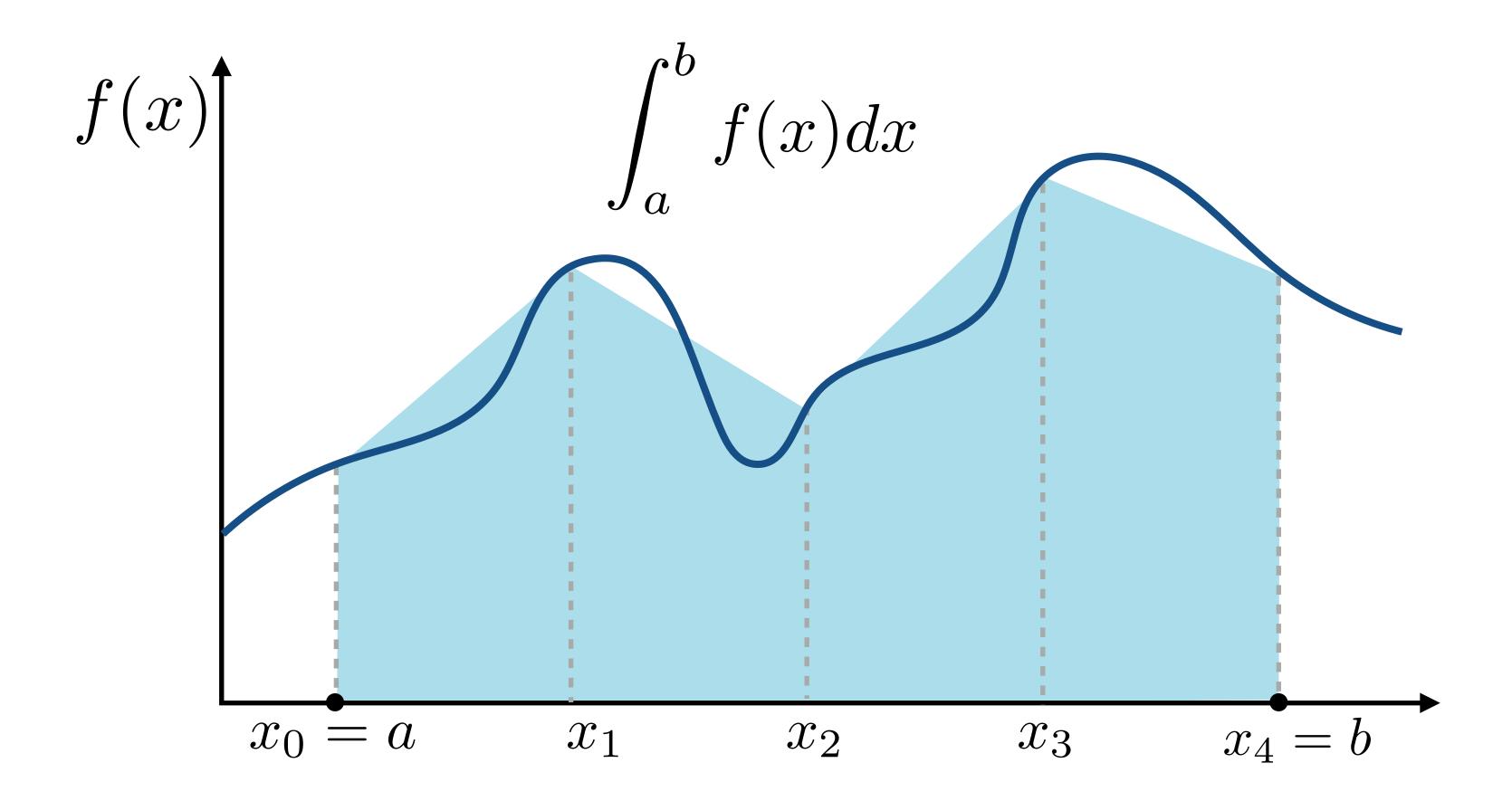
Lecture 12:

Monte Carlo Integration

Computer Graphics and Imaging UC Berkeley CS184/284A

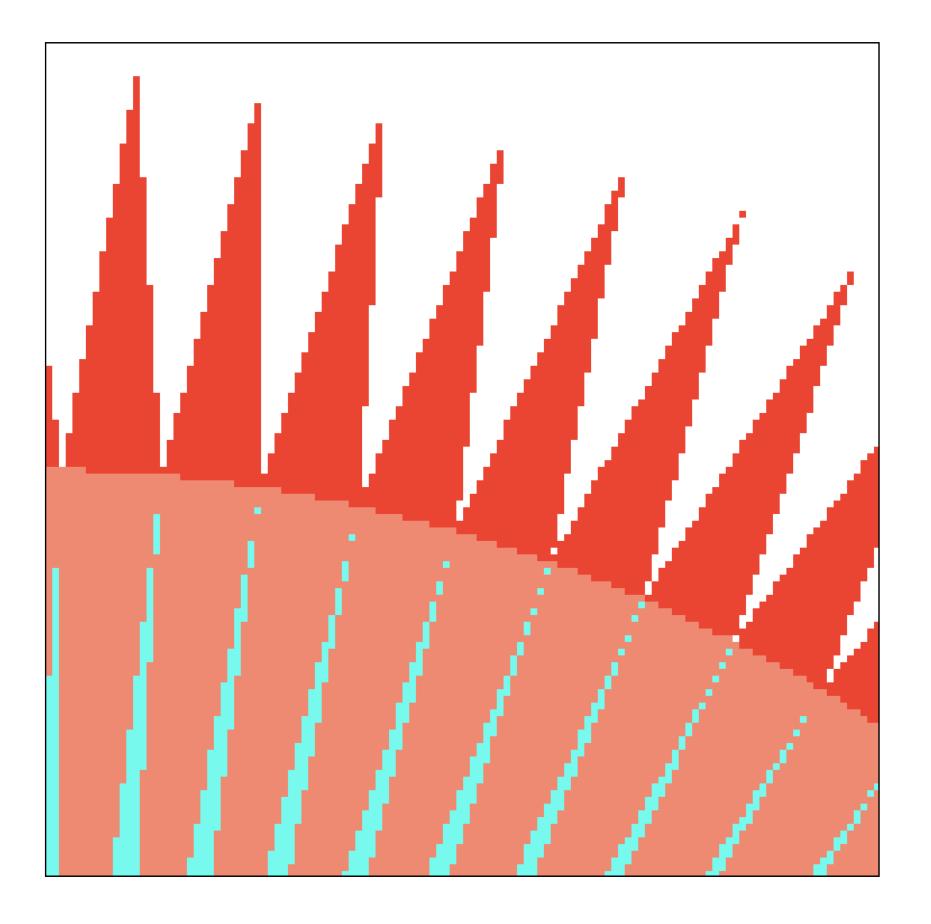
Reminder: Quadrature-Based Numerical Integration



E.g. trapezoidal rule - estimate integral assuming function is piecewise linear

Multi-Dimensional Integrals (Rendering Examples)

2D Integral: Recall Antialiasing By Area Sampling



Point sampling

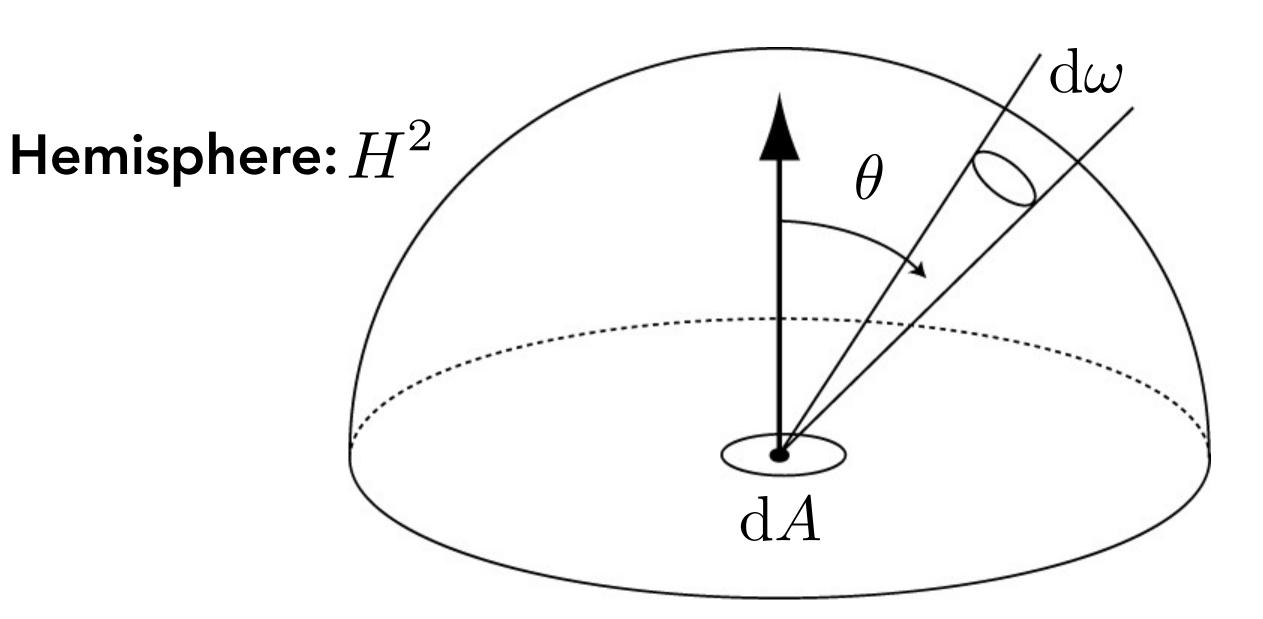
Area sampling

Integrate over 2D area of pixel

2D Integral: Irradiance from the Environment

Computing flux per unit area on surface, due to incoming light from all directions.

Light meter



3D Integral: Motion Blur

Integrate over area of pixel and over exposure time.

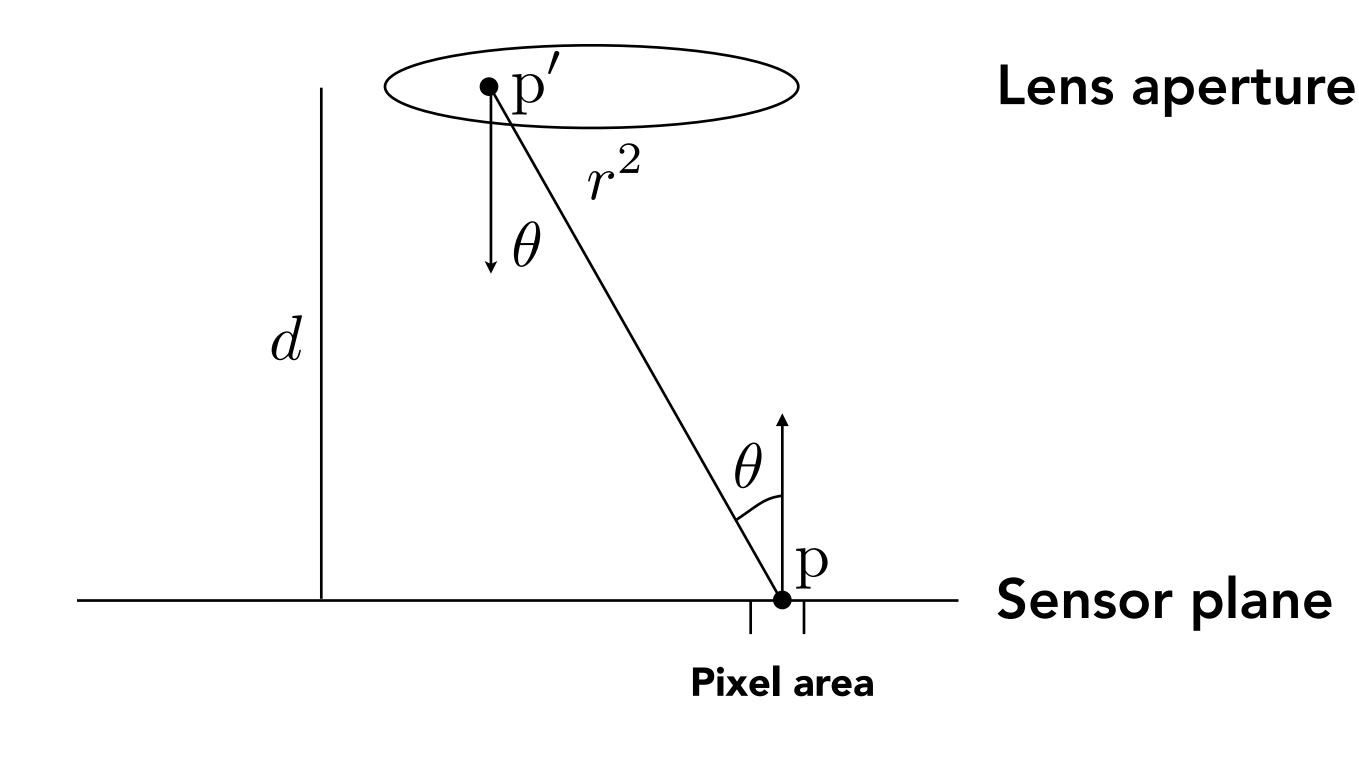
Cook et al. "1984"

5D Integral: Real Camera Pixel Exposure

Integrate over 2D lens pupil, 2D pixel, and over exposure time

CS184/284A O'Brien & Ng

5D Integral: Real Camera Pixel Exposure



$$Q_{\text{pixel}} = \frac{1}{d^2} \int_{t_0}^{t^1} \int_{A_{\text{lens}}} \int_{A_{\text{pixel}}} L(\mathbf{p}' \to \mathbf{p}, t) \cos^4 \theta \, dp \, dp' \, dt$$

The Curse of Dimensionality

High-Dimensional Integration

Complete set of samples: $N = \underbrace{n \times n \times \cdots \times n} = n^d$

"Curse of dimensionality"

