)
- Fluent with C and C++
- Fluent with development environment, debugging, etc.

Enrollment

- Past years, high turnover from wait list
- Questions about enrollment:
 - CS184: ask scheduler (Cindy Conners) cs-scheduling@berkeley.edu
 - CS284A: contact instructors on Ed

Course Schedule

cs184.eecs.berkeley.edu

Full schedule for class will be on website soon

Note class calendar at bottom for office hours, homework, parties, etc.

Lecture Slides

cs184.eecs.berkeley.edu

Lecture slides and instructor/TA/ student discussions on the web are the primary course reference materials

Slide comments and discussion

larger t is the further away you get from the origin point. In the context of

checking for intersection if t is infinity the ay will never intersect with the plane, if t

save (3€ + ←)

is negative then the ray is pointing in

add a comment

CS184/284A O'Brien & Ng

CS184/284A

 $(\mathbf{p} - \mathbf{p}') \cdot \mathbf{N} = (\mathbf{o} + t \, \mathbf{d} - \mathbf{p}') \cdot \mathbf{N} = 0$

Check: $0 \le t < \infty$

Jonathan Ragan-Kelley & Ren Ng

Ed

edstem.org

You should be added already (if not, please sign up)!

For logistics and general communication / discussion

- Please use Ed instead of email
- But intellectual discussions about content should primarily go on website as slide comments

Webcasting

Lecture will be recorded this semester

- Screen capture and audio only
- Videos will be linked from the course website

CS184/284A O'Brien & Ng

Section

Sections start next week, and TAs will give a primer on C++ and building class projects

CS184/284A O'Brien & Ng

Resources

Lectures will be primary source

Textbook reference material (optional):

- Fundamentals of Computer Graphics by P. Shirley, S. Marschner, et al.
- Computer Graphics: Principles and Practice (3rd Edition)
 by Hughes, van Dam, et al.
- Physically Based Rendering, Third Edition: From Theory to Implementation by Pharr, Jakob and Humphreys

Other optional reading resources on class website

Learning, Grading, Collaboration & Culture

Goals:

- Enable you to increase focus on learning rather than assessment
- Encourage your learning through collaboration
- Entrust you with maintaining academic integrity

Main Ideas (details on course website — please review):

- The class is not graded on a curve.
- Collaboration in pairs encouraged on programming assignments.
- Exams will be take-home, with honor code, no proctoring.

Details

 Please read the Policies page on the course website and ask questions on Ed.

Course Deliverables and Assessment

CS184: your course grade is out of 100 total points

- Five homework assignments, 10 points each
 - Pair projects encouraged. Programming and written reports.
- Two exams, 10 points each
 - Check dates on website schedule. No exam during Finals Week.
- Final project, 25 points
 - In groups of four, with final presentation, video, report.
- Participation, 5 points
 - Attend lectures/discussion, and/or write website comments on lecture slides.

CS284A students: Project is 40% of grade, remainder normalized.

What We Are Looking For In Slide Comments

Try to explain the slide (as if teaching your classmate to study for an exam)

• "Ren said this, but if you think about it this way it is much clearer"

Explain what is confusing you

"What I was totally confused about here was..."

Challenge classmates with a question

For example, make up a question you think might be on an exam

Provide a link to an alternative explanation

• "This site has a really good animation of pre-filtering to avoid aliasing"

Mention real-world examples

• For example, describe what default interpolation functions are used in iOS.

Constructively respond to another student's question

• "@nojaggies, are you sure that is correct? I thought that Ren said..."

It is OK, and even encouraged, to address the same topic (or repeat someone else's summary, explanation or idea) in your own words

• "@cornellbox's point is that subdivision is also used to..."

Late Days Policy

Assignments are late after 11:59pm on due date.

You have 5 late days for assignments (not final project)

- Extend a homework assignment deadline by 24 hours using one late day.
- If you do not have remaining late days, 1 point penalty per day.
- Please use this flexibility to manage your exceptional circumstances.

Class Philosophy

We want to build an active, engaged class community.

Come to class, participate in lecture, discussion, office hours, homework parties.

Practice cooperative, supportive learning.

Contribute on the website.

Uphold academic honor individually and collectively.

Inclusive Classroom

Respect each other as individuals with unique identities and backgrounds.

Help create a welcoming community for our full diversity of perspectives and experiences.

Collaboration and team learning are encouraged, and will be supported through class staff and resources.

Projects are a great way to meet new people and make friends; work on building trust and leveraging each other's unique strengths.

Questions?

Acknowledgments

Thanks to Angjoo Kanazawa, Pat Hanrahan, Kayvon Fatahalian, Keenan Crane, and Mark Pauly for presentation resources.

CS184/284A O'Brien & Ng