
Computer Graphics and Imaging

UC Berkeley CS184/284A

Lecture 19:

Introduction to  
Physical Simulation

Ren Ng, James O’BrienCS184/284A

Physically Based Animation

Generate motion of objects using numerical simulation�

g
<latexit sha1_base64="6ZF14iSqpiKBEdJjPeY+VbF7oz4=">AAAB9HicbVDNSgMxGPzW31r/qh69BIvgqeyKoN4KXvRWwbWFdi3ZbLYNzSZLklXK0vfw4kHFqw/jzbcx2+5BWwdChpnvI5MJU860cd1vZ2l5ZXVtvbJR3dza3tmt7e3fa5kpQn0iuVSdEGvKmaC+YYbTTqooTkJO2+HoqvDbj1RpJsWdGac0SPBAsJgRbKz00Aslj/Q4sVc+mPRrdbfhToEWiVeSOpRo9WtfvUiSLKHCEI617npuaoIcK8MIp5NqL9M0xWSEB7RrqcAJ1UE+TT1Bx1aJUCyVPcKgqfp7I8eJLqLZyQSboZ73CvE/r5uZ+CLImUgzQwWZPRRnHBmJigpQxBQlho8twUQxmxWRIVaYGFtU1ZbgzX95kfinjcuGe3tWb96UbVTgEI7gBDw4hyZcQwt8IKDgGV7hzXlyXpx352M2uuSUOwfwB87nD6QQktI=</latexit><latexit sha1_base64="6ZF14iSqpiKBEdJjPeY+VbF7oz4=">AAAB9HicbVDNSgMxGPzW31r/qh69BIvgqeyKoN4KXvRWwbWFdi3ZbLYNzSZLklXK0vfw4kHFqw/jzbcx2+5BWwdChpnvI5MJU860cd1vZ2l5ZXVtvbJR3dza3tmt7e3fa5kpQn0iuVSdEGvKmaC+YYbTTqooTkJO2+HoqvDbj1RpJsWdGac0SPBAsJgRbKz00Aslj/Q4sVc+mPRrdbfhToEWiVeSOpRo9WtfvUiSLKHCEI617npuaoIcK8MIp5NqL9M0xWSEB7RrqcAJ1UE+TT1Bx1aJUCyVPcKgqfp7I8eJLqLZyQSboZ73CvE/r5uZ+CLImUgzQwWZPRRnHBmJigpQxBQlho8twUQxmxWRIVaYGFtU1ZbgzX95kfinjcuGe3tWb96UbVTgEI7gBDw4hyZcQwt8IKDgGV7hzXlyXpx352M2uuSUOwfwB87nD6QQktI=</latexit><latexit sha1_base64="6ZF14iSqpiKBEdJjPeY+VbF7oz4=">AAAB9HicbVDNSgMxGPzW31r/qh69BIvgqeyKoN4KXvRWwbWFdi3ZbLYNzSZLklXK0vfw4kHFqw/jzbcx2+5BWwdChpnvI5MJU860cd1vZ2l5ZXVtvbJR3dza3tmt7e3fa5kpQn0iuVSdEGvKmaC+YYbTTqooTkJO2+HoqvDbj1RpJsWdGac0SPBAsJgRbKz00Aslj/Q4sVc+mPRrdbfhToEWiVeSOpRo9WtfvUiSLKHCEI617npuaoIcK8MIp5NqL9M0xWSEB7RrqcAJ1UE+TT1Bx1aJUCyVPcKgqfp7I8eJLqLZyQSboZ73CvE/r5uZ+CLImUgzQwWZPRRnHBmJigpQxBQlho8twUQxmxWRIVaYGFtU1ZbgzX95kfinjcuGe3tWb96UbVTgEI7gBDw4hyZcQwt8IKDgGV7hzXlyXpx352M2uuSUOwfwB87nD6QQktI=</latexit> v

<latexit sha1_base64="WgjsKJTcI7AsrgdyuucAtaiYKdg=">AAAB9HicbVDNSgMxGPy2/tX6V/XoJVgET2UrgnoreNFbBdcW2rVks9k2NJssSbZSlr6HFw8qXn0Yb76N2XYP2joQMsx8H5lMkHCmjet+O6WV1bX1jfJmZWt7Z3evun/woGWqCPWI5FJ1AqwpZ4J6hhlOO4miOA44bQej69xvj6nSTIp7M0moH+OBYBEj2FjpsRdIHupJbK9sPO1Xa27dnQEtk0ZBalCg1a9+9UJJ0pgKQzjWuttwE+NnWBlGOJ1WeqmmCSYjPKBdSwWOqfazWeopOrFKiCKp7BEGzdTfGxmOdR7NTsbYDPWil4v/ed3URJd+xkSSGirI/KEo5chIlFeAQqYoMXxiCSaK2ayIDLHCxNiiKraExuKXl4l3Vr+qu3fnteZt0UYZjuAYTqEBF9CEG2iBBwQUPMMrvDlPzovz7nzMR0tOsXMIf+B8/gC6zJLh</latexit><latexit sha1_base64="WgjsKJTcI7AsrgdyuucAtaiYKdg=">AAAB9HicbVDNSgMxGPy2/tX6V/XoJVgET2UrgnoreNFbBdcW2rVks9k2NJssSbZSlr6HFw8qXn0Yb76N2XYP2joQMsx8H5lMkHCmjet+O6WV1bX1jfJmZWt7Z3evun/woGWqCPWI5FJ1AqwpZ4J6hhlOO4miOA44bQej69xvj6nSTIp7M0moH+OBYBEj2FjpsRdIHupJbK9sPO1Xa27dnQEtk0ZBalCg1a9+9UJJ0pgKQzjWuttwE+NnWBlGOJ1WeqmmCSYjPKBdSwWOqfazWeopOrFKiCKp7BEGzdTfGxmOdR7NTsbYDPWil4v/ed3URJd+xkSSGirI/KEo5chIlFeAQqYoMXxiCSaK2ayIDLHCxNiiKraExuKXl4l3Vr+qu3fnteZt0UYZjuAYTqEBF9CEG2iBBwQUPMMrvDlPzovz7nzMR0tOsXMIf+B8/gC6zJLh</latexit><latexit sha1_base64="WgjsKJTcI7AsrgdyuucAtaiYKdg=">AAAB9HicbVDNSgMxGPy2/tX6V/XoJVgET2UrgnoreNFbBdcW2rVks9k2NJssSbZSlr6HFw8qXn0Yb76N2XYP2joQMsx8H5lMkHCmjet+O6WV1bX1jfJmZWt7Z3evun/woGWqCPWI5FJ1AqwpZ4J6hhlOO4miOA44bQej69xvj6nSTIp7M0moH+OBYBEj2FjpsRdIHupJbK9sPO1Xa27dnQEtk0ZBalCg1a9+9UJJ0pgKQzjWuttwE+NnWBlGOJ1WeqmmCSYjPKBdSwWOqfazWeopOrFKiCKp7BEGzdTfGxmOdR7NTsbYDPWil4v/ed3URJd+xkSSGirI/KEo5chIlFeAQqYoMXxiCSaK2ayIDLHCxNiiKraExuKXl4l3Vr+qu3fnteZt0UYZjuAYTqEBF9CEG2iBBwQUPMMrvDlPzovz7nzMR0tOsXMIf+B8/gC6zJLh</latexit>

xt+�t = xt +�tvt +
1

2
(�t)2at

<latexit sha1_base64="Lh2J5VH4goJ7Enm6mOtyLXSn5KY=">AAACXnicbVHLSgMxFM2M7z606kZwEyxCRSgzRVAXgqAL3SlYW2inJZPJaGjmQXKnWML8pDvBjX9iprZQrRdCDuecy7058VPBFTjOh2WvrK6tb2xulcqV6vZObXfvWSWZpKxNE5HIrk8UEzxmbeAgWDeVjES+YB1/dFPonTGTiifxE0xS5kXkJeYhpwQMNayN+34iAjWJzKXf8oGG0/4tE0Aw5PgKL6k5PsVzwy91nA+g0EJJqHZz3cobc9/JoLXoJMY5rNWdpjMtvAzcGaijWT0Ma+/9IKFZxGKggijVc50UPE0kcCpYXupniqWEjsgL6xkYk4gpT0/zyfGxYQIcJtKcGPCUXezQJFLFcsYZEXhVf7WC/E/rZRBeeJrHaQYspj+DwkxgSHARNg64ZBTExABCJTe7YvpKTEJgvqRkQnD/PnkZtFvNy6bzeFa/vp+lsYkO0RFqIBedo2t0hx5QG1H0adlW2apYX/aGXbV3fqy2NevZR7/KPvgG2R+2qw==</latexit><latexit sha1_base64="Lh2J5VH4goJ7Enm6mOtyLXSn5KY=">AAACXnicbVHLSgMxFM2M7z606kZwEyxCRSgzRVAXgqAL3SlYW2inJZPJaGjmQXKnWML8pDvBjX9iprZQrRdCDuecy7058VPBFTjOh2WvrK6tb2xulcqV6vZObXfvWSWZpKxNE5HIrk8UEzxmbeAgWDeVjES+YB1/dFPonTGTiifxE0xS5kXkJeYhpwQMNayN+34iAjWJzKXf8oGG0/4tE0Aw5PgKL6k5PsVzwy91nA+g0EJJqHZz3cobc9/JoLXoJMY5rNWdpjMtvAzcGaijWT0Ma+/9IKFZxGKggijVc50UPE0kcCpYXupniqWEjsgL6xkYk4gpT0/zyfGxYQIcJtKcGPCUXezQJFLFcsYZEXhVf7WC/E/rZRBeeJrHaQYspj+DwkxgSHARNg64ZBTExABCJTe7YvpKTEJgvqRkQnD/PnkZtFvNy6bzeFa/vp+lsYkO0RFqIBedo2t0hx5QG1H0adlW2apYX/aGXbV3fqy2NevZR7/KPvgG2R+2qw==</latexit><latexit sha1_base64="Lh2J5VH4goJ7Enm6mOtyLXSn5KY=">AAACXnicbVHLSgMxFM2M7z606kZwEyxCRSgzRVAXgqAL3SlYW2inJZPJaGjmQXKnWML8pDvBjX9iprZQrRdCDuecy7058VPBFTjOh2WvrK6tb2xulcqV6vZObXfvWSWZpKxNE5HIrk8UEzxmbeAgWDeVjES+YB1/dFPonTGTiifxE0xS5kXkJeYhpwQMNayN+34iAjWJzKXf8oGG0/4tE0Aw5PgKL6k5PsVzwy91nA+g0EJJqHZz3cobc9/JoLXoJMY5rNWdpjMtvAzcGaijWT0Ma+/9IKFZxGKggijVc50UPE0kcCpYXupniqWEjsgL6xkYk4gpT0/zyfGxYQIcJtKcGPCUXezQJFLFcsYZEXhVf7WC/E/rZRBeeJrHaQYspj+DwkxgSHARNg64ZBTExABCJTe7YvpKTEJgvqRkQnD/PnkZtFvNy6bzeFa/vp+lsYkO0RFqIBedo2t0hx5QG1H0adlW2apYX/aGXbV3fqy2NevZR7/KPvgG2R+2qw==</latexit>

Example: Cloth Simulation

Rahul Narain, Armin Samii, James F. O'Brien  
SIGGRAPH Asia 2012

Example: Fluids

Macklin and Müller, Position Based Fluids TOG 2013

CS184/284A Ren Ng, James O’Brien

Example: Fracture

Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, James F. O'Brien  
SIGGRAPH 2014

CS184/284A Ren Ng, James O’Brien

Particle Systems

Karl Sims, SIGGRAPH 1990

Single particles are very simple

Large groups can produce interesting effects

Supplement basic ballistic rules

• Gravity

• Friction, drag

• Collisions

• Force fields

• Springs

• Interactions

Example: Hair

CS184/284A Ren Ng, James O’Brien

Example: Adaptive Simulation

Woojong Koh, Rahul Narain, James F. O'Brien  
TVCG 2015

Mass + Spring Systems

Example: Mass Spring Rope

Credit: Elizabeth Labelle, https://youtu.be/Co8enp8CH34

https://youtu.be/Co8enp8CH34

CS184/284A Ren Ng, James O’Brien

Example: Mass Spring Mesh

CS184/284A Ren Ng, James O’Brien

A Simple Spring

fa!b = ks(b� a)

fb!a = �fa!b

Problem: this spring wants to have zero length

a b

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

A Simple Spring

Energy potential

fa!b = ks(b� a)

fb!a = �fa!b

-2 -1 0 1 2

-2

-1

0

1

2

0

2

4

6

8

-

0

1

2

fa = �raE = �


@E

@ax
,
@E

@ay
,
@E

@az

�

E = 1/2 ks(b� a) · (b� a)

CS184/284A Ren Ng, James O’Brien

Non-Zero Length Spring

fa!b = ks
b� a

||b� a|| (||b� a||� l)

Rest length

Problem: oscillates forever

a b

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Non-Zero Length Springs

fa!b = ks
b� a

||b� a|| (||b� a||� l)

Rest length

E = ks (||b� a||� l)2

-2 -1 0 1 2

-2

-1

0

1

2

0

1

2

3

-

0

1

2

CS184/284A Ren Ng, James O’Brien

Springs with zero rest length are linear

Springs with non-zero rest length are nonlinear

• Force magnitude linear w/ displacement  

(from rest length)

• Force direction is non-linear

• Singularity at

Comments on Springs

||b� a|| = 0

CS184/284A Ren Ng, James O’Brien

Dot Notation for Derivatives

A dot above a variable indicated taking a derivative
w.r.t. time. For example:

• might be a variable indicating the position of
something

• would be , i.e., velocity

• would be , i.e., acceleration

x

·x
dx
dt

··x
d2x
dt2

CS184/284A Ren Ng, James O’Brien

Simple Motion Damping

f

Problem: slows down all motion

• Want a rusty spring’s oscillations to slow down, but
should it also fall to the ground more slowly?

ḃ
<latexit sha1_base64="xQJkoYXtjVlJUaTZNm8D/1AjJp0=">AAAB/XicbVBPS8MwHP3Vv3P+q4onL8EheBqtCOpt4EVvE6wbbGWkabqFpWlJUmGUgl/FiwcVr34Pb34b060H3fxByOO93yMvL0g5U9pxvq2l5ZXVtfXaRn1za3tn197bf1BJJgn1SMIT2Q2wopwJ6mmmOe2mkuI44LQTjK9LvfNIpWKJuNeTlPoxHgoWMYK1oQb2YT9IeKgmsbnyfpjoPCgKNLAbTtOZDloEbgUaUE17YH8ZL8liKjThWKme66Taz7HUjHBa1PuZoikmYzykPQMFjqny82n8Ap0YJkRRIs0RGk3Z344cx6pMaDZjrEdqXivJ/7RepqNLP2cizTQVZPZQlHGkE1R2gUImKdF8YgAmkpmsiIywxESbxuqmBHf+y4vAO2teNZ2780brtmqjBkdwDKfgwgW04Aba4AGBHJ7hFd6sJ+vFerc+ZqtLVuU5gD9jff4Aau+V/w==</latexit><latexit sha1_base64="xQJkoYXtjVlJUaTZNm8D/1AjJp0=">AAAB/XicbVBPS8MwHP3Vv3P+q4onL8EheBqtCOpt4EVvE6wbbGWkabqFpWlJUmGUgl/FiwcVr34Pb34b060H3fxByOO93yMvL0g5U9pxvq2l5ZXVtfXaRn1za3tn197bf1BJJgn1SMIT2Q2wopwJ6mmmOe2mkuI44LQTjK9LvfNIpWKJuNeTlPoxHgoWMYK1oQb2YT9IeKgmsbnyfpjoPCgKNLAbTtOZDloEbgUaUE17YH8ZL8liKjThWKme66Taz7HUjHBa1PuZoikmYzykPQMFjqny82n8Ap0YJkRRIs0RGk3Z344cx6pMaDZjrEdqXivJ/7RepqNLP2cizTQVZPZQlHGkE1R2gUImKdF8YgAmkpmsiIywxESbxuqmBHf+y4vAO2teNZ2780brtmqjBkdwDKfgwgW04Aba4AGBHJ7hFd6sJ+vFerc+ZqtLVuU5gD9jff4Aau+V/w==</latexit><latexit sha1_base64="xQJkoYXtjVlJUaTZNm8D/1AjJp0=">AAAB/XicbVBPS8MwHP3Vv3P+q4onL8EheBqtCOpt4EVvE6wbbGWkabqFpWlJUmGUgl/FiwcVr34Pb34b060H3fxByOO93yMvL0g5U9pxvq2l5ZXVtfXaRn1za3tn197bf1BJJgn1SMIT2Q2wopwJ6mmmOe2mkuI44LQTjK9LvfNIpWKJuNeTlPoxHgoWMYK1oQb2YT9IeKgmsbnyfpjoPCgKNLAbTtOZDloEbgUaUE17YH8ZL8liKjThWKme66Taz7HUjHBa1PuZoikmYzykPQMFjqny82n8Ap0YJkRRIs0RGk3Z344cx6pMaDZjrEdqXivJ/7RepqNLP2cizTQVZPZQlHGkE1R2gUImKdF8YgAmkpmsiIywxESbxuqmBHf+y4vAO2teNZ2780brtmqjBkdwDKfgwgW04Aba4AGBHJ7hFd6sJ+vFerc+ZqtLVuU5gD9jff4Aau+V/w==</latexit> f = �kdḃ

<latexit sha1_base64="MC85jpn1z5biugPZmhb05NrU0w0=">AAACE3icbVDLSsNAFJ34rPUVdelmsAiCWFIR1IVQcKO7CsYW2hAmk0k7dDITZiZCCfkIN/6KGxcqbt2482+ctFnU1gvDHM65h3vvCRJGlXacH2thcWl5ZbWyVl3f2Nzatnd2H5RIJSYuFkzIToAUYZQTV1PNSCeRBMUBI+1geF3o7UciFRX8Xo8S4sWoz2lEMdKG8u3jXiBYqEax+bIoh1fwZOiHcJrthUJnQZ5D3645dWdccB40SlADZbV8+9t4cRoTrjFDSnUbTqK9DElNMSN5tZcqkiA8RH3SNZCjmCgvGx+Vw0PDhDAS0jyu4ZiddmQoVsWGpjNGeqBmtYL8T+umOrrwMsqTVBOOJ4OilEEtYJEQDKkkWLORAQhLanaFeIAkwtrkWDUhNGZPngfuaf2y7tyd1Zq3ZRoVsA8OwBFogHPQBDegBVyAwRN4AW/g3Xq2Xq0P63PSumCVnj3wp6yvX5WunsQ=</latexit><latexit sha1_base64="MC85jpn1z5biugPZmhb05NrU0w0=">AAACE3icbVDLSsNAFJ34rPUVdelmsAiCWFIR1IVQcKO7CsYW2hAmk0k7dDITZiZCCfkIN/6KGxcqbt2482+ctFnU1gvDHM65h3vvCRJGlXacH2thcWl5ZbWyVl3f2Nzatnd2H5RIJSYuFkzIToAUYZQTV1PNSCeRBMUBI+1geF3o7UciFRX8Xo8S4sWoz2lEMdKG8u3jXiBYqEax+bIoh1fwZOiHcJrthUJnQZ5D3645dWdccB40SlADZbV8+9t4cRoTrjFDSnUbTqK9DElNMSN5tZcqkiA8RH3SNZCjmCgvGx+Vw0PDhDAS0jyu4ZiddmQoVsWGpjNGeqBmtYL8T+umOrrwMsqTVBOOJ4OilEEtYJEQDKkkWLORAQhLanaFeIAkwtrkWDUhNGZPngfuaf2y7tyd1Zq3ZRoVsA8OwBFogHPQBDegBVyAwRN4AW/g3Xq2Xq0P63PSumCVnj3wp6yvX5WunsQ=</latexit><latexit sha1_base64="MC85jpn1z5biugPZmhb05NrU0w0=">AAACE3icbVDLSsNAFJ34rPUVdelmsAiCWFIR1IVQcKO7CsYW2hAmk0k7dDITZiZCCfkIN/6KGxcqbt2482+ctFnU1gvDHM65h3vvCRJGlXacH2thcWl5ZbWyVl3f2Nzatnd2H5RIJSYuFkzIToAUYZQTV1PNSCeRBMUBI+1geF3o7UciFRX8Xo8S4sWoz2lEMdKG8u3jXiBYqEax+bIoh1fwZOiHcJrthUJnQZ5D3645dWdccB40SlADZbV8+9t4cRoTrjFDSnUbTqK9DElNMSN5tZcqkiA8RH3SNZCjmCgvGx+Vw0PDhDAS0jyu4ZiddmQoVsWGpjNGeqBmtYL8T+umOrrwMsqTVBOOJ4OilEEtYJEQDKkkWLORAQhLanaFeIAkwtrkWDUhNGZPngfuaf2y7tyd1Zq3ZRoVsA8OwBFogHPQBDegBVyAwRN4AW/g3Xq2Xq0P63PSumCVnj3wp6yvX5WunsQ=</latexit>

Simple motion damping

• Behaves like viscous drag on motion

• Slows down motion in the direction of motion

• kd is a damping coefficient

• “Mass-proportional” damping

CS184/284A Ren Ng, James O’Brien

Internal Damping for Spring

fa = �kd
b� a

||b� a|| (ḃ� ȧ) · b� a

||b� a||
<latexit sha1_base64="nKDvyXXX5H94jKtYSGnPpMoM1Zs=">AAACv3icrVFNS8MwGE7r15xfVY9egkOYh41WBPUwGPPicYJzg7WUNE23sDQtSSqMrn/Si/hvTLce5hRPvhDy5Hmf9yPvG6SMSmXbn4a5tb2zu1fbrx8cHh2fWKdnrzLJBCYDnLBEjAIkCaOcDBRVjIxSQVAcMDIMZo+lf/hGhKQJf1HzlHgxmnAaUYyUpnzrww0SFsp5rK88KnwEO7A180PoRgLhfN0bFK31JyqKfLH4U7BYFE03TNRGGi3bJHWyaxdr9r/q+lbDbttLgz+BU4EGqKzvW++6KZzFhCvMkJRjx06VlyOhKGakqLuZJCnCMzQhYw05ion08uUCCnilmRBGidCHK7hk1yNyFMuyO62MkZrKTV9J/uYbZyq693LK00wRjleFooxBlcBymzCkgmDF5hogLKjuFeIp0hNUeud1PQRn88s/weCm/dC2n28b3V41jRq4AJegCRxwB7rgCfTBAGCjY2CDGbHZM6cmN9OV1DSqmHPwzcz5FwuZ5BE=</latexit><latexit sha1_base64="nKDvyXXX5H94jKtYSGnPpMoM1Zs=">AAACv3icrVFNS8MwGE7r15xfVY9egkOYh41WBPUwGPPicYJzg7WUNE23sDQtSSqMrn/Si/hvTLce5hRPvhDy5Hmf9yPvG6SMSmXbn4a5tb2zu1fbrx8cHh2fWKdnrzLJBCYDnLBEjAIkCaOcDBRVjIxSQVAcMDIMZo+lf/hGhKQJf1HzlHgxmnAaUYyUpnzrww0SFsp5rK88KnwEO7A180PoRgLhfN0bFK31JyqKfLH4U7BYFE03TNRGGi3bJHWyaxdr9r/q+lbDbttLgz+BU4EGqKzvW++6KZzFhCvMkJRjx06VlyOhKGakqLuZJCnCMzQhYw05ion08uUCCnilmRBGidCHK7hk1yNyFMuyO62MkZrKTV9J/uYbZyq693LK00wRjleFooxBlcBymzCkgmDF5hogLKjuFeIp0hNUeud1PQRn88s/weCm/dC2n28b3V41jRq4AJegCRxwB7rgCfTBAGCjY2CDGbHZM6cmN9OV1DSqmHPwzcz5FwuZ5BE=</latexit><latexit sha1_base64="nKDvyXXX5H94jKtYSGnPpMoM1Zs=">AAACv3icrVFNS8MwGE7r15xfVY9egkOYh41WBPUwGPPicYJzg7WUNE23sDQtSSqMrn/Si/hvTLce5hRPvhDy5Hmf9yPvG6SMSmXbn4a5tb2zu1fbrx8cHh2fWKdnrzLJBCYDnLBEjAIkCaOcDBRVjIxSQVAcMDIMZo+lf/hGhKQJf1HzlHgxmnAaUYyUpnzrww0SFsp5rK88KnwEO7A180PoRgLhfN0bFK31JyqKfLH4U7BYFE03TNRGGi3bJHWyaxdr9r/q+lbDbttLgz+BU4EGqKzvW++6KZzFhCvMkJRjx06VlyOhKGakqLuZJCnCMzQhYw05ion08uUCCnilmRBGidCHK7hk1yNyFMuyO62MkZrKTV9J/uYbZyq693LK00wRjleFooxBlcBymzCkgmDF5hogLKjuFeIp0hNUeud1PQRn88s/weCm/dC2n28b3V41jRq4AJegCRxwB7rgCfTBAGCjY2CDGbHZM6cmN9OV1DSqmHPwzcz5FwuZ5BE=</latexit>

Damp only the internal, spring-driven motion

 
 

• Viscous drag only on change in spring length

• Won’t slow group motion for the spring
system (e.g. global translation or rotation of
the group)

• “Stiffness proportional” damping

Ren Ng, James O’BrienCS184/284A

Gravity

Gravity at earth’s surface due to earth

• F = –mg

• m is mass of object

• g is gravitational acceleration,  
g = –9.8m/s2

Fg = �mg

g = (0, 0,�9.8)m/s2

CS184/284A Ren Ng, James O’Brien

Nonlinear

Linearized

Standard Form

𝒦(x) + 𝒟(x, ·x) + ℳ(x, ·x, ··x) = f

External Forces

K x + D ·x + M ··x = f

MomentumDampingInternal Elasticity

Zero-length springs result in constant and K D

Typically is constantM

We can keep diagonal by “lumping” called a “Lumped Mass Matrix“M

CS184/284A Ren Ng, James O’Brien

Spring Constants

Consider two “resolutions” to model a single spring 
 
 
 
 
 
 
 
 
 
 
Problem: constant ks produces different force on bottom
spring for these two different discretizations

l

�l

�l/2

l/2

l/2

�l/2

CS184/284A Ren Ng, James O’Brien

Spring Constants

Problem: constant ks gives inconsistent results with different
discretizations of our spring/mass structures

• E.g. 10x10 vs 20x20 mesh for cloth simulation would give
different results, and we want them to be the same, just
higher level of detail

Solution:

• Change in length is not what we want to measure

• We want to consider the strain = change in length as fraction
of original length 

• Implementation 1: divide spring force by spring length

• Implementation 2: normalize ks by spring length

✏ =
�l

l0

CS184/284A Ren Ng, James O’Brien

Structures from Springs

Sheets

Blocks

Others

CS184/284A Ren Ng, James O’Brien

Structures from Springs

Behavior is determined by structure linkages

This structure will not resist shearing

This structure will not resist out-of-plane
bending...

CS184/284A Ren Ng, James O’Brien

Behavior is determined by structure linkages

Structures from Springs

This structure will resist shearing 
but has anisotropic bias

This structure will not resist out-of-plane
bending either...

CS184/284A Ren Ng, James O’Brien

Structures from Springs

Behavior is determined by structure linkages

This structure will resist shearing. 
Less directional bias.

This structure will not resist out-of-plane
bending either...

CS184/284A Ren Ng, James O’Brien

Structures from Springs

Spring structures will behave like what they are
(obviously?)

This structure will resist shearing. 
Less directional bias.

This structure will resist out-of-plane
bending 
Red springs should be much weaker

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Edge Springs (bending)

Bridson et al. / Simulation of Clothing

4. An Accurate Model for Bending

The physics of cloth bending are poorly understood. The dy-
namics of anisotropic fibers twined together and woven into
a sheet of fabric constantly interacting with massive defor-
mations and friction is certainly more difficult to model with
a two-dimensional continuum than for example steel. How-
ever, several basic qualitative properties of such a model can
be identified that are essential for a plausible simulation, and
without these a model is incorrect.

In order to handle unstructured triangle meshes and get
finer, more robust control over bending than in vertex-centric
models, we posit as our basic bending element two trian-
gles sharing an edge. Our bending elements will be based on
the dihedral angle and its rate of change, as in Baraff and
Witkin5 and extended in Grinspun et al.24. We label the ele-
ment as in figure 1, with vertex positions xi and velocities vi,
i= 1, . . . ,4, and angle θ between the normals n1 and n2.

The vector of the four velocities v= (v1,v2,v3,v4) and the
vector of bending forces F = (F1,F2,F3,F4) live in a 12 di-
mensional linear space. One can select a basis for this space
identifying twelve distinct “modes” of motion. For bending
it is natural to select for the first eleven modes the three rigid
body translations, the three (instantaneous) rigid body rota-
tions, the two in-plane motions of vertex 1, the two in-plane
motions of vertex 2, and the one in-line stretching of edge 3–
4. None of these change the dihedral angle, and thus should
not participate in bending force calculations. This leaves the
twelfth mode, the bending mode, which is the unique mode
orthogonal to the other eleven up to an arbitrary scaling fac-
tor. This mode changes the dihedral angle but does not cause
any in-plane deformation or rigid body motion. Let us call
it u = (u1,u2,u3,u4). From the condition of orthogonality
to the in-plane motions of vertices 1 and 2, we find that u1
is parallel to n̂1 and u2 is parallel to n̂2. From the condition
of orthogonality to the in-axis stretching of edge 3–4, we
see that u4− u3 must be in the span of n̂1 and n̂2. Orthog-
onality to the rigid body translations implies that the sum
u1+ u2+ u3+ u4 is zero, and hence u3+ u4 is also in the
span of n̂1 and n̂2, thus u3 and u4 are each in this span. Fi-
nally, after making u orthogonal to rigid rotations (which we
can conveniently choose to be about the axes n̂1, n̂2 and ê)
we end up with

1 2

3
4

n

e

n
1 2

^

^^

n1
^ n2

^

Figure 1: A bending element with dihedral angle π−θ.

u1 = |E|
N1
|N1|2

u2 = |E|
N2
|N2|2

u3 =
(x1− x4) ·E

|E|
N1
|N1|2

+
(x2− x4) ·E

|E|
N2
|N2|2

u4 = −
(x1− x3) ·E

|E|
N1
|N1|2

−
(x2− x3) ·E

|E|
N2
|N2|2

up to an arbitrary scaling factor, where N1 = (x1 − x3)×
(x1−x4) andN2=(x2−x4)×(x2−x3) are the area weighted
normals and E = x4− x3 is the common edge. Thus u1 and
u2 are inversely proportional to their distance from the com-
mon edge, and u3 and u4 are a linear combination of u1 and
u2 based on the barycentric coordinates of x1 and x2 with re-
spect to the common edge. The bending elastic and damping
forcesmust be proportional to this mode. One immediate ob-
servation is that orthogonality to rigid body modes implies
these forces conserve linear and angular momentum. In fact,
every bending model based on two triangles that does not
use exactly these force directions will violate either the fun-
damental conservation laws or will influence in-plane (i.e.
non-bending) deformations. While some may argue that in
reality, in-plane and bending deformations are subtly cou-
pled, the exact nature of this coupling varies between mate-
rials and is not understood for even the simplest fabrics, thus
it is wisest to avoid adding arbitrary and artificial coupling.

For simplicity we choose the magnitude of elastic force
so that

Fei = ke
|E|2

|N1|+ |N2|
sin(θ/2)ui,

for i = 1, . . . ,4. The elastic bending stiffness ke is a mesh-
independent material property, the middle factor scales this
according to the anisotropy of the mesh (so the look of the
cloth doesn’t change significantly with remeshing), and the
sine factor measures how far from flat the cloth is. This is
the simplest quantity to compute that smoothly and mono-
tonically increases from a minimum when sharply folded at
θ = −π, is zero when flat at θ = 0, and rises to a maximum
at the other sharply folded state θ = π. We use the formula
sin(θ/2) = ±

√
(1− n̂1 · n̂2)/2 where the sign is chosen to

match the sign of sinθ, which is just n̂1× n̂2 · ê. Naturally
more complex nonlinear models, e.g. including powers of θ
for increased resistance at sharper angles, are possible. But
we stress that these factors must multiply all of the forces so
that the force directions and proportionalities do not change.

In many cases an artist desires that particular folds should
consistently appear in a character’s clothing to define their
look. Even the best tailoring may not do this when the char-
acter is in motion, but one tool in cloth simulation that can
overcome this is sculpting folds directly into the garment.
We can straightforwardly model this with non-zero rest an-
gles. Other manifolds such as skin, skin-tight synthetic suits,

c© The Eurographics Association 2003.

Bridson et al. / Simulation of Clothing

4. An Accurate Model for Bending

The physics of cloth bending are poorly understood. The dy-
namics of anisotropic fibers twined together and woven into
a sheet of fabric constantly interacting with massive defor-
mations and friction is certainly more difficult to model with
a two-dimensional continuum than for example steel. How-
ever, several basic qualitative properties of such a model can
be identified that are essential for a plausible simulation, and
without these a model is incorrect.

In order to handle unstructured triangle meshes and get
finer, more robust control over bending than in vertex-centric
models, we posit as our basic bending element two trian-
gles sharing an edge. Our bending elements will be based on
the dihedral angle and its rate of change, as in Baraff and
Witkin5 and extended in Grinspun et al.24. We label the ele-
ment as in figure 1, with vertex positions xi and velocities vi,
i= 1, . . . ,4, and angle θ between the normals n1 and n2.

The vector of the four velocities v= (v1,v2,v3,v4) and the
vector of bending forces F = (F1,F2,F3,F4) live in a 12 di-
mensional linear space. One can select a basis for this space
identifying twelve distinct “modes” of motion. For bending
it is natural to select for the first eleven modes the three rigid
body translations, the three (instantaneous) rigid body rota-
tions, the two in-plane motions of vertex 1, the two in-plane
motions of vertex 2, and the one in-line stretching of edge 3–
4. None of these change the dihedral angle, and thus should
not participate in bending force calculations. This leaves the
twelfth mode, the bending mode, which is the unique mode
orthogonal to the other eleven up to an arbitrary scaling fac-
tor. This mode changes the dihedral angle but does not cause
any in-plane deformation or rigid body motion. Let us call
it u = (u1,u2,u3,u4). From the condition of orthogonality
to the in-plane motions of vertices 1 and 2, we find that u1
is parallel to n̂1 and u2 is parallel to n̂2. From the condition
of orthogonality to the in-axis stretching of edge 3–4, we
see that u4− u3 must be in the span of n̂1 and n̂2. Orthog-
onality to the rigid body translations implies that the sum
u1+ u2+ u3+ u4 is zero, and hence u3+ u4 is also in the
span of n̂1 and n̂2, thus u3 and u4 are each in this span. Fi-
nally, after making u orthogonal to rigid rotations (which we
can conveniently choose to be about the axes n̂1, n̂2 and ê)
we end up with

1 2

3
4

n

e

n
1 2

^

^^

n1
^ n2

^

Figure 1: A bending element with dihedral angle π−θ.

u1 = |E|
N1
|N1|2

u2 = |E|
N2
|N2|2

u3 =
(x1− x4) ·E

|E|
N1
|N1|2

+
(x2− x4) ·E

|E|
N2
|N2|2

u4 = −
(x1− x3) ·E

|E|
N1
|N1|2

−
(x2− x3) ·E

|E|
N2
|N2|2

up to an arbitrary scaling factor, where N1 = (x1 − x3)×
(x1−x4) andN2=(x2−x4)×(x2−x3) are the area weighted
normals and E = x4− x3 is the common edge. Thus u1 and
u2 are inversely proportional to their distance from the com-
mon edge, and u3 and u4 are a linear combination of u1 and
u2 based on the barycentric coordinates of x1 and x2 with re-
spect to the common edge. The bending elastic and damping
forcesmust be proportional to this mode. One immediate ob-
servation is that orthogonality to rigid body modes implies
these forces conserve linear and angular momentum. In fact,
every bending model based on two triangles that does not
use exactly these force directions will violate either the fun-
damental conservation laws or will influence in-plane (i.e.
non-bending) deformations. While some may argue that in
reality, in-plane and bending deformations are subtly cou-
pled, the exact nature of this coupling varies between mate-
rials and is not understood for even the simplest fabrics, thus
it is wisest to avoid adding arbitrary and artificial coupling.

For simplicity we choose the magnitude of elastic force
so that

Fei = ke
|E|2

|N1|+ |N2|
sin(θ/2)ui,

for i = 1, . . . ,4. The elastic bending stiffness ke is a mesh-
independent material property, the middle factor scales this
according to the anisotropy of the mesh (so the look of the
cloth doesn’t change significantly with remeshing), and the
sine factor measures how far from flat the cloth is. This is
the simplest quantity to compute that smoothly and mono-
tonically increases from a minimum when sharply folded at
θ = −π, is zero when flat at θ = 0, and rises to a maximum
at the other sharply folded state θ = π. We use the formula
sin(θ/2) = ±

√
(1− n̂1 · n̂2)/2 where the sign is chosen to

match the sign of sinθ, which is just n̂1× n̂2 · ê. Naturally
more complex nonlinear models, e.g. including powers of θ
for increased resistance at sharper angles, are possible. But
we stress that these factors must multiply all of the forces so
that the force directions and proportionalities do not change.

In many cases an artist desires that particular folds should
consistently appear in a character’s clothing to define their
look. Even the best tailoring may not do this when the char-
acter is in motion, but one tool in cloth simulation that can
overcome this is sculpting folds directly into the garment.
We can straightforwardly model this with non-zero rest an-
gles. Other manifolds such as skin, skin-tight synthetic suits,

c© The Eurographics Association 2003.

Bridson et al. / Simulation of Clothing

4. An Accurate Model for Bending

The physics of cloth bending are poorly understood. The dy-
namics of anisotropic fibers twined together and woven into
a sheet of fabric constantly interacting with massive defor-
mations and friction is certainly more difficult to model with
a two-dimensional continuum than for example steel. How-
ever, several basic qualitative properties of such a model can
be identified that are essential for a plausible simulation, and
without these a model is incorrect.

In order to handle unstructured triangle meshes and get
finer, more robust control over bending than in vertex-centric
models, we posit as our basic bending element two trian-
gles sharing an edge. Our bending elements will be based on
the dihedral angle and its rate of change, as in Baraff and
Witkin5 and extended in Grinspun et al.24. We label the ele-
ment as in figure 1, with vertex positions xi and velocities vi,
i= 1, . . . ,4, and angle θ between the normals n1 and n2.

The vector of the four velocities v= (v1,v2,v3,v4) and the
vector of bending forces F = (F1,F2,F3,F4) live in a 12 di-
mensional linear space. One can select a basis for this space
identifying twelve distinct “modes” of motion. For bending
it is natural to select for the first eleven modes the three rigid
body translations, the three (instantaneous) rigid body rota-
tions, the two in-plane motions of vertex 1, the two in-plane
motions of vertex 2, and the one in-line stretching of edge 3–
4. None of these change the dihedral angle, and thus should
not participate in bending force calculations. This leaves the
twelfth mode, the bending mode, which is the unique mode
orthogonal to the other eleven up to an arbitrary scaling fac-
tor. This mode changes the dihedral angle but does not cause
any in-plane deformation or rigid body motion. Let us call
it u = (u1,u2,u3,u4). From the condition of orthogonality
to the in-plane motions of vertices 1 and 2, we find that u1
is parallel to n̂1 and u2 is parallel to n̂2. From the condition
of orthogonality to the in-axis stretching of edge 3–4, we
see that u4− u3 must be in the span of n̂1 and n̂2. Orthog-
onality to the rigid body translations implies that the sum
u1+ u2+ u3+ u4 is zero, and hence u3+ u4 is also in the
span of n̂1 and n̂2, thus u3 and u4 are each in this span. Fi-
nally, after making u orthogonal to rigid rotations (which we
can conveniently choose to be about the axes n̂1, n̂2 and ê)
we end up with

1 2

3
4

n

e

n
1 2

^

^^

n1
^ n2

^

Figure 1: A bending element with dihedral angle π−θ.

u1 = |E|
N1
|N1|2

u2 = |E|
N2
|N2|2

u3 =
(x1− x4) ·E

|E|
N1
|N1|2

+
(x2− x4) ·E

|E|
N2
|N2|2

u4 = −
(x1− x3) ·E

|E|
N1
|N1|2

−
(x2− x3) ·E

|E|
N2
|N2|2

up to an arbitrary scaling factor, where N1 = (x1 − x3)×
(x1−x4) andN2=(x2−x4)×(x2−x3) are the area weighted
normals and E = x4− x3 is the common edge. Thus u1 and
u2 are inversely proportional to their distance from the com-
mon edge, and u3 and u4 are a linear combination of u1 and
u2 based on the barycentric coordinates of x1 and x2 with re-
spect to the common edge. The bending elastic and damping
forcesmust be proportional to this mode. One immediate ob-
servation is that orthogonality to rigid body modes implies
these forces conserve linear and angular momentum. In fact,
every bending model based on two triangles that does not
use exactly these force directions will violate either the fun-
damental conservation laws or will influence in-plane (i.e.
non-bending) deformations. While some may argue that in
reality, in-plane and bending deformations are subtly cou-
pled, the exact nature of this coupling varies between mate-
rials and is not understood for even the simplest fabrics, thus
it is wisest to avoid adding arbitrary and artificial coupling.

For simplicity we choose the magnitude of elastic force
so that

Fei = ke
|E|2

|N1|+ |N2|
sin(θ/2)ui,

for i = 1, . . . ,4. The elastic bending stiffness ke is a mesh-
independent material property, the middle factor scales this
according to the anisotropy of the mesh (so the look of the
cloth doesn’t change significantly with remeshing), and the
sine factor measures how far from flat the cloth is. This is
the simplest quantity to compute that smoothly and mono-
tonically increases from a minimum when sharply folded at
θ = −π, is zero when flat at θ = 0, and rises to a maximum
at the other sharply folded state θ = π. We use the formula
sin(θ/2) = ±

√
(1− n̂1 · n̂2)/2 where the sign is chosen to

match the sign of sinθ, which is just n̂1× n̂2 · ê. Naturally
more complex nonlinear models, e.g. including powers of θ
for increased resistance at sharper angles, are possible. But
we stress that these factors must multiply all of the forces so
that the force directions and proportionalities do not change.

In many cases an artist desires that particular folds should
consistently appear in a character’s clothing to define their
look. Even the best tailoring may not do this when the char-
acter is in motion, but one tool in cloth simulation that can
overcome this is sculpting folds directly into the garment.
We can straightforwardly model this with non-zero rest an-
gles. Other manifolds such as skin, skin-tight synthetic suits,

c© The Eurographics Association 2003.

From Bridson et al., 2003

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Bending Springs and Sharp Creases

Example: Mass Spring Dress + Character

CS184/284A Ren Ng, James O’Brien

FEM (Finite Element Method) Instead of Springs

CS184/284A Ren Ng, James O’Brien

FEM: Variety of Materials

CS184/284A Ren Ng, James O’Brien

More Accurate Materials
Linear force-displacement (stress-strain) relationship limiting

• Bi-phasic materials, e.g.: cloth, biological tissues, etc.

• Other nonlinear material behaviors

One-dimensional strain doesn’t capture everything

• Anisotropic materials

• Volume-preserving

• Interaction between directional behaviors

• Spring coupling is ad hoc and undesirable

Solution: non-linear FEM

• Not much harder to implement than springs!

Basic FEM

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

FEM Problem Setup

Lagrangian Formulation

• Where in space did this material mode to?

• Commonly used for solid materials

Eulerian Formulation

• What material is at this location in space?

• Commonly used for fluids

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Problem Setup

Lagrangian Formulation

• Where in space did this material mode to?

• Commonly used for solid materials

x = x(u)

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Lagrangian Formulation

Deformation described by mapping from material
(local) to word coordinates

ACM SIGGRAPH 99, Los Angeles, California, August 8–13, 1999

In 1991, Norton and his colleagues presented a technique for
animating 3D solid objects that broke when subjected to large
strains [12]. They simulated a teapot that shattered when dropped
onto a table. Their technique used a spring and mass system to
model the behavior of the object. When the distance between
two attached mass points exceeded a threshold, the simulation sev-
ered the spring connection between them. To avoid having flexi-
ble strings of partially connected material hanging from the object,
their simulation broke an entire cube of springs at once.
Two limitations are inherent in both of these methods. First,

when the material fails, the exact location and orientation of the
fracture are not known. Rather the failure is defined as the entire
connection between two nodes, and the orientation of the fracture
plane is left undefined. As a result, these techniques can only re-
alistically model effects that occur on a scale much larger than the
inter-node spacing.
The second limitation is that fracture surfaces are restricted to the

boundaries in the initial mesh structure. As a result, the fracture pat-
tern exhibits directional artifacts, similar to the “jaggies” that occur
when rasterizing a polygonal edge. These artifacts are particularly
noticeable when the discretization follows a regular pattern. If an ir-
regular mesh is used, then the artifacts may be partially masked, but
the fractures will still be forced onto a path that follows the element
boundaries so that the object can break apart only along predefined
facets.
Other relevant work in the computer graphics literature includes

techniques for modeling static crack patterns and fractures induced
by explosions. Hirota and colleagues described how phenomena
such as the static crack patterns created by drying mud can be mod-
eled using a mass and spring system attached to an immobile sub-
strate [8]. Mazarak et al. use a voxel-based approach to model
solid objects that break apart when they encounter a spherical blast
wave [9]. Neff and Fiume use a recursive pattern generator to di-
vide a planar region into polygonal shards that fly apart when acted
on by a spherical blast wave [10].
Fracture has been studied more extensively in the mechanics lit-

erature, and many techniques have been developed for simulating
and analyzing the behavior of materials as they fail. A number of
theories may be used to describe when and how a fracture will de-
velop or propagate, and these theories have been employed with
various numerical methods including finite element and finite dif-
ference methods, boundary integral equations, and molecular parti-
cle simulations. A comprehensive review of this work can be found
in the book by Anderson [1] and the survey article by Nishioka [11].
Although simulation is used to model fracture both in computer

graphics and in engineering, the requirements of the two fields are
very different. Engineering applications require that the simulation
predict real-world behaviors in an accurate and reliable fashion. In
computer animation, what matters is how the fracture looks, how
difficult it was to make it look that way, and how long it took. Al-
though the technique presented in this paper was developed using
traditional engineering tools, it is an animation technique and relies
on a number of simplifications that would be unacceptable in an
engineering context.

3 Deformations

Fractures arise in materials due to internal stresses created as the
material deforms. Our goal is to model these fractures. In order
to do so, however, we must first be able to model the deformations
that cause them. To provide a suitable framework for modeling
fractures, the deformation method must provide information about
the magnitude and orientation of the internal stresses, and whether
they are tensile or compressive. We would also like to avoid defor-
mation methods in which directional artifacts appear in the stress
patterns and propagate to the resulting fracture patterns.

V

U

W

Y

X

Z

u

u’

x(u)

x(u’)

u’’ x(u’’)

Figure 2: The material coordinates define a 3D parameterization of
the object. The function ()maps points from their location in the
material coordinate frame to their location in the world coordinates.
A fracture corresponds to a discontinuity in ().

We derive our deformation technique by defining a set of differ-
ential equations that describe the aggregate behavior of the material
in a continuous fashion, and then using a finite element method to
discretize these equations for computer simulation. This approach
is fairly standard, and many different deformation models can be
derived in this fashion. The one presented here was designed to be
simple, fast, and suitable for fracture modeling.

3.1 Continuous Model

Our continuous model is based on continuum mechanics, and an ex-
cellent introduction to this area can be found in the text by Fung [7].
The primary assumption in the continuum approach is that the
scale of the effects being modeled is significantly greater than the
scale of the material’s composition. Therefore, the behavior of the
molecules, grains, or particles that compose the material can be
modeled as a continuous media. Although this assumption is often
valid for modeling deformations, macroscopic fractures can be sig-
nificantly influenced by effects that occur at small scales where this
assumption may not be valid. Because we are interested in graph-
ical appearance rather than rigorous physical correctness, we will
put this issue aside and assume that a continuum model is adequate.
We begin the description of the continuous model by defining

material coordinates that parameterize the volume of space occu-
pied by the object being modeled. Let = [u, v, w]T be a vector
in !3 that denotes a location in the material coordinate frame as
shown in Figure 2. The deformation of the material is defined by
the function () = [x, y, z]T that maps locations in the material
coordinate frame to locations in world coordinates. In areas where
material exists, () is continuous, except across a finite number
of surfaces within the volume that correspond to fractures in the
material. In areas where there is no material, () is undefined.
We make use of Green’s strain tensor, , to measure the local

deformation of the material [6]. It can be represented as a 3 × 3
symmetric matrix defined by

εij =

(
∂
∂ui

· ∂
∂uj

)
− δij (1)

where δij is the Kronecker delta:

δij =

{
1 : i = j
0 : i $= j . (2)

This strain metric only measures deformation; it is invariant with re-
spect to rigid body transformations applied to and vanishes when
the material is not deformed. It has been used extensively in the
engineering literature. Because it is a tensor, its invariants do not
depend on the orientation of the material coordinate or world sys-
tems. The Euclidean metric tensor used by Terzopoulos and Fleis-
cher [18] differs only by the δij term.
In addition to the strain tensor, we make use of the strain rate

tensor, , which measures the rate at which the strain is changing.

138

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Example

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Another Example
V

id
eo

 fo
ot

ag
e

©
 L

uc
as

A
rt

s,
 u

se
d

w
it

h
pe

rm
is

si
on

.

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Strain

Strain measures deformation

Purely geometric

Example: simple strain in a bar

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Strain

Green’s strain tensor

Vanishes when not deformed

Only measures deformation

Does not depend on the coordinate system

✏ij =

@x

@ui
· @x

@uj

!
� �ij

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Strain

Green’s strain tensor

✏ij =

@x

@ui
· @x

@uj

!
� �ij

l2x � l2u = d · ✏ · d

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Strain

Cauchy’s strain tensor

Linearization of Green’s strain tensor

Vanishes when not deformed

Not invariant w.r.t rotations

⇥ij =
1
2

�
⇤xi

⇤uj
+

⇤xj

⇤ui

⇥
� �ij

lx � lu ⇤ d · � · d

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Linearization Errors

We’ll fix this problem later...

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Strain Rate

Time derivative of Green’s strain tensor

Measures rate of deformation

Used for internal damping

✏̇ij =

@x

@ui
· @ẋ

@uj

!
+

@ẋ

@ui
· @x

@uj

!

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Strain Rate

Time derivative of Cauchy’s strain tensor

Measures rate of deformation

Used for internal damping

�̇ij =
1
2

�
⇥ẋi

⇥uj
+

⇥ẋj

⇥ui

⇥

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Stress

Stress determines internal forces

Measures how much material “wants” to return to
original shape

t = � · n̂

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Stress due to Strain (linear)

Constitutive parameters

f = kd

Generalization of

�(✏)
ij = Cijkl✏kl

<latexit sha1_base64="RW9fgNeyHkcx3nUUrLIgUQ21ogE=">AAACGnicbZDLSgMxFIYz9VbrbdSlm2ARKsgwI4IXEIrduGzBXqBTh0yatrGZzJBkhDLMc+jCxxBcuXGhiDtx49uYtgraeiDw5f/PITm/HzEqlW1/GpmZ2bn5hexibml5ZXXNXN+oyTAWmFRxyELR8JEkjHJSVVQx0ogEQYHPSN3vl4Z+/ZoISUN+oQYRaQWoy2mHYqS05JmOK2k3QJdJwSWRpCzku6mX0KsUnsLSEPoshT+Wl+ibZ+Ztyx4VnAbnG/JF6+T+Ya9yW/bMd7cd4jggXGGGpGw6dqRaCRKKYkbSnBtLEiHcR13S1MhRQGQrGa2Wwh2ttGEnFPpwBUfq74kEBVIOAl93Bkj15KQ3FP/zmrHqHLUSyqNYEY7HD3ViBlUIhznBNhUEKzbQgLCg+q8Q95BAWOk0czoEZ3LlaajtW86BdVzRaZyBcWXBFtgGBeCAQ1AE56AMqgCDG/AInsGLcWc8Ga/G27g1Y3zPbII/ZXx8AWU4pL4=</latexit>

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Stress due to Strain (linear, isotropic)

�
(✏)
ij =

3X

k=1

�✏kk�ij + 2µ✏ij

Elastic (Lamé) Constants

f = kd

Generalization of
(in)compressibility
rigidity

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Stress due to Rate

f = cv
�

�(⌫)
ij =

3X

k=1

 ✏̇kk�ij + 2 ✏̇ij

Damping Constants

Generalization of

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Energy Potentials

Generalization of

Generalization of

E =
1

2
kd2

E =
1

2
mv2

 =
1

2

3X

i=1

3X

j=1

�
(⌫)
ij ✏̇ij

⌘ =
1

2

3X

i=1

3X

j=1

�
(✏)
ij ✏ij

Elastic Energy Density

Kinetic Energy Density

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Discretization

Transition from continuous model to something we can
compute with...

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Finite Element Method

Disjoint elements tile material domain

Derivatives from shape functions

Nodes shared by adjacent elements

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Finite Element Method

Disjoint elements tile material domain

Derivatives from shape functions

Nodes shared by adjacent elements

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

FEM Discretization

Solid volumes

Tetrahedral elements

Linear shape functions

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

FEM Discretization

Each element defined by four nodes

• m - location in material (local) coordinates

• p - position in world coordinates

• v - velocity in world coordinates

• Each element defined by four nodes
• m - location in material (local) coordinates
• p - position in world coordinates
• v - velocity in world coordinates

ACM SIGGRAPH 99, Los Angeles, California, August 8–13, 1999

(a) (b)

Figure 4: Tetrahedral mesh for a simple object. In (a), only the ex-
ternal faces of the tetrahedra are drawn; in (b) the internal structure
is shown.

(a) (b)
m [2]

m [1]

m [3]

m [4]

p [1]

p [2]
p [3]

p [4]

v [1]

v [2]

v [3]

v [4]

Figure 5: A tetrahedral element is defined by its four nodes. Each
node has (a) a location in the material coordinate system and (b) a
position and velocity in the world coordinate system.

degrees of freedom for deformation, they have few degrees of free-
dom for modeling fracture because the shape of a fracture is defined
as a boundary in material coordinates. In contrast, with linear tetra-
hedra, each degree of freedom in the world space corresponds to a
degree of freedom in the material coordinates. Furthermore, when-
ever an element is created, its basis functions must be computed.
For high-degree polynomials, this computation is relatively expen-
sive. For systems where the mesh is constant, the cost is amortized
over the course of the simulation. However, as fractures develop
and parts of the object are remeshed, the computation of basis ma-
trices can become significant.

Each tetrahedral element is defined by four nodes. A node has
a position in the material coordinates, , a position in the world
coordinates, , and a velocity in world coordinates, . We will refer
to the nodes of a given element by indexing with square brackets.
For example, [2] is the position in material coordinates of the
element’s second node. (See Figure 5.)

Barycentric coordinates provide a natural way to define the linear
shape functions within an element. Let = [b1, b2, b3, b4]T be
barycentric coordinates defined in terms of the element’s material
coordinates so that

[
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
. (12)

These barycentric coordinates may also be used to interpolate the
node’s world position and velocity with

[
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
(13)

[
˙
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
. (14)

To determine the barycentric coordinates of a point within the
element specified by its material coordinates, we invert (12) and
obtain

=
[

1

]
(15)

where is defined by

=
[

[1]

1
[2]

1
[3]

1
[4]

1

]−1

. (16)

Combining (15) with (13) and (14) yields functions that interpolate
the world position and velocity within the element in terms of the
material coordinates:

() =
[

1

]
(17)

˙ () =
[

1

]
(18)

where and are defined as

=
[

[1] [2] [3] [4]

]
(19)

=
[

[1] [2] [3] [4]

]
. (20)

Note that the rows of are the coefficients of the shape functions,
and needs to be computed only when an element is created or the
material coordinates of its nodes change. For non-degenerate ele-
ments, the matrix in (16) is guaranteed to be non-singular, however
elements that are nearly co-planar will cause to be ill-conditioned
and adversely affect the numerical stability of the system.
Computing the values of and within the element requires the

first partials of with respect to :

∂
∂ui

= i (21)

∂ ˙
∂ui

= i (22)

where

i = [δi1 δi2 δi3 0]T . (23)

Because the element’s shape functions are linear, these partials are
constant within the element.
The element will exert elastic and damping forces on its nodes.

The elastic force on the ith node, (ε)
[i] , is defined as the negative

partial of the elastic potential density, η, with respect to [i] inte-

grated over the volume of the element. Given (ε), , and the po-
sitions in world space of the four nodes we can compute the elastic
force by

(ε)
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσ(ε)
kl (24)

where

vol =
1
6
[([2] − [1])× ([3] − [1])] · ([4] − [1]) . (25)

Similarly, the damping force on the ith node, (ν)
[i] , is defined as

the partial of the damping potential density, κ, with respect to [i]

integrated over the volume of the element. This quantity can be
computed with

(ν)
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσ(ν)
kl . (26)

Summing these two forces, the total internal force that an element
exerts on a node is

el
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσkl , (27)

140

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Element Shape Functions

Barycentric coordinates

Invert to obtain basis matrix

where

"
u
1

#

=

"
m[1] m[2] m[3] m[4]

1 1 1 1

#

b

� =

"
m[1] m[2] m[3] m[4]

1 1 1 1

#�1

b = �

"
u
1

#

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Material Derivatives

World pos. as function of material coordinates

Derivative w.r.t. material coordinates

wherex(u) = P �

"
u
1

#

P =
h
p[1] p[2] p[3] p[4]

i

@x

@ui
= P �coli

⇥ij =
1
2

�
⇤xi

⇤uj
+

⇤xj

⇤ui

⇥
� �ij

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Recall

�
(✏)
ij =

3X

k=1

�✏kk�ij + 2µ✏ij

⌘ =
1

2

3X

i=1

3X

j=1

�
(✏)
ij ✏ij

⇥ij =
1
2

�
⇤xi

⇤uj
+

⇤xj

⇤ui

⇥
� �ij

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Node Forces

Combine derivative formula w/ equations for elastic
energy

Integrate over volume of element

Take derivative w.r.t. node positions

ACM SIGGRAPH 99, Los Angeles, California, August 8–13, 1999

(a) (b)

Figure 4: Tetrahedral mesh for a simple object. In (a), only the ex-
ternal faces of the tetrahedra are drawn; in (b) the internal structure
is shown.

(a) (b)
m [2]

m [1]

m [3]

m [4]

p [1]

p [2]
p [3]

p [4]

v [1]

v [2]

v [3]

v [4]

Figure 5: A tetrahedral element is defined by its four nodes. Each
node has (a) a location in the material coordinate system and (b) a
position and velocity in the world coordinate system.

degrees of freedom for deformation, they have few degrees of free-
dom for modeling fracture because the shape of a fracture is defined
as a boundary in material coordinates. In contrast, with linear tetra-
hedra, each degree of freedom in the world space corresponds to a
degree of freedom in the material coordinates. Furthermore, when-
ever an element is created, its basis functions must be computed.
For high-degree polynomials, this computation is relatively expen-
sive. For systems where the mesh is constant, the cost is amortized
over the course of the simulation. However, as fractures develop
and parts of the object are remeshed, the computation of basis ma-
trices can become significant.

Each tetrahedral element is defined by four nodes. A node has
a position in the material coordinates, , a position in the world
coordinates, , and a velocity in world coordinates, . We will refer
to the nodes of a given element by indexing with square brackets.
For example, [2] is the position in material coordinates of the
element’s second node. (See Figure 5.)

Barycentric coordinates provide a natural way to define the linear
shape functions within an element. Let = [b1, b2, b3, b4]T be
barycentric coordinates defined in terms of the element’s material
coordinates so that

[
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
. (12)

These barycentric coordinates may also be used to interpolate the
node’s world position and velocity with

[
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
(13)

[
˙
1

]
=

[
[1]

1
[2]

1
[3]

1
[4]

1

]
. (14)

To determine the barycentric coordinates of a point within the
element specified by its material coordinates, we invert (12) and
obtain

=
[

1

]
(15)

where is defined by

=
[

[1]

1
[2]

1
[3]

1
[4]

1

]−1

. (16)

Combining (15) with (13) and (14) yields functions that interpolate
the world position and velocity within the element in terms of the
material coordinates:

() =
[

1

]
(17)

˙ () =
[

1

]
(18)

where and are defined as

=
[

[1] [2] [3] [4]

]
(19)

=
[

[1] [2] [3] [4]

]
. (20)

Note that the rows of are the coefficients of the shape functions,
and needs to be computed only when an element is created or the
material coordinates of its nodes change. For non-degenerate ele-
ments, the matrix in (16) is guaranteed to be non-singular, however
elements that are nearly co-planar will cause to be ill-conditioned
and adversely affect the numerical stability of the system.
Computing the values of and within the element requires the

first partials of with respect to :

∂
∂ui

= i (21)

∂ ˙
∂ui

= i (22)

where

i = [δi1 δi2 δi3 0]T . (23)

Because the element’s shape functions are linear, these partials are
constant within the element.
The element will exert elastic and damping forces on its nodes.

The elastic force on the ith node, (ε)
[i] , is defined as the negative

partial of the elastic potential density, η, with respect to [i] inte-

grated over the volume of the element. Given (ε), , and the po-
sitions in world space of the four nodes we can compute the elastic
force by

(ε)
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσ(ε)
kl (24)

where

vol =
1
6
[([2] − [1])× ([3] − [1])] · ([4] − [1]) . (25)

Similarly, the damping force on the ith node, (ν)
[i] , is defined as

the partial of the damping potential density, κ, with respect to [i]

integrated over the volume of the element. This quantity can be
computed with

(ν)
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσ(ν)
kl . (26)

Summing these two forces, the total internal force that an element
exerts on a node is

el
[i] = −vol

2

4∑

j=1

[j]

3∑

k=1

3∑

l=1

βjlβikσkl , (27)

140

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Corotational Method

Factor out rotation using polar decomposition

• Cauchy strain without errors due to rotations

QT �x

�u

�x

�u

�x

�u
� QF

See paper by
Müller & Gross, 2004

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

Node Forces and Jacobian

f [i] = Q� n[i]

J [i][j] = �Q(�n[i]n
T
[j] + µ(n[i] · n[j])I + µn[j]n

T
[i])Q

T

Combine derivative formula w/ equations for elastic
energy

Integrate over volume of element

Take derivative w.r.t. node positions

Jacobian core is constant

• 12 x 12 made from little 3 x 3 blocksJ [i][j]

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

CS184/284A Ren Ng, James O’Brien

Extra material for 284A

V
id

eo
 fo

ot
ag

e
©

 P
ix

el
ux

 E
nt

er
ta

in
m

en
t,

 u
se

d
w

it
h

pe
rm

is
si

on
.

Numerical Integration

Ren Ng, James O’BrienCS184/284A

Euler’s Method

Euler’s Method (a.k.a. Forward Euler, Explicit)

• Simple iterative method

• Commonly used

• Only first order accurate

• Most often goes unstable (bad)

xt+�t = xt +�t ẋt

ẋt+�t = ẋt +�t ẍt
<latexit sha1_base64="tb160qKmd9vRZZjHifAuGjsKgjc=">AAACpHicfVHbSgMxEM2u93pb9dGXYPECStkVQX0QBH3QB6FV1xa625JNUw1mLySzYln2z/wK3/wb03YVe8GBkMOcMzmTmSARXIFtfxnmzOzc/MLiUml5ZXVt3drYfFJxKilzaSxi2QiIYoJHzAUOgjUSyUgYCFYPXq/6fP2NScXj6BF6CfND8hzxLqcEdKptfXhBLDqqF+ore89bGRx610wAwZDjvQs8Qef4EP8osHc0IvA6MWhV3gLPK00l/nv+j+h/k1+XtlW2K/Yg8CRwClBGRVTb1qc2oWnIIqCCKNV07AT8jEjgVLC85KWKJYS+kmfW1DAiIVN+Nphyjnd1poO7sdQnAjzI/q3ISKj6PWplSOBFjXP95DSumUL3zM94lKTAIjo06qYCQ4z7K8MdLhkF0dOAUMl1r5i+EEko6MWW9BCc8S9PAve4cl6xayfly9tiGotoG+2gA+SgU3SJblAVuYgaO8aNUTPuzX3zznww3aHUNIqaLTQSZusbLdfSwA==</latexit><latexit sha1_base64="tb160qKmd9vRZZjHifAuGjsKgjc=">AAACpHicfVHbSgMxEM2u93pb9dGXYPECStkVQX0QBH3QB6FV1xa625JNUw1mLySzYln2z/wK3/wb03YVe8GBkMOcMzmTmSARXIFtfxnmzOzc/MLiUml5ZXVt3drYfFJxKilzaSxi2QiIYoJHzAUOgjUSyUgYCFYPXq/6fP2NScXj6BF6CfND8hzxLqcEdKptfXhBLDqqF+ore89bGRx610wAwZDjvQs8Qef4EP8osHc0IvA6MWhV3gLPK00l/nv+j+h/k1+XtlW2K/Yg8CRwClBGRVTb1qc2oWnIIqCCKNV07AT8jEjgVLC85KWKJYS+kmfW1DAiIVN+Nphyjnd1poO7sdQnAjzI/q3ISKj6PWplSOBFjXP95DSumUL3zM94lKTAIjo06qYCQ4z7K8MdLhkF0dOAUMl1r5i+EEko6MWW9BCc8S9PAve4cl6xayfly9tiGotoG+2gA+SgU3SJblAVuYgaO8aNUTPuzX3zznww3aHUNIqaLTQSZusbLdfSwA==</latexit><latexit sha1_base64="tb160qKmd9vRZZjHifAuGjsKgjc=">AAACpHicfVHbSgMxEM2u93pb9dGXYPECStkVQX0QBH3QB6FV1xa625JNUw1mLySzYln2z/wK3/wb03YVe8GBkMOcMzmTmSARXIFtfxnmzOzc/MLiUml5ZXVt3drYfFJxKilzaSxi2QiIYoJHzAUOgjUSyUgYCFYPXq/6fP2NScXj6BF6CfND8hzxLqcEdKptfXhBLDqqF+ore89bGRx610wAwZDjvQs8Qef4EP8osHc0IvA6MWhV3gLPK00l/nv+j+h/k1+XtlW2K/Yg8CRwClBGRVTb1qc2oWnIIqCCKNV07AT8jEjgVLC85KWKJYS+kmfW1DAiIVN+Nphyjnd1poO7sdQnAjzI/q3ISKj6PWplSOBFjXP95DSumUL3zM94lKTAIjo06qYCQ4z7K8MdLhkF0dOAUMl1r5i+EEko6MWW9BCc8S9PAve4cl6xayfly9tiGotoG+2gA+SgU3SJblAVuYgaO8aNUTPuzX3