Numerical integration error: Error $\sim \frac{1}{n} = \frac{1}{N^{1/d}}$

Error
$$\sim \frac{1}{n} = \frac{1}{N^{1/d}}$$

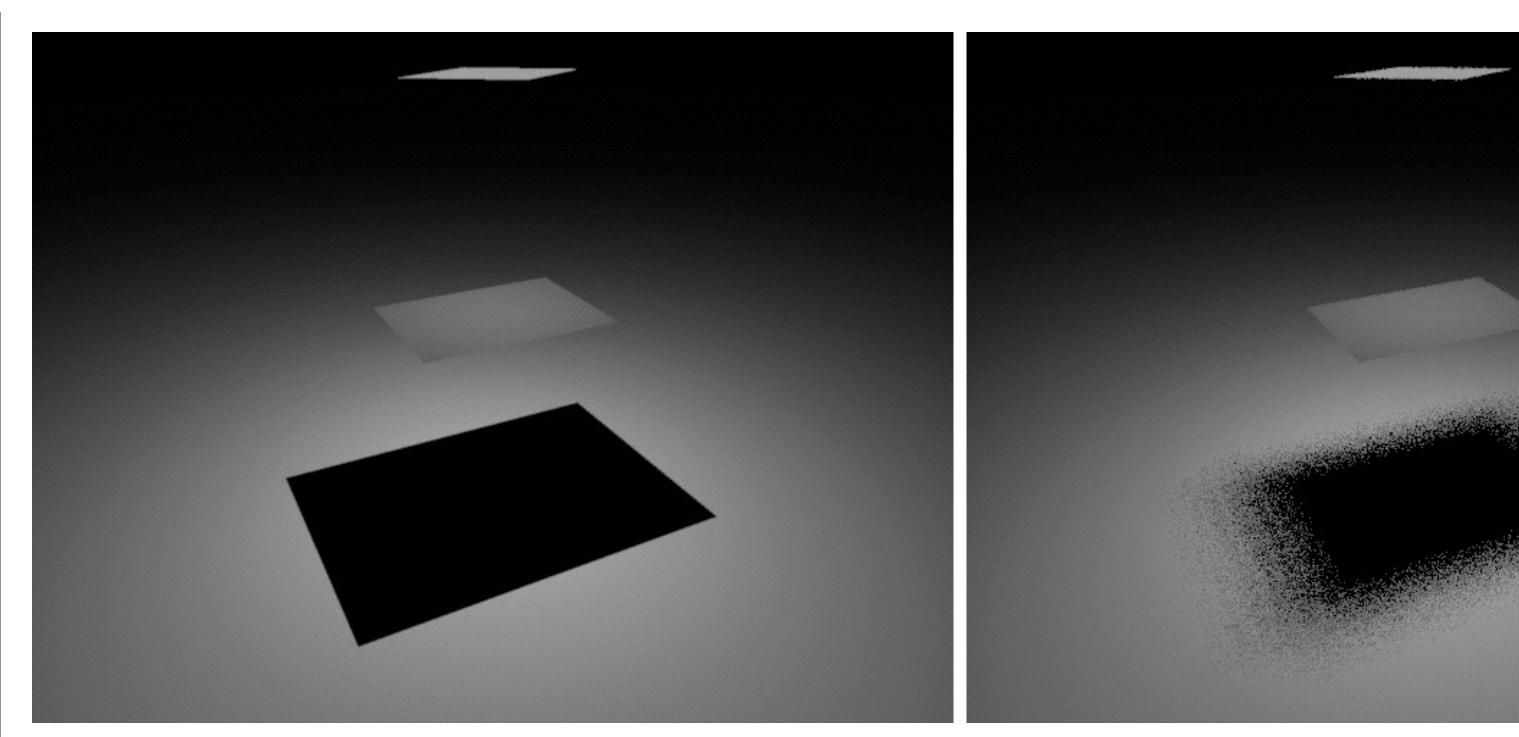
Random sampling error:

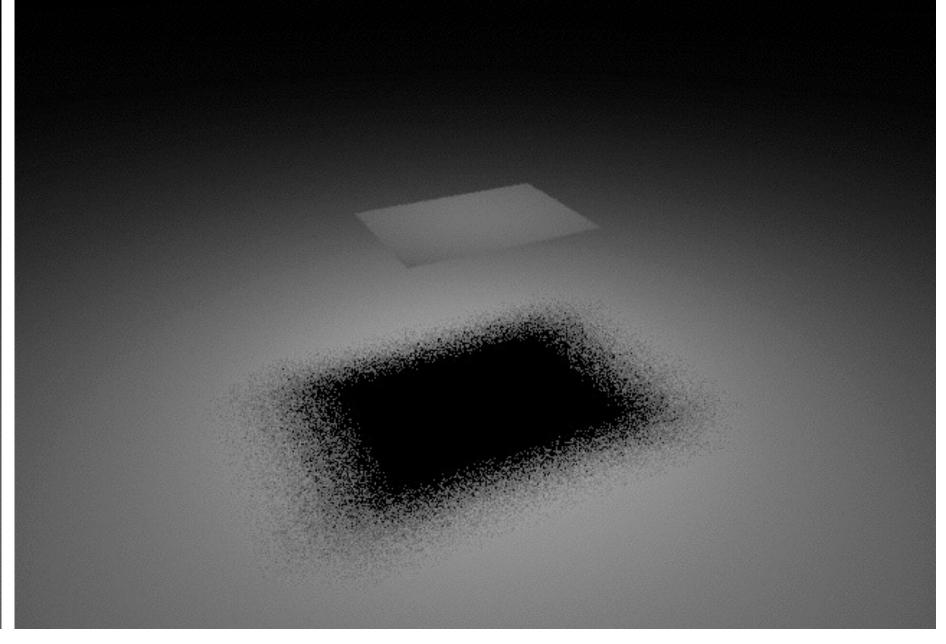
Error = Variance^{1/2}
$$\sim \frac{1}{\sqrt{N}}$$

In high dimensions, Monte Carlo integration requires fewer samples than quadrature-based numerical integration

Global illumination = infinite-dimensional integrals

Example: Discrete vs Monte Carlo - Shadows

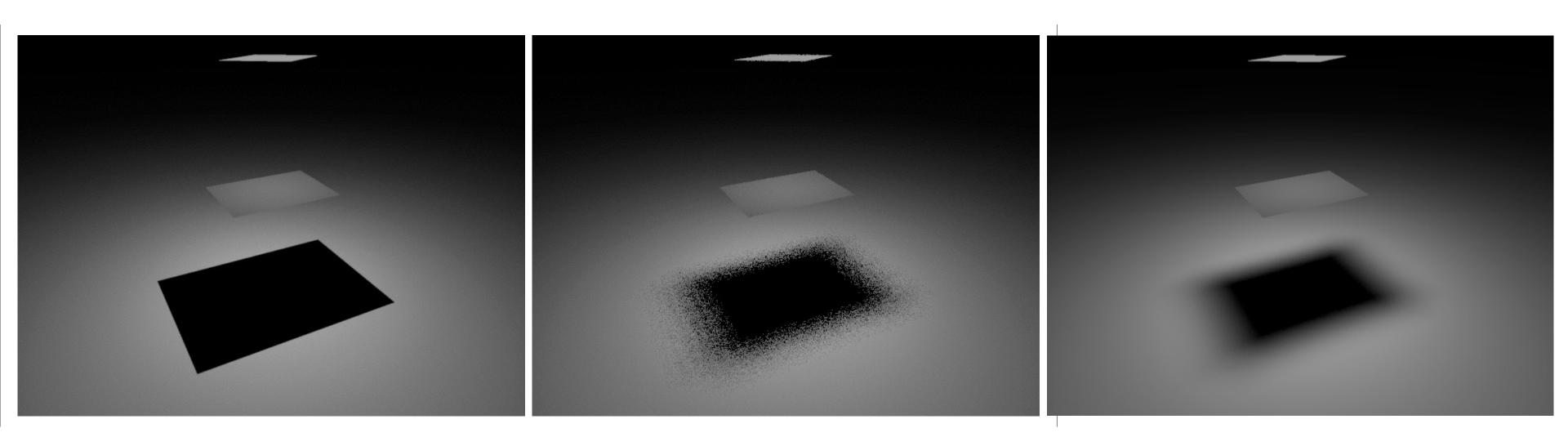




1 sample per pixel

1 sample per pixel Sample center of light Sample random point on light

Example: Discrete vs Monte Carlo - Shadows



Sample center of light

Sample random point on light

True answer

Overview: Monte Carlo Integration

Idea: estimate integral based on random sampling of function Advantages:

- General and relatively simple method
- Requires only function evaluation at any point
- Works for very general functions, including discontinuities
- Efficient for high-dimensional integrals avoids "curse of dimensionality"

Disadvantages:

- Noise. Integral estimate is random, only correct "on average"
- Can be slow to converge need a lot of samples

Probability Review

Random Variables

 ${\cal X}$ random variable. Represents a distribution of potential values

 $X \sim p(x)$ probability density function (PDF). Describes relative probability of a random process choosing value \boldsymbol{x}

Example: uniform PDF: all values over a domain are equally likely

e.g. A six-sided die

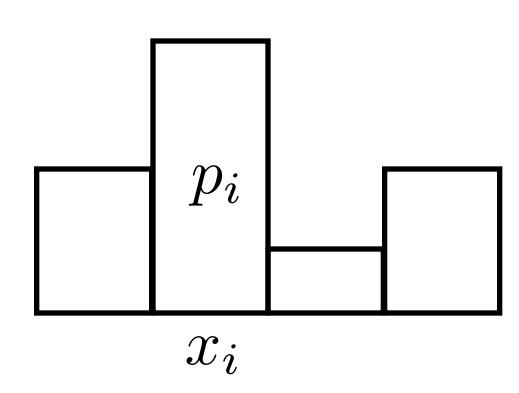
X takes on values 1, 2, 3, 4, 5, 6

$$p(1) = p(2) = p(3) = p(4) = p(5) = p(6)$$

Probability Distribution Function (PDF)

n discrete values x_i

With probability p_i



Requirements of a probability distribution:

$$p_i \geq 0$$

$$\sum_{i=1}^{n} p_i = 1$$

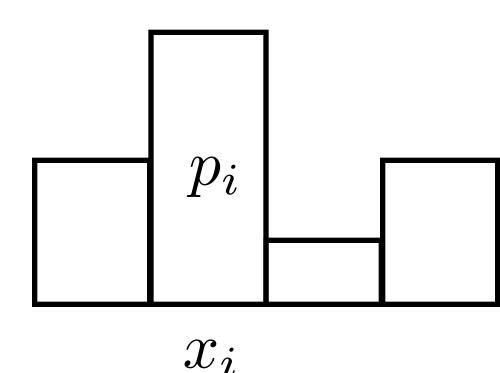
Six-sided die example:
$$p_i = \frac{1}{6}$$

Think: p_i is the probability that a random measurement of X will yield the value x_i X takes on the value x_i with probability p_i

Expected Value of a Random Variable

The average value that one obtains if repeatedly drawing samples from the random distribution.

X drawn from distribution with n discrete values x_i with probabilities p_i



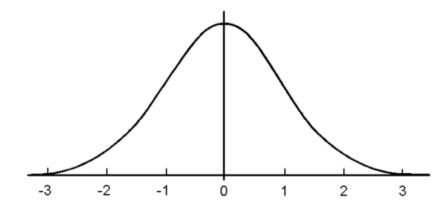
Expected value of X:
$$E[X] = \sum_{i=1}^{n} x_i p_i$$

Die example:
$$E[X] = \sum_{i=1}^{n} \frac{i}{6}$$

$$= (1+2+3+4+5+6)/6 = 3.5$$

Continuous Probability Distribution Function

$$X \sim p(x)$$



A random variable X that can take any of a continuous set of values, where the relative probability of a particular value is given by a continuous probability density function p(x).

Conditions on p(x): $p(x) \ge 0$ and $\int p(x) \, dx = 1$ Expected value of X: $E[X] = \int x \, p(x) \, dx$

Function of a Random Variable

A function Y of a random variable X is also a random variable:

$$X \sim p(x)$$
$$Y = f(X)$$

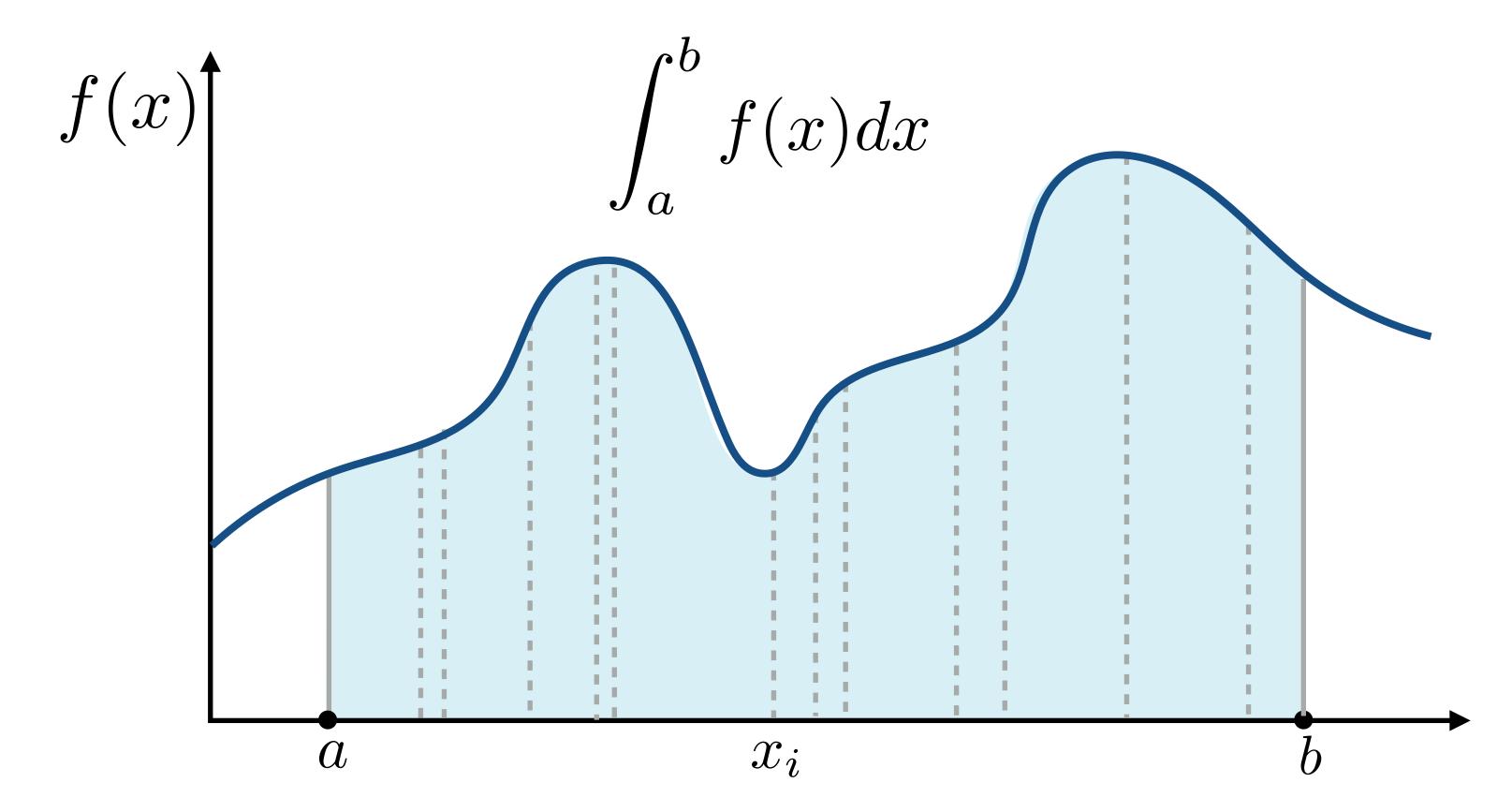
Expected value of a function of a random variable:

$$E[Y] = E[f(X)] = \int f(x) p(x) dx$$

Monte Carlo Integration

Monte Carlo Integration

Simple idea: estimate the integral of a function by averaging random samples of the function's value.



CS184/284A

Monte Carlo Integration

Let us define the Monte Carlo estimator for the definite integral of given function $f(\boldsymbol{x})$

Definite integral

$$\int_{a}^{b} f(x)dx$$

Random variable

$$X_i \sim p(x)$$

Note: p(x) must be nonzero for all x where f(x) is nonzero

Monte Carlo estimator

$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}$$

Example: Basic Monte Carlo Estimator

The basic Monte Carlo estimator is a simple special case where we sample with a uniform random variable

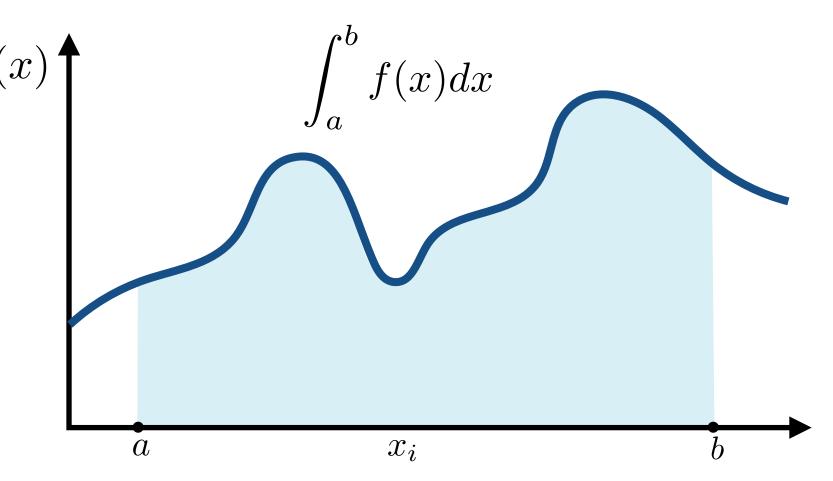
Uniform random variable

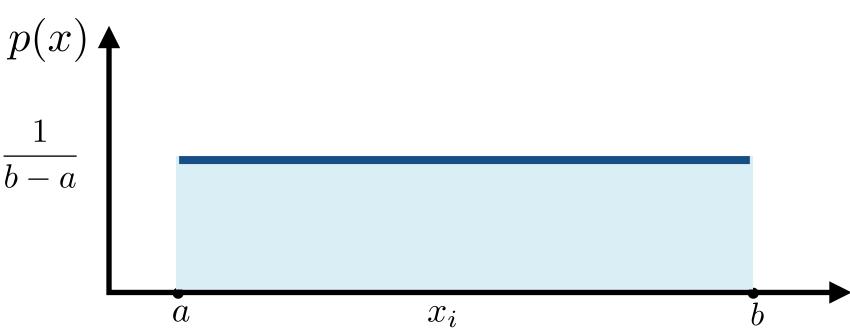
$$X_i \sim p(x) = C$$
 (constant)

$$\int_{a}^{b} p(x) \, dx = 1$$

$$\implies \int_{a}^{b} C \, dx = 1$$

$$\implies C = \frac{1}{b - a}$$





Example: Basic Monte Carlo Estimator

The basic Monte Carlo estimator is a simple special case where we sample with a uniform random variable

Basic Monte Carlo estimator (derivation)

$$F_N = rac{1}{N} \sum_{i=1}^N rac{f(X_i)}{p(X_i)}$$
 (MC Estimator)
$$= rac{1}{N} \sum_{i=1}^N rac{f(X_i)}{1/(b-a)}$$

$$= rac{b-a}{N} \sum_{i=1}^N f(X_i)$$

Example: Basic Monte Carlo Estimator

Let us define the Monte Carlo estimator for the definite integral of given function f(x)

Definite integral

$$\int_{a}^{b} f(x)dx$$

Uniform random variable

$$X_i \sim p(x) = \frac{1}{b - a}$$

Basic Monte Carlo estimator $F_N = \frac{b-a}{N} \sum_{i=1}^N f(X_i)$

$$F_N = \frac{b-a}{N} \sum_{i=1}^{N} f(X_i)$$

Unbiased Estimator

Definition: A randomized integral estimator is unbiased if its expected value is the desired integral.

Fact: the general and basic Monte Carlo estimators are unbiased (proof on next slide)

Why do we want unbiased estimators?

Proof That Monte Carlo Estimator Is Unbiased

$$E[F_N] = E\left[\frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}\right]$$

$$= \frac{1}{N} \sum_{i=1}^{N} E\left[\frac{f(X_i)}{p(X_i)}\right]$$

$$= \frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} \frac{f(x)}{p(x)} p(x) dx$$

$$= \frac{1}{N} \sum_{i=1}^{N} \int_{a}^{b} f(x) dx$$

$$= \int_{a}^{b} f(x) dx$$

Properties of expected values: $E\left[\sum_{i} Y_{i}\right] = \sum_{i} E[Y_{i}]$ E[aY] = aE[Y]

$$E[aY] = aE[Y]$$

The expected value of the Monte Carlo estimator is the desired integral.

Variance of a Random Variable

Definition

$$V[Y] = E[(Y - E[Y])^{2}]$$
$$= E[Y^{2}] - E[Y]^{2}$$

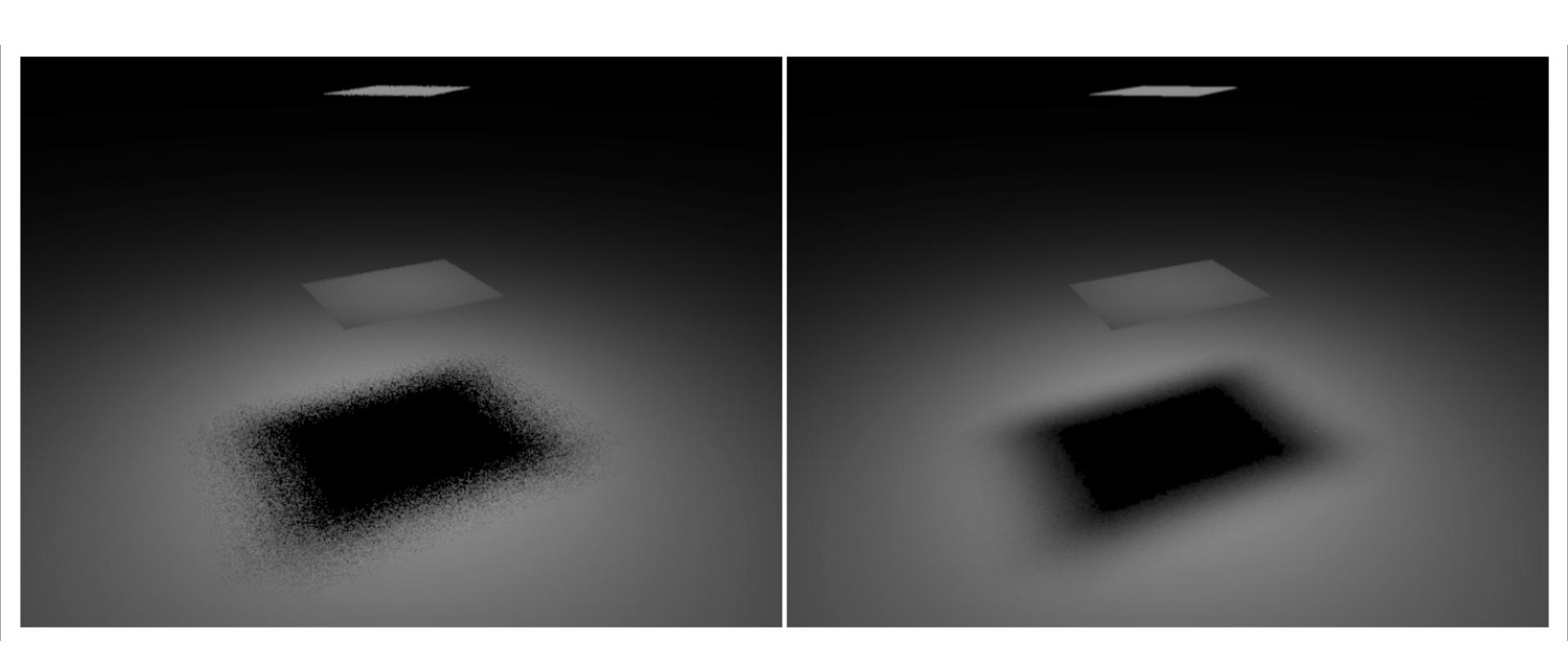
Variance decreases linearly with number of samples

$$V\left[\frac{1}{N}\sum_{i=1}^{N}Y_{i}\right] = \frac{1}{N^{2}}\sum_{i=1}^{N}V[Y_{i}] = \frac{1}{N^{2}}NV[Y] = \frac{1}{N}V[Y]$$

Properties of variance

$$V\left[\sum_{i=1}^{N} Y_i\right] = \sum_{i=1}^{N} V[Y_i] \qquad V[aY] = a^2 V[Y]$$

More Random Samples Reduces Variance



1 shadow ray

16 shadow rays

Definite Integral Can Be N-Dimensional

Example in 3D:

$$\int_{x_0}^{x_1} \int_{y_0}^{y_1} \int_{z_0}^{z_1} f(x, y, z) \, dx \, dy \, dz$$

Uniform 3D random variable*

$$X_i \sim p(x, y, z) = \frac{1}{x_1 - x_0} \frac{1}{y_1 - y_0} \frac{1}{z_1 - z_0}$$

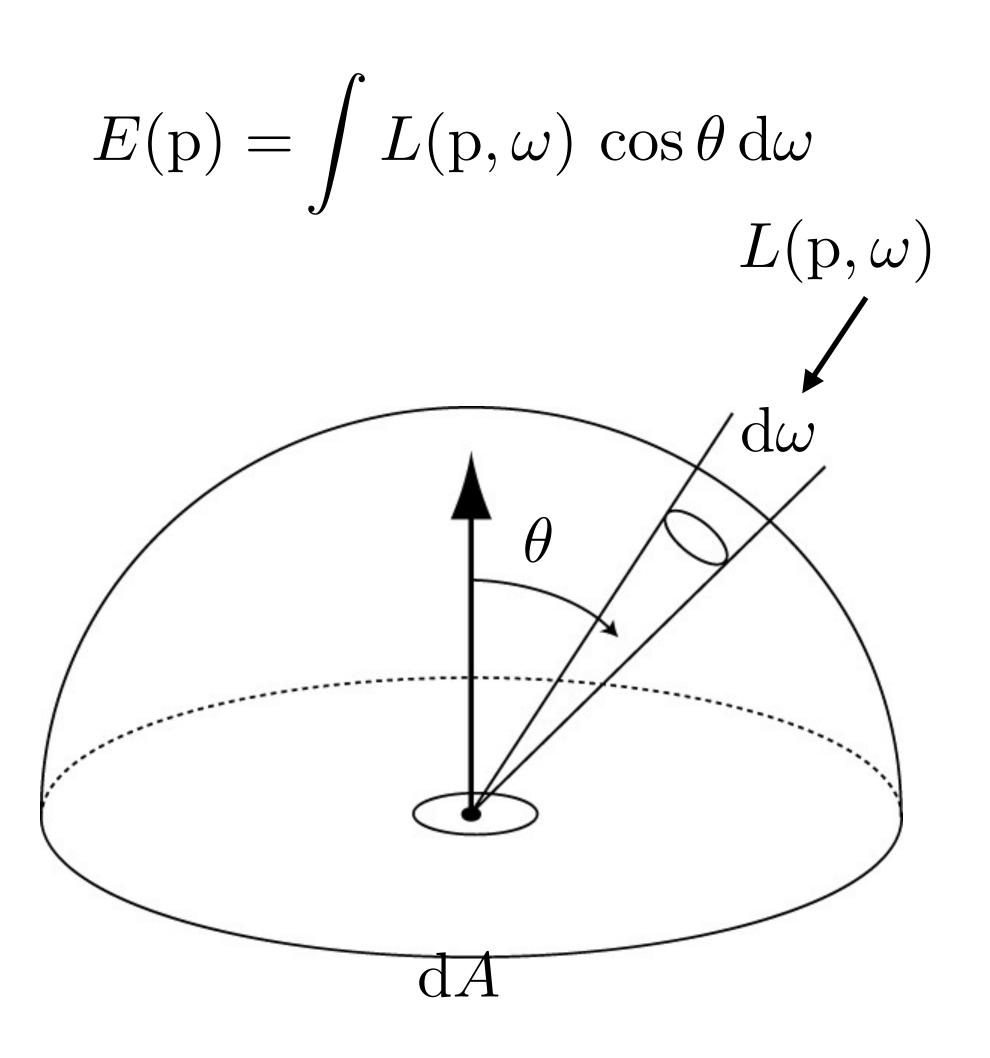
Basic 3D MC estimator*

$$F_N = \frac{(x_1 - x_0)(y_1 - y_0)(z_1 - z_0)}{N} \sum_{i=1}^{N} f(X_i)$$

* Generalizes to arbitrary N-dimensional PDFs

Example: Monte Carlo Estimate Of Direct Lighting Integral

Direct Lighting (Irradiance) Estimate



Idea: sample directions over hemisphere uniformly in solid angle

Estimator:

$$X_i \sim p(\omega)$$
 $p(\omega) = \frac{1}{2\pi}$
 $Y_i = f(X_i)$
 $Y_i = L(p, \omega_i) \cos \theta_i$
 $F_N = \frac{2\pi}{N} \sum_{i=1}^{N} Y_i$

Direct Lighting (Irradiance) Estimate

Sample directions over hemisphere uniformly in solid angle

$$E(\mathbf{p}) = \int L(\mathbf{p}, \omega) \cos \theta \, d\omega$$

Given surface point p

Initialize Monte Carlo estimator $F_N\,$ to 0

For each of N samples:

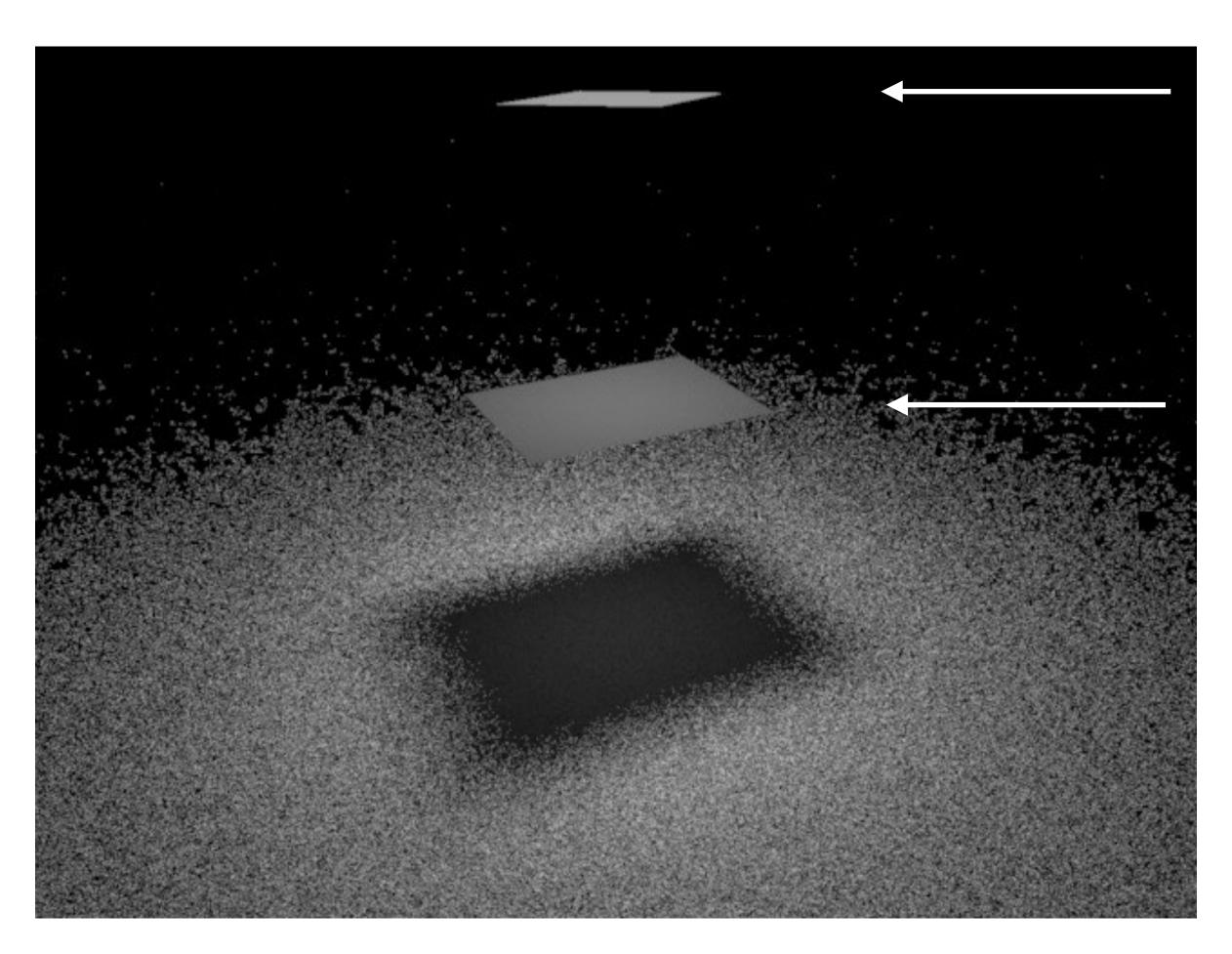
A ray tracer evaluates radiance along a ray

Generate random direction: ω_i

Compute incoming radiance $L_i^{\prime\prime}$ arriving at p from direction ω_i

Increment the Monte Carlo estimator: $F_N := F_N + \frac{2\pi}{N} L_i \cos heta_i$

Direct Lighting - Solid Angle Sampling



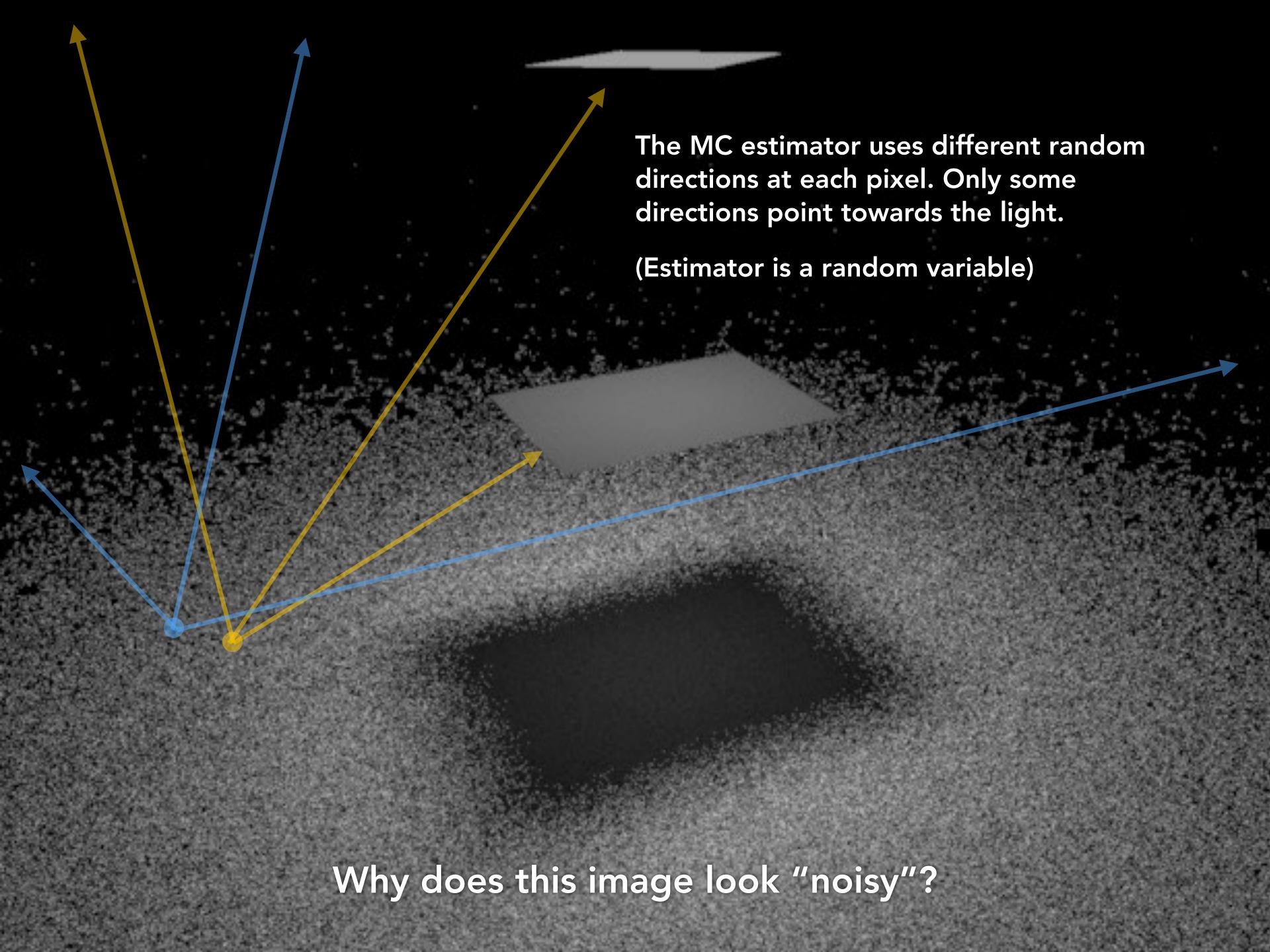
Light

Blocker

Trace 100 rays per pixel

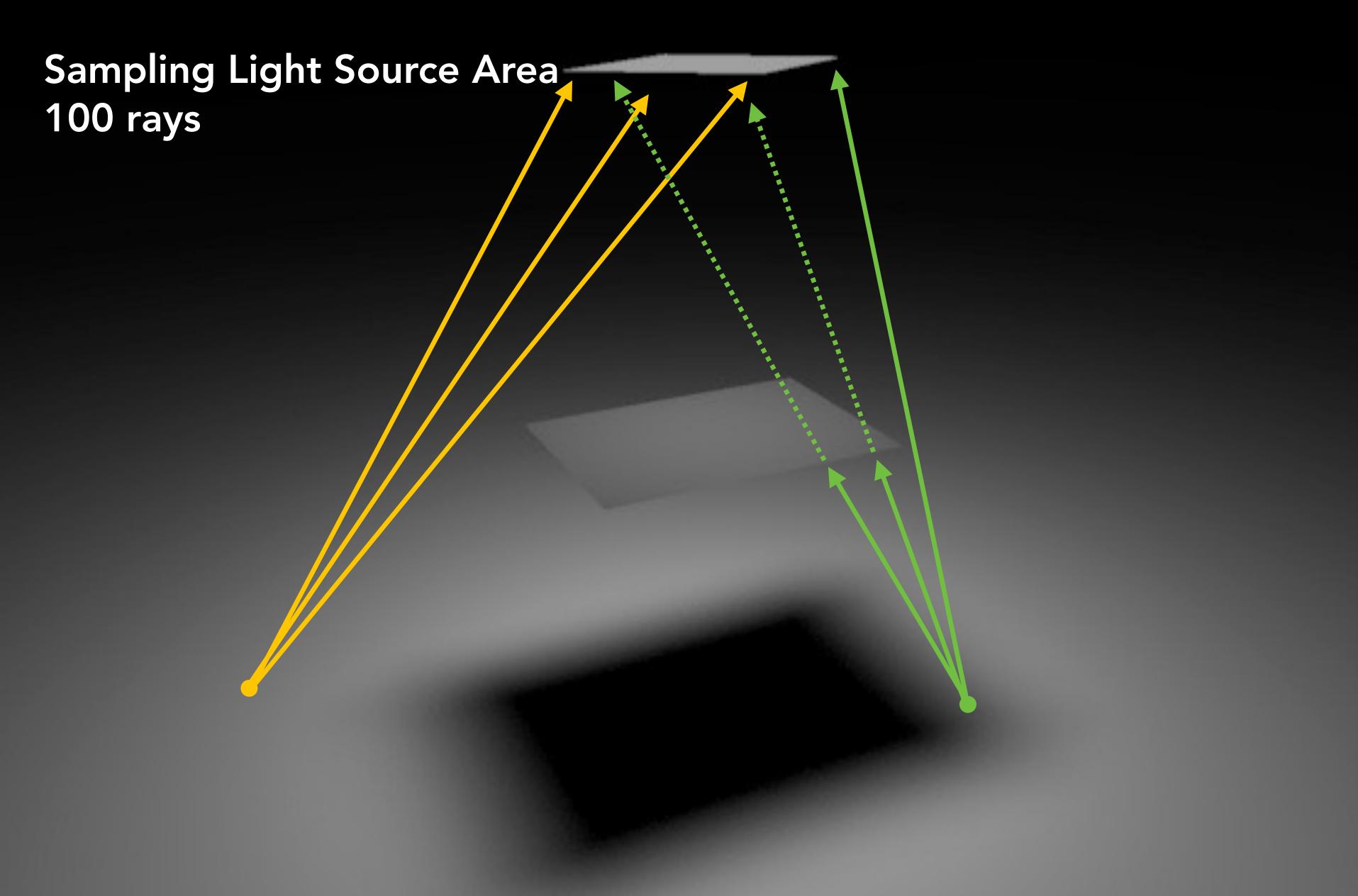
Hemispherical Solid Angle Sampling 100 rays

(random directions drawn uniformly from hemisphere)



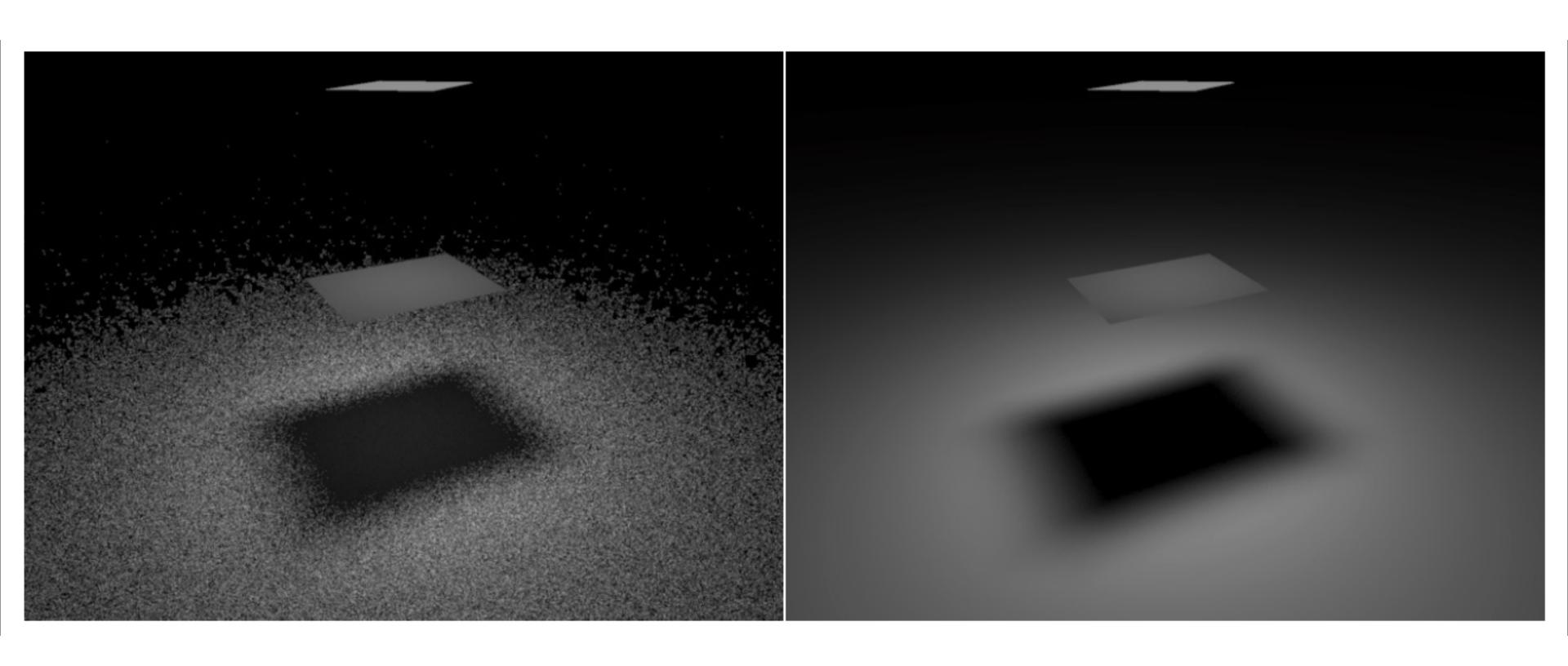
Observation: incoming radiance is zero for most directions in this scene

Idea: integrate only over the area of the light (directions where incoming radiance could be non-zero)



If no occlusion is present, all directions chosen in computing estimate "hit" the light source. (Choice of direction only matters if portion of light is occluded from surface point p.)

Solid Angle Sampling vs Light Area Sampling



Sampling solid angle

100 random directions on hemisphere

Sampling light source area

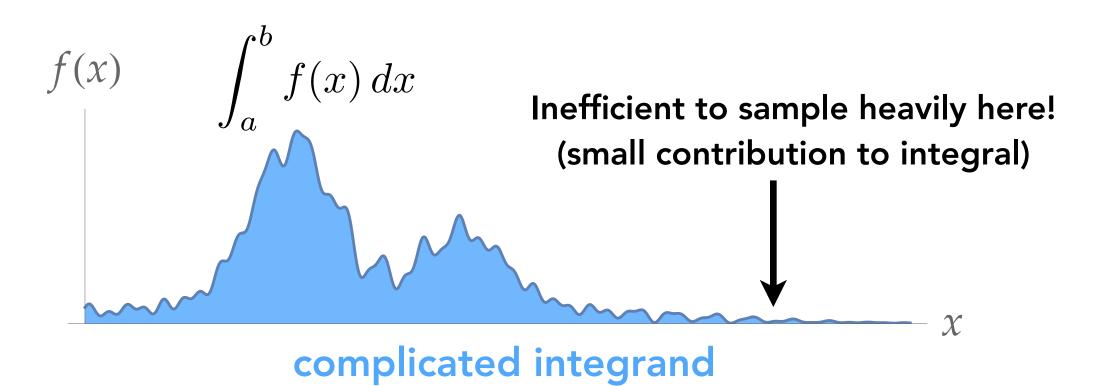
100 random points on area of light source

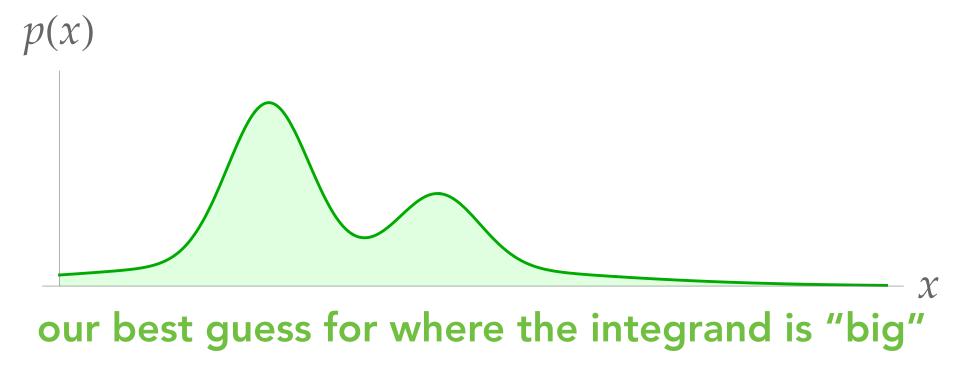
CS184/284A Here, only important to sample directions that could hit the light Brien & Ng

Importance Sampling

Importance Sampling

Simple idea: sample the integrand according to how much we expect it to contribute to the integral.





Note: p(x) must be non-zero where f(x) is non-zero

Basic Monte Carlo:

$$\frac{b-a}{N} \sum_{i=1}^{N} f(X_i)$$

(x_i are sampled uniformly)

Importance-Sampled Monte Carlo:

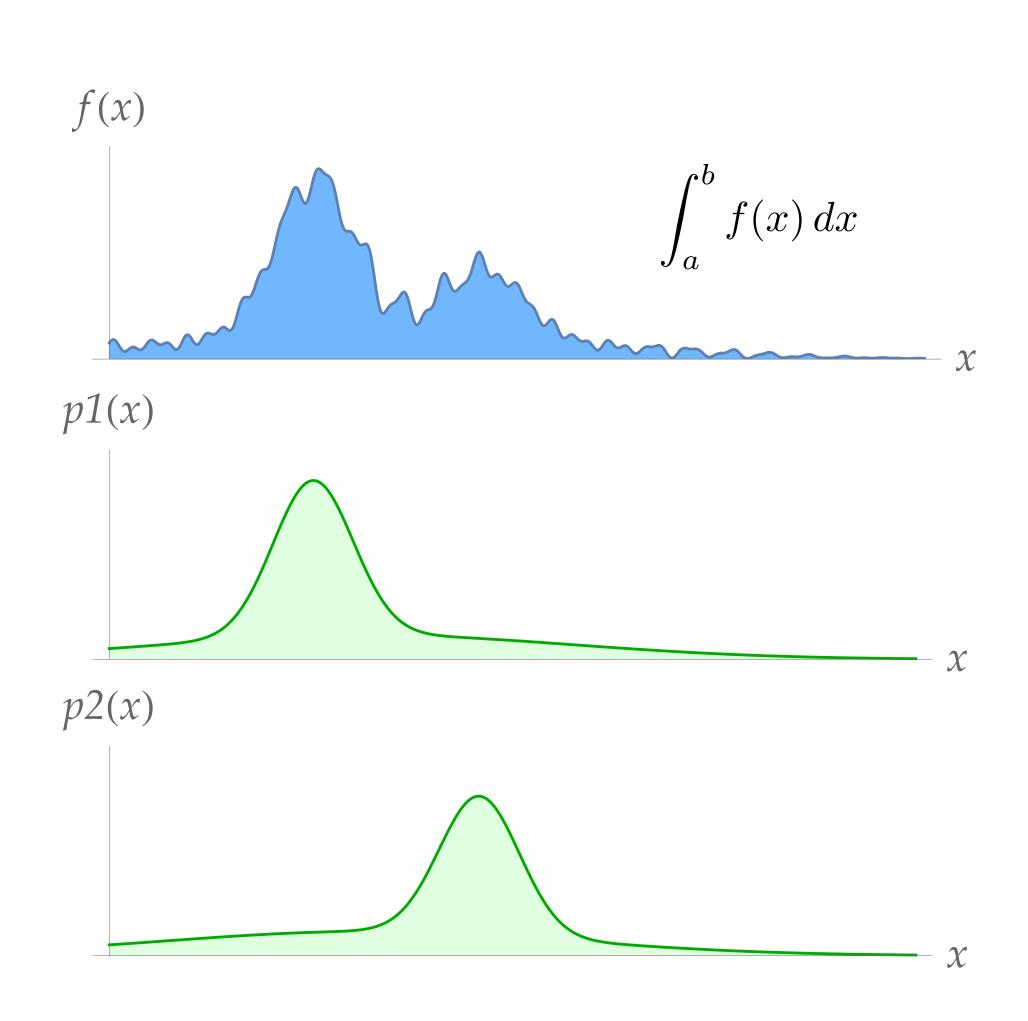
$$\frac{1}{n} \sum_{i=1}^{n} \frac{f(x_i)}{p(x_i)}$$

 $(x_i \text{ are sampled proportional to } p)$

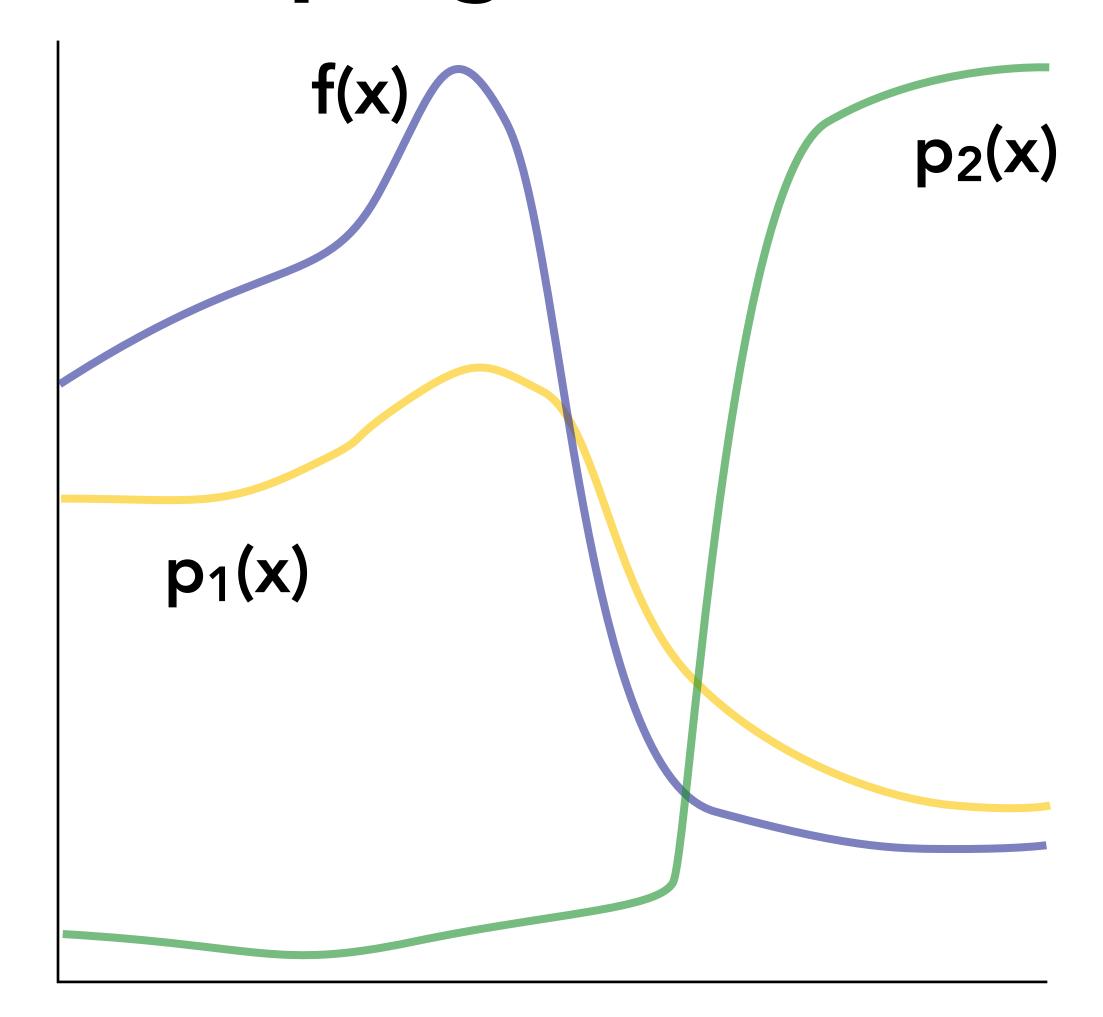
"If I sample x less frequently, each sample should count for more."

Many Importance Sampling Strategies

- Many possible importance sampling strategies (pdfs we could choose to sample from)
- A good fit to f(x) will decrease noise, but poor fit will increase noise!

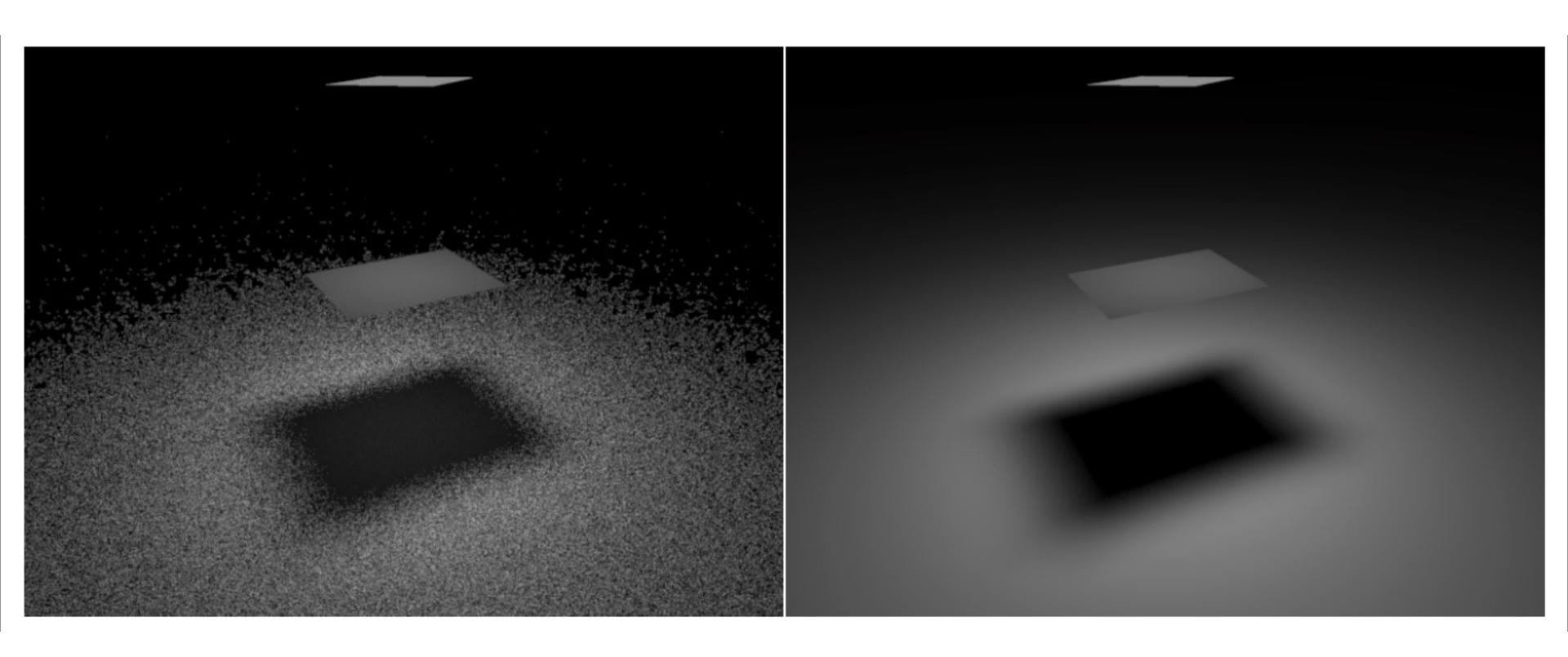


Effect of Sampling Distribution "Fit"



What is the behavior of $f(x)/p_1(x)$? $f(x)/p_2(x)$? How does this impact the variance of the estimator?

Solid Angle Sampling vs Light Area Sampling



Sampling solid angle

100 random directions on hemisphere

Sampling light source area

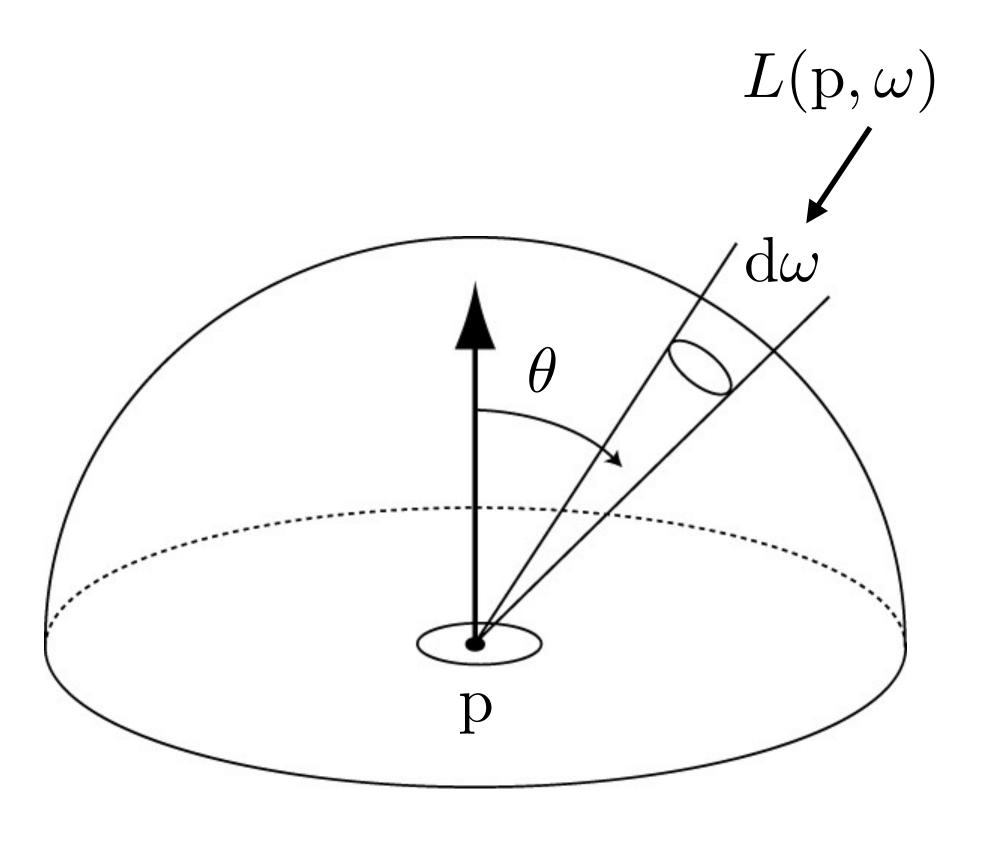
100 random points on area of light source

CS184/284A

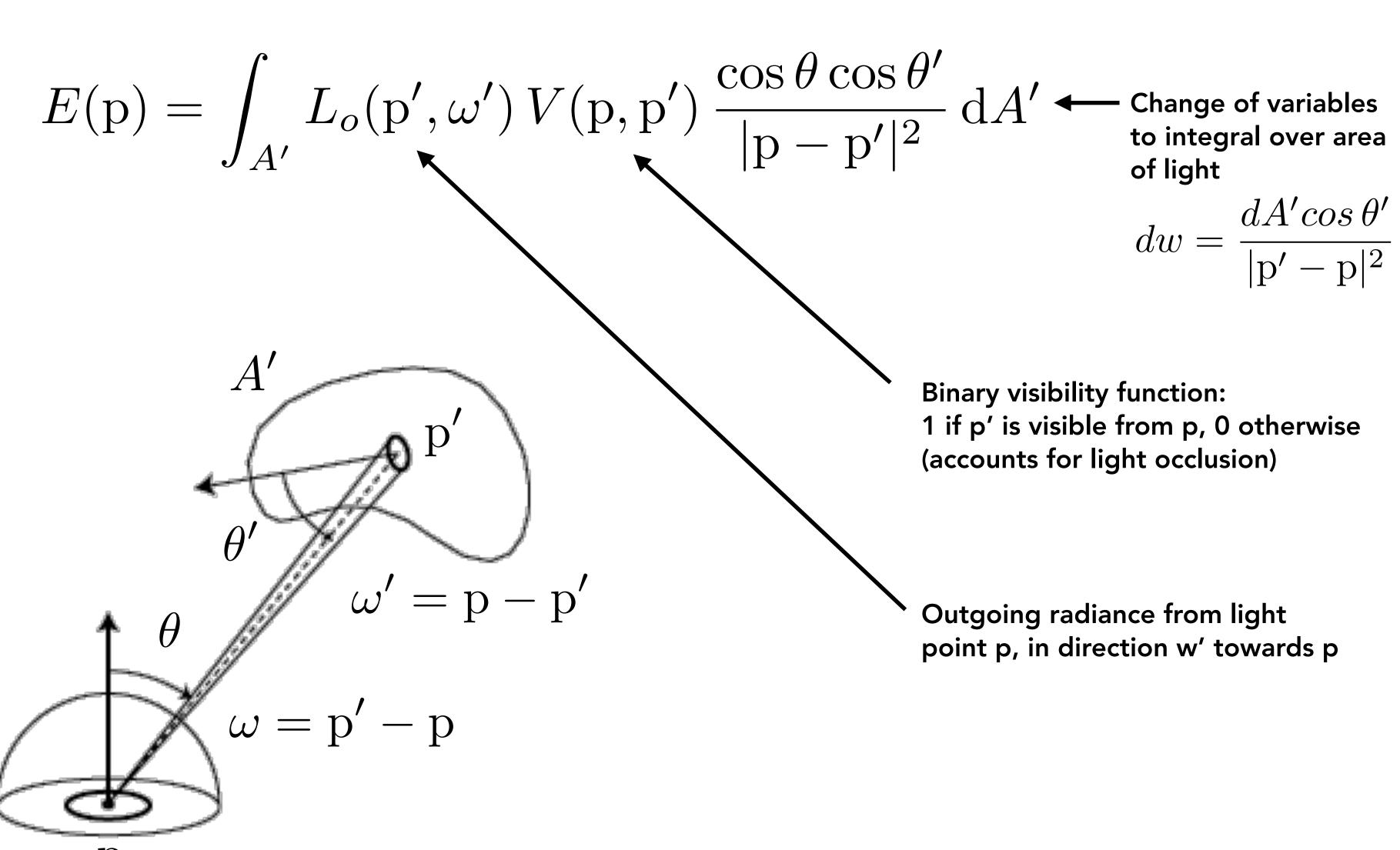
O'Brien & Ng

Changing Basis of Integration: Sampling Hemisphere

$$E(\mathbf{p}) = \int L(\mathbf{p}, \omega) \cos \theta \, d\omega$$



Changing Basis of Integration: Sampling Light Source Area



Monte Carlo Estimate by Sampling Light Source Area

$$E(\mathbf{p}) = \int_{A'} L_o(\mathbf{p'}, \omega') V(\mathbf{p}, \mathbf{p'}) \frac{\cos \theta \cos \theta'}{|\mathbf{p} - \mathbf{p'}|^2} dA'$$

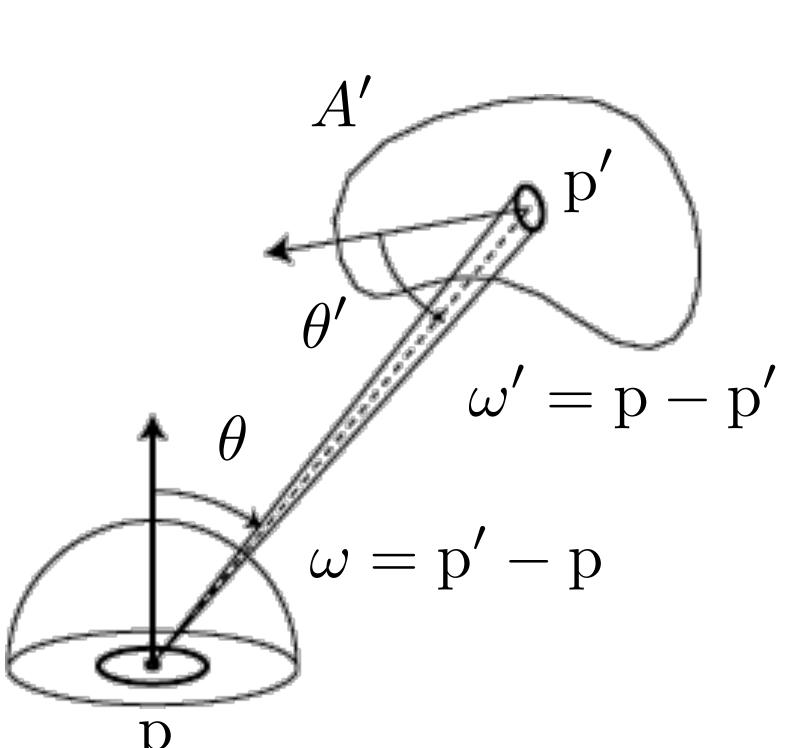
Randomly sample light source area A' (assume uniformly over area)

$$\int_{A'} p(\mathbf{p}') \, dA' = 1$$

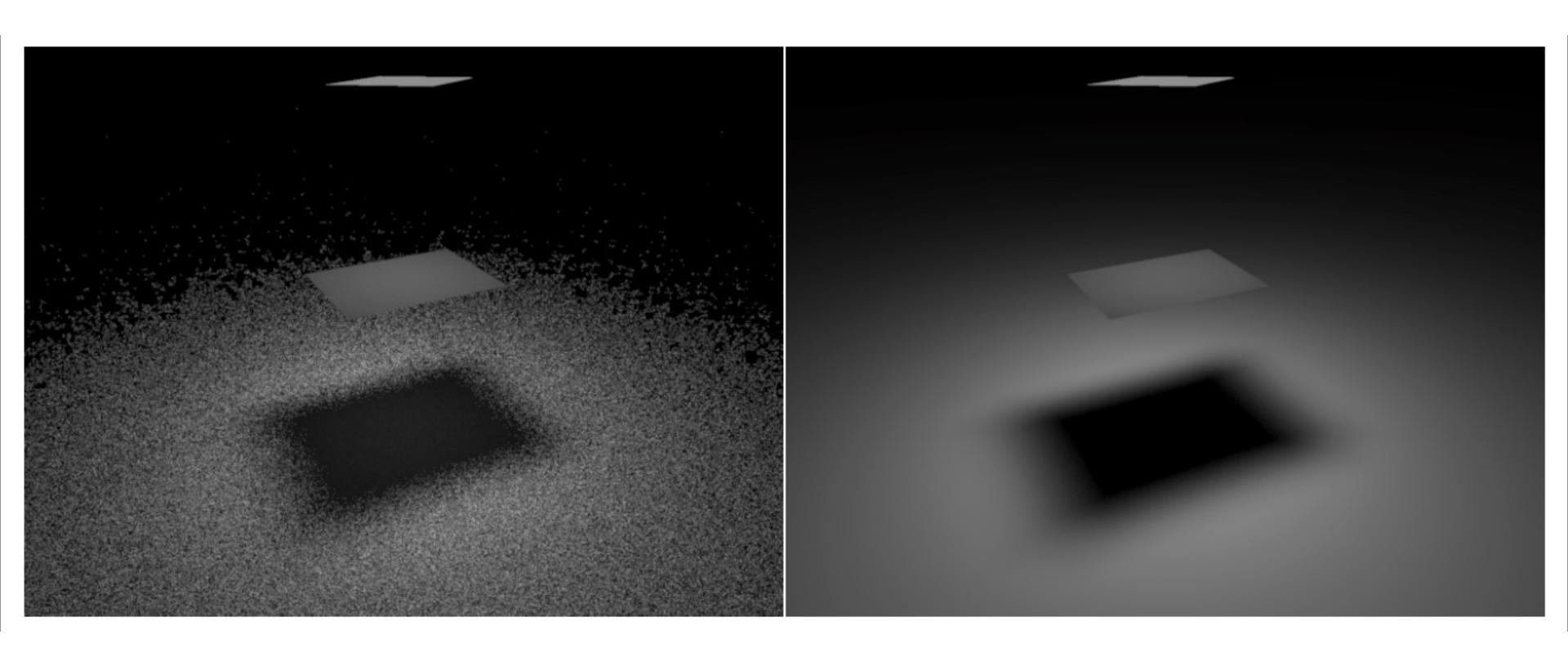
$$p(\mathbf{p}') = \frac{1}{A'}$$

$$F_N = \frac{A'}{N} \sum_{i=1}^N Y_i$$

$$Y_i = L_o(\mathbf{p}_i', \omega_i') V(\mathbf{p}, \mathbf{p}_i') \frac{\cos \theta_i \cos \theta_i'}{|\mathbf{p} - \mathbf{p}_i'|^2}$$



Solid Angle Sampling vs Light Area Sampling



Sampling solid angle

100 random directions on hemisphere

Sampling light source area

100 random points on area of light source

CS184/284A

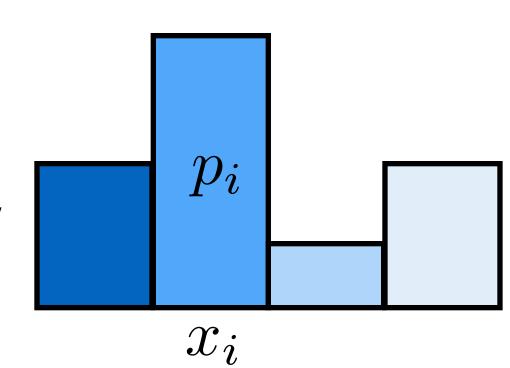
O'Brien & Ng

How to Draw Samples From a Desired Probability Distribution? One Approach: Inversion Method

Task: Draw A Random Value From a Given PDF

Task:

Given a PDF for a discrete random variable, probability p_i for each value x_i ,



Draw a random value X from this PDF.

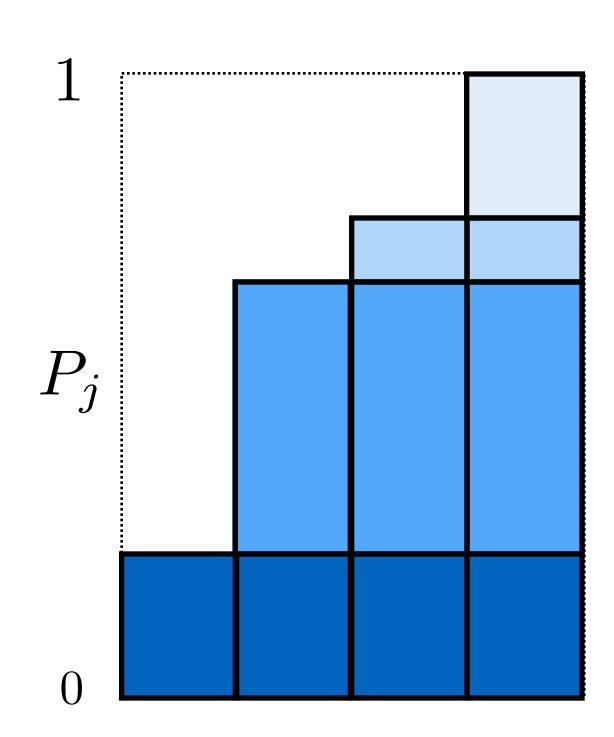
Step 1:

Calculate cumulative PDF: $P_j = \sum_{i=1}^{s} p_i$

Note: must have

$$0 \leq P_i \leq 1$$

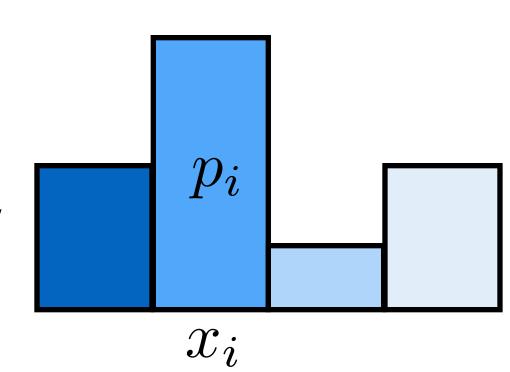
$$P_n = 1$$



Task: Draw A Random Value From a Given PDF

Task:

Given a PDF for a discrete random variable, probability p_i for each value x_i ,



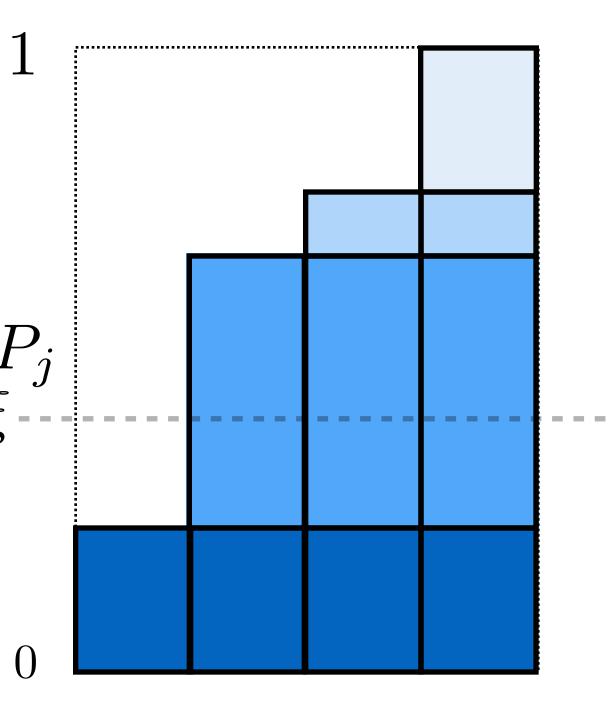
Draw a random value X from this PDF.

Step 2:

Given a uniform random variable $\xi \in [0,1)$

choose $X=x_i$ such that $P_{i-1}<\xi\leq P_i$

How to compute? Binary search.



Cumulative Density Function (CDF) - Continuous Case

PDF
$$p(x)$$

$$p(x) \ge 0$$

CDF
$$P(x)$$

$$P(x) = \int_0^x p(x) \, \mathrm{d}x$$

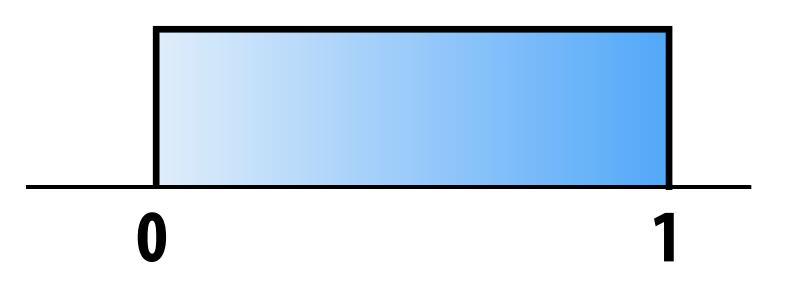
$$P(x) = \Pr(X < x)$$

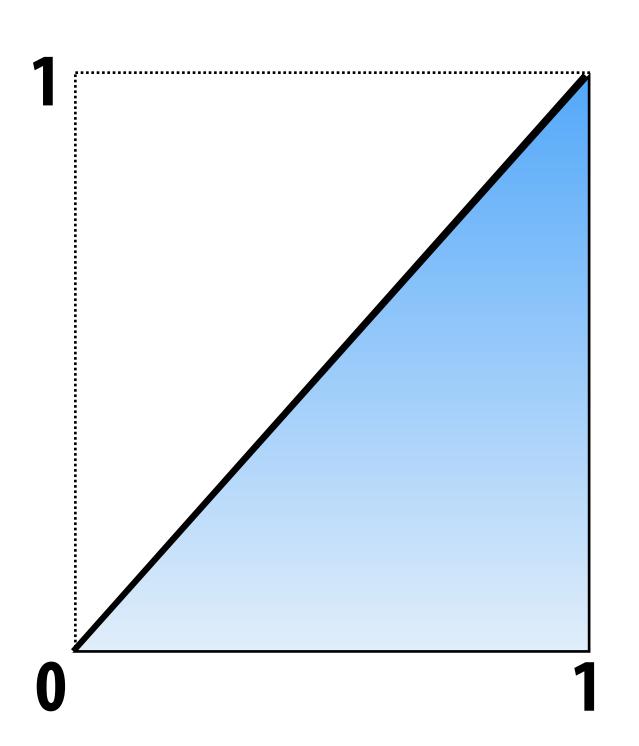
$$P(1) = 1$$

$$\Pr(a \le X \le b) = \int_a^b p(x) \, \mathrm{d}x$$

$$= P(b) - P(a)$$

Uniform distribution on unit interval





Sampling Continuous PDF Using Its CDF

Called the "inversion method"

Cumulative probability distribution function

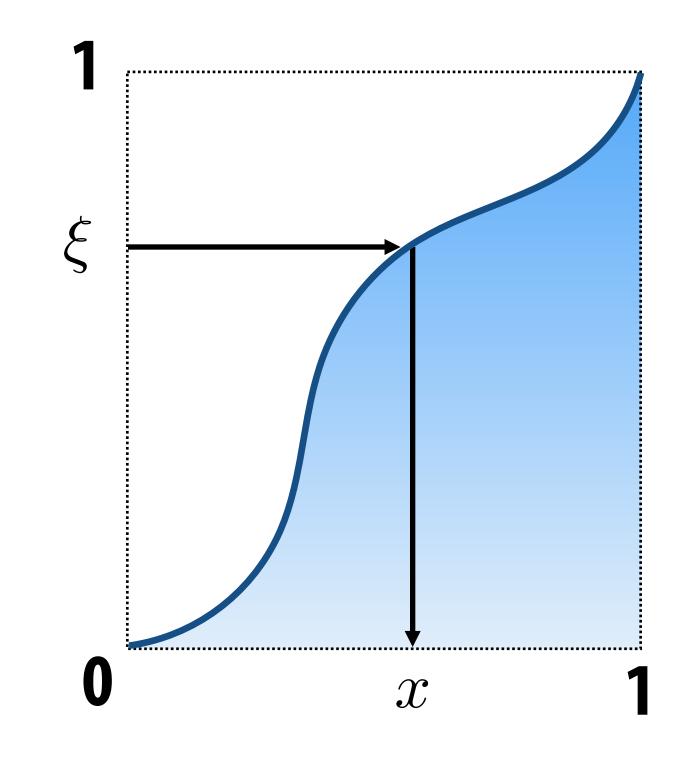
$$P(x) = \Pr(X < x)$$

Construction of samples:

Solve for
$$x = P^{-1}(\xi)$$

Must know the formula for:

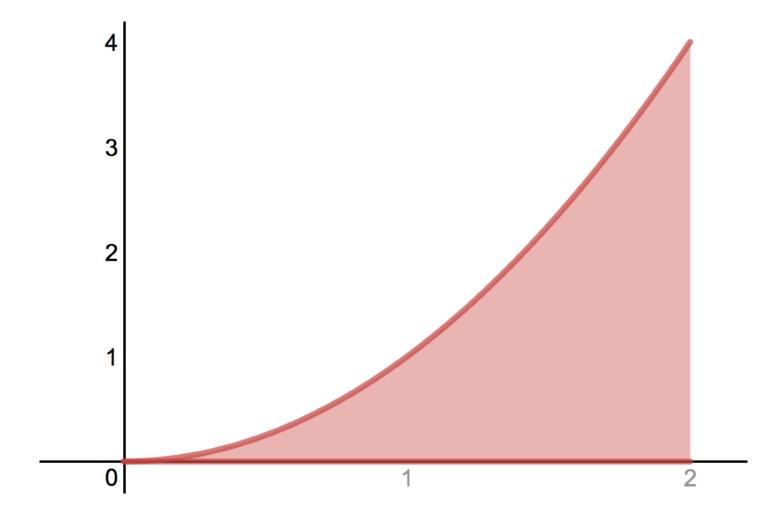
- 1. The integral of p(x) CDF
- 2. The inverse function $P^{-1}(x)$



Given:

$$f(x) = x^2 \quad x \in [0, 2]$$

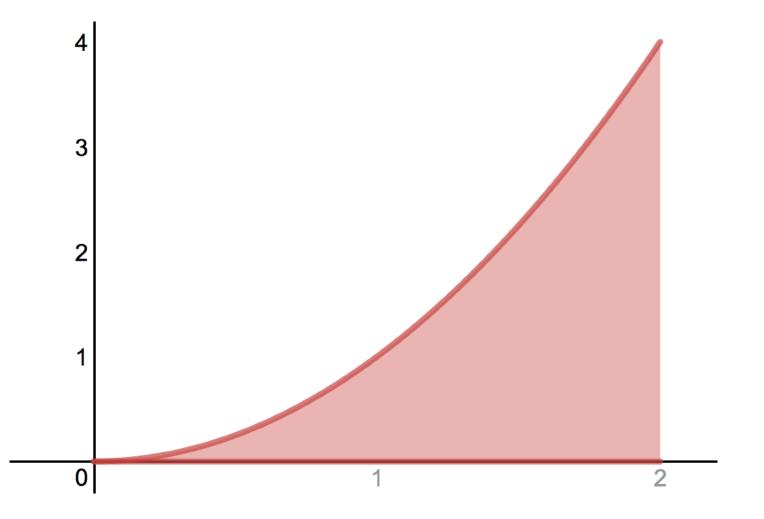
Want to sample according to this graph:



Given:

$$f(x) = x^2 \quad x \in [0, 2]$$

Want to sample according to this graph:



Step 0: compute PDF by normalizing

$$p(x) = c f(x) = c x^2$$

Also
$$1 = \int_0^2 p(x) dx = \int_0^2 c x^2 dx = \left. \frac{cx^3}{3} \right|_0^2 = \frac{8c}{3}$$

$$\Longrightarrow c = \frac{3}{8}$$

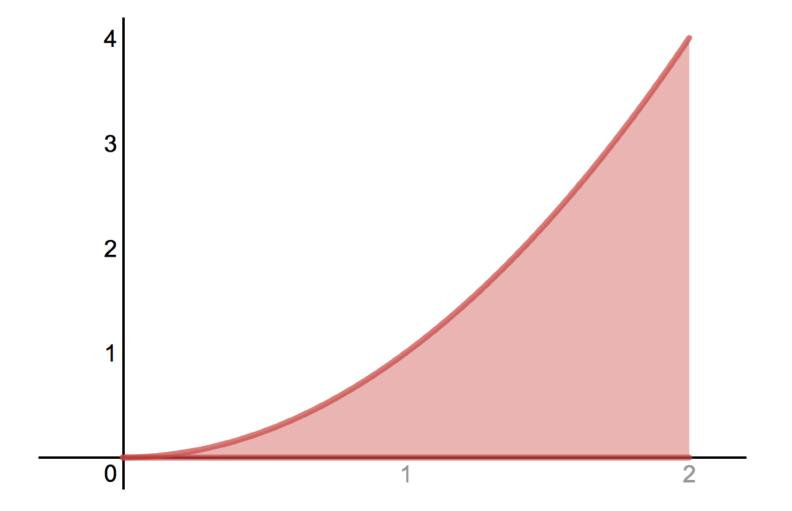
$$\implies p(x) = \frac{3x^2}{8}$$

Given:

$$f(x) = x^2 \quad x \in [0, 2]$$

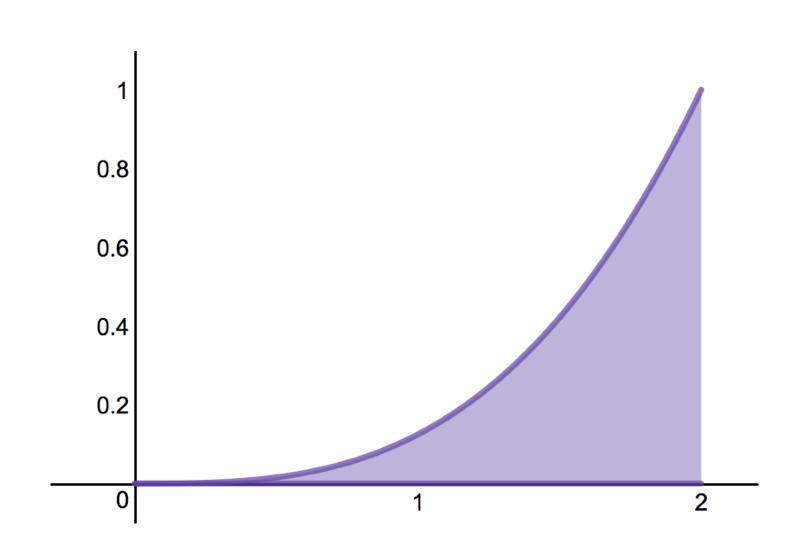
$$\Rightarrow p(x) = \frac{3x^2}{8}$$

Want to sample according to this



Step 1: Compute CDF:

$$P(x) = \int_0^x p(x) dx$$
$$= \frac{x^3}{8}$$



Given:

$$f(x) = x^2 \quad x \in [0, 2]$$

$$p(x) = \frac{3}{8}x^2$$

$$P(x) = \frac{x^3}{8}$$

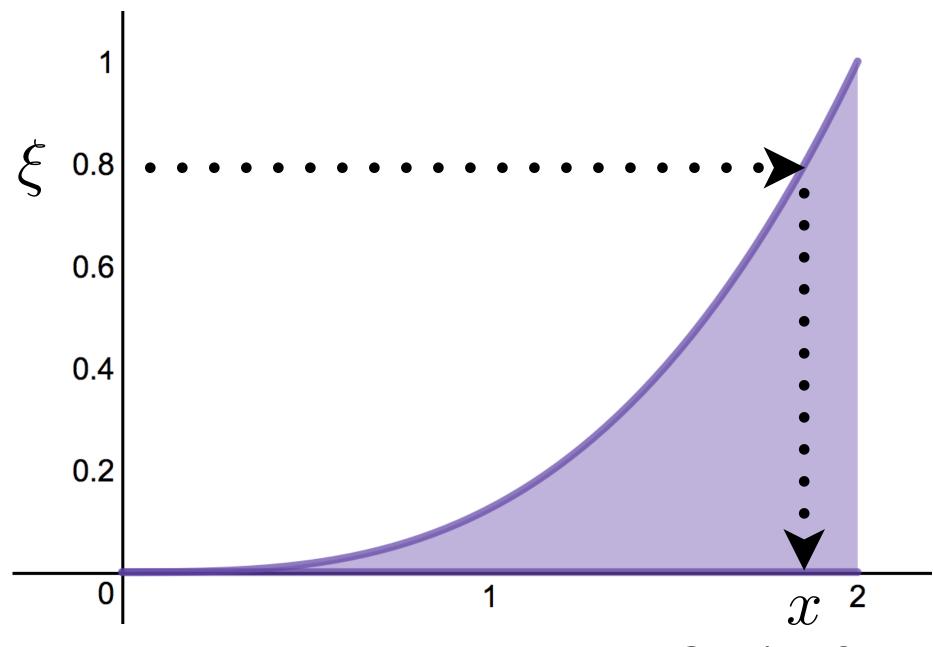
Step 2: Sample from p(x)

$$\xi = P(x) = \frac{x^3}{8}$$

$$x = \sqrt[3]{8\xi}$$

Applying the inversion method

Remember ξ is uniform random number in [0,1)



Things to Remember

Monte Carlo integration

- Unbiased estimators
- Good for high-dimensional integrals
- Estimates are visually noisy and need many samples
- Importance sampling can reduce variance (noise) if probability distribution "fits" underlying function

Sampling random variables

- Inversion method, rejection sampling
- Sampling in 1D, 2D, disks, hemispheres

Acknowledgments

Many thanks to Kayvon Fatahalian, Matt Pharr, and Pat Hanrahan, who created the majority of these slides. Thanks also to Keenan Crane.

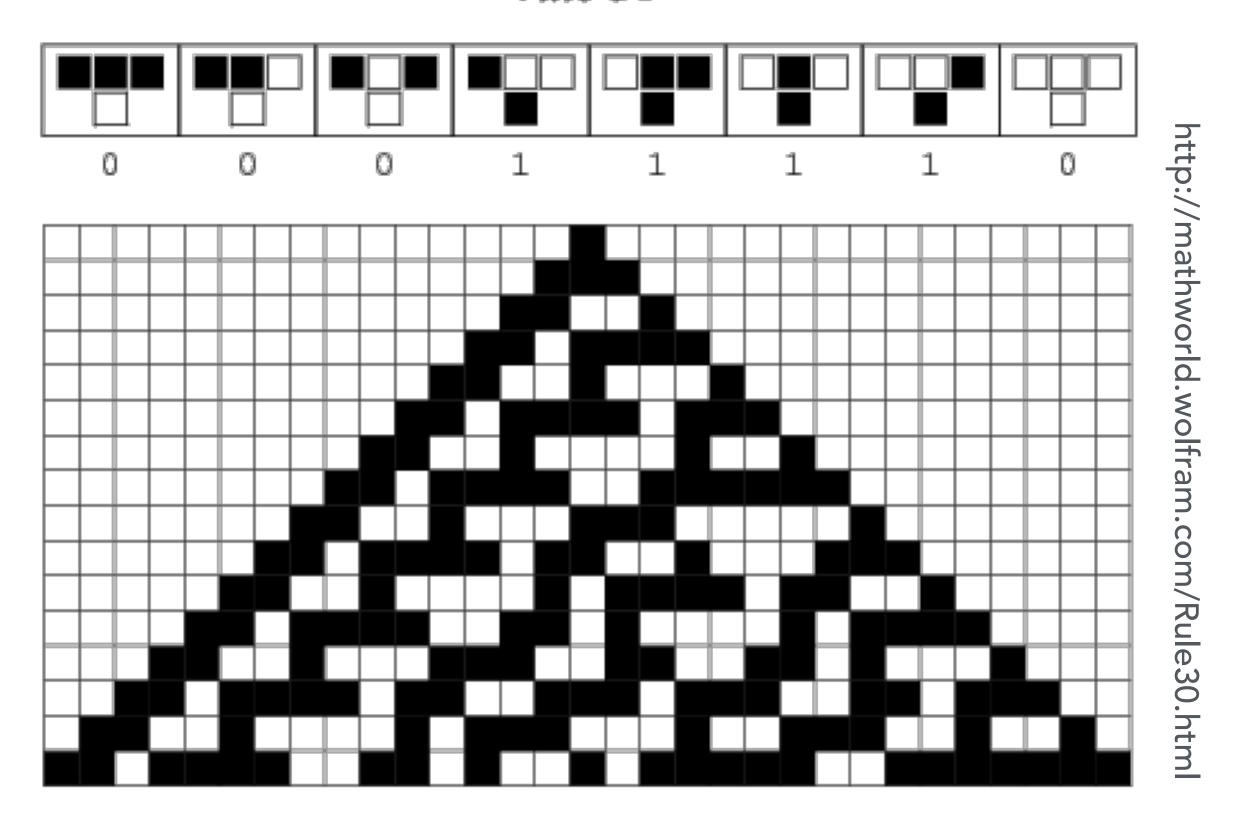
CS184/284A Ng & O'Brien

Extra

Pseudo-Random Number Generation

Example: cellular automata #30

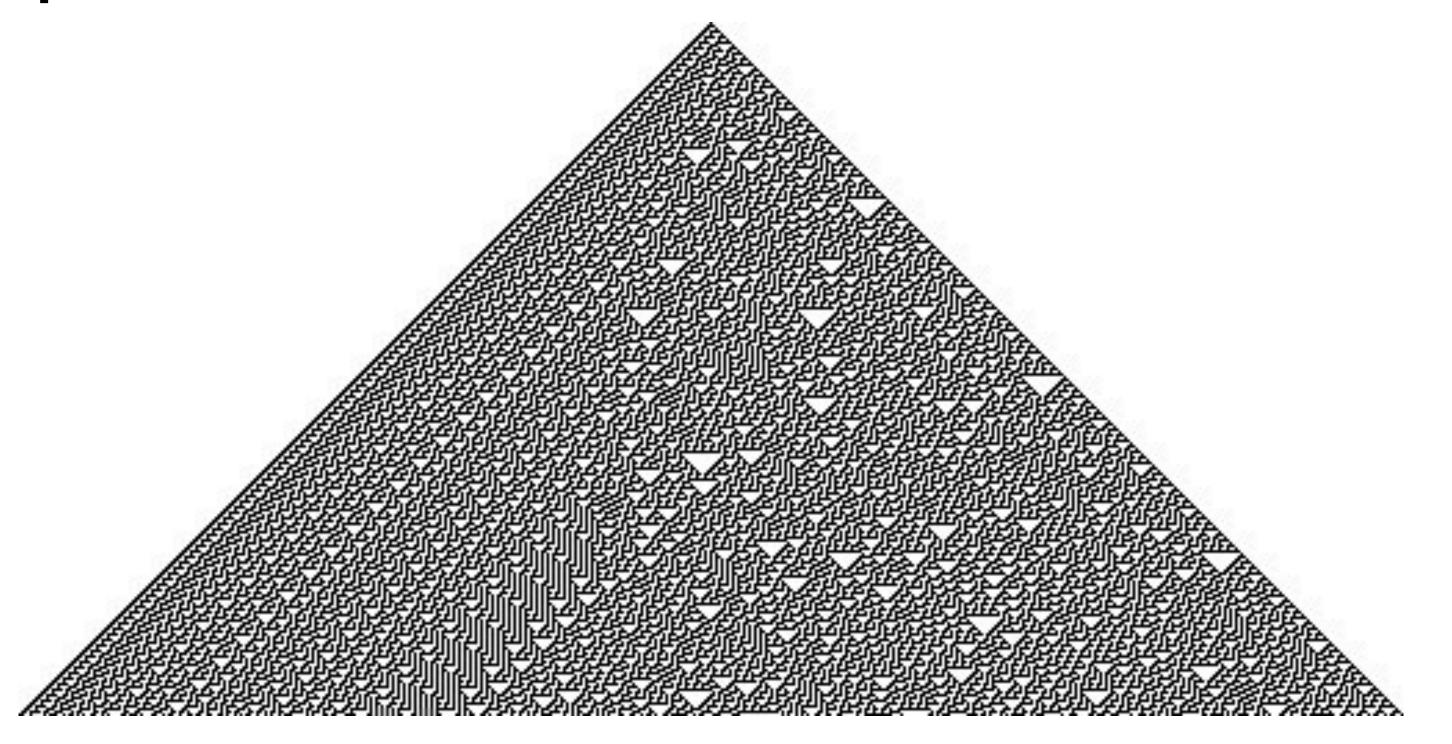
rule 30



CS184/284A

Pseudo-Random Number Generation

Example: cellular automata #30



Center line values are a high-quality random bit sequence Once used for random number generator in Mathematica

http://mathworld.wolfram.com/Rule30.html

Pseudo-Random Number Generation

CS184/284A O'Brien & Ng

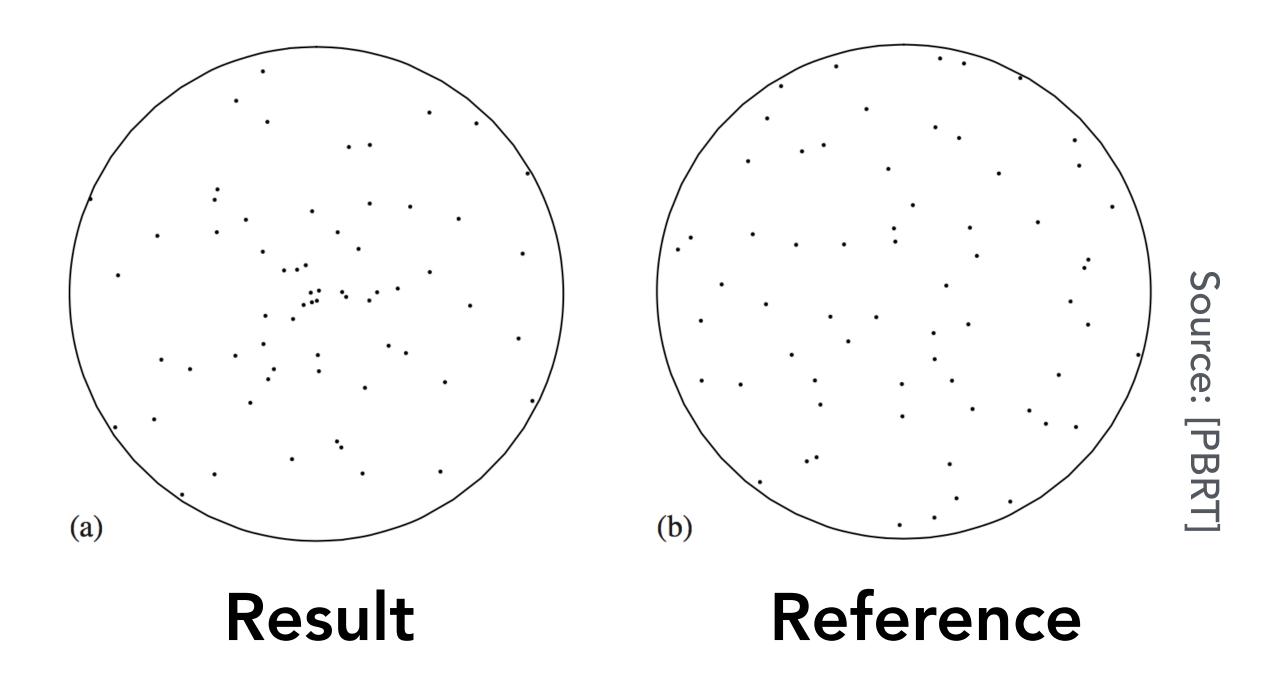
Random Sampling of Disks & Hemispheres

Sampling Unit Circle: Simple but Wrong Method

 θ = uniform random angle between 0 and 2π

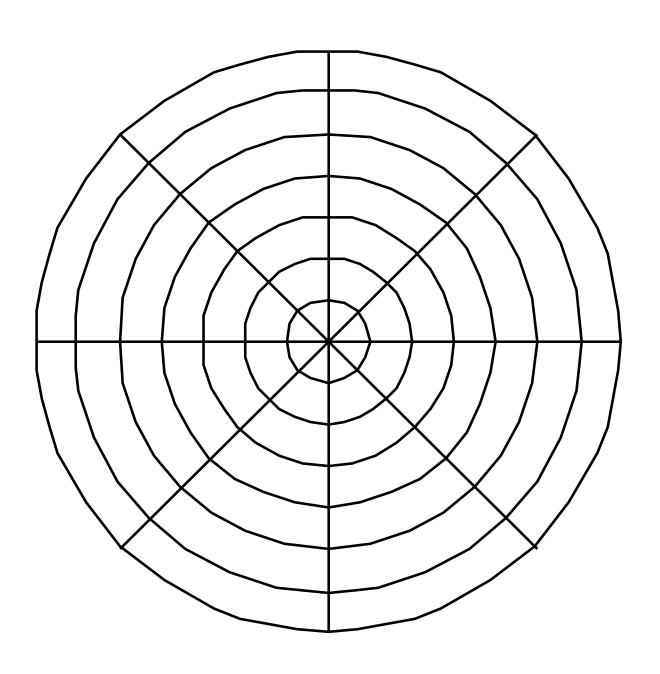
 γ = uniform random radius between 0 and 1

Return point: $(r \cos \theta, r \sin \theta)$



Need to Sample Uniformly in Area

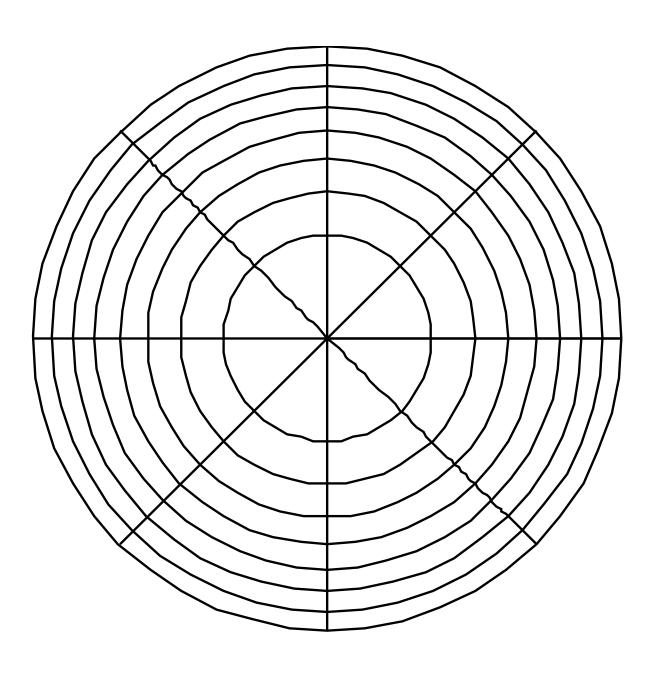
Incorrect Not Equi-areal



$$\theta = 2\pi \xi_1$$

$$r=\xi_2$$

Correct Equi-areal

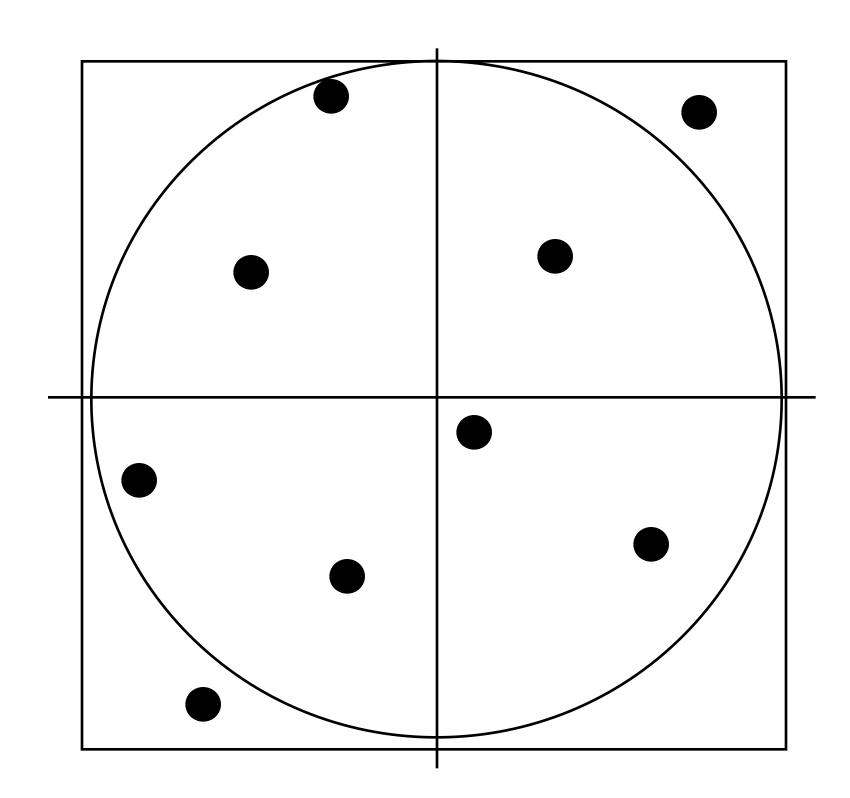


$$\theta = 2\pi \xi_1$$

$$r = \sqrt{\xi_2}$$

^{*} See Shirley et al. p.331 for full explanation using inversion method

Rejection Sampling Circle's Area



```
do {
  x = 1 - 2 * rand01();
  y = 1 - 2 * rand01();
} while (x*x + y*y > 1.);
```

Efficiency of technique: area of circle / area of square

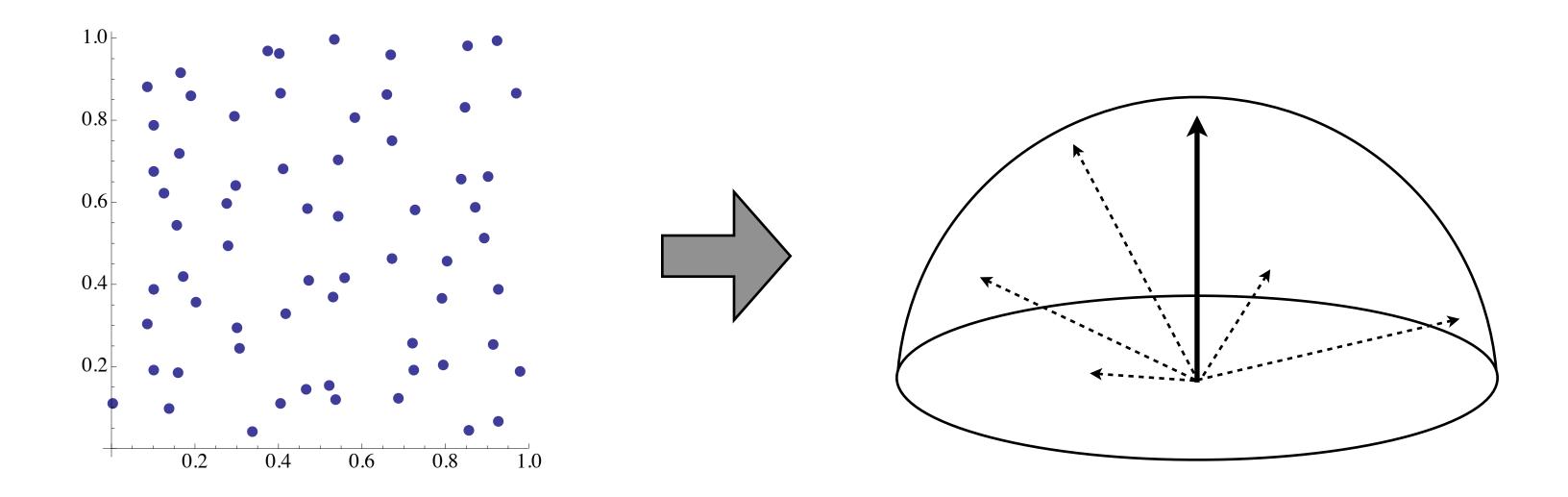
Uniform Sampling of Hemisphere

Generate random direction on hemisphere (all dirs. equally likely)

$$p(\omega) = \frac{1}{2\pi}$$

Direction computed from uniformly distributed point on 2D square:

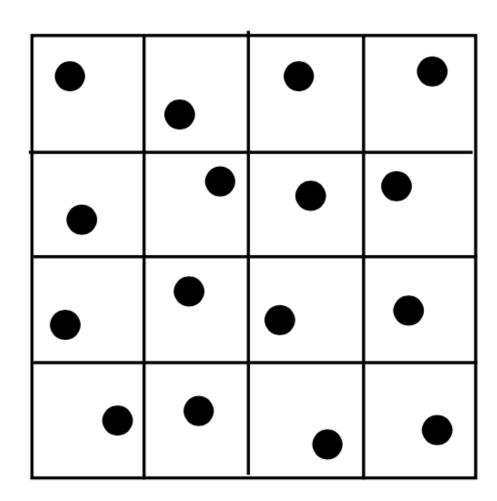
$$(\xi_1, \xi_2) \to (\sqrt{1 - \xi_1^2} \cos(2\pi \xi_2), \sqrt{1 - \xi_1^2} \sin(2\pi \xi_2), \xi_1)$$



Full derivation: see PBRT 3rd Ed. 13.6.1

Stratified and Jittered Sampling

Stratified Sampling



Jittered sampling is an example of stratified sampling

Simple and useful method:

- Subdivide domain into regions ("strata")
- Estimate integral on each region separately
- Combine region estimates at the end

Pro:

- Can show this never increases variance
- Often reduces variance (if the variance in some regions is less)

Con:

Re-introduces the "curse of dimensionality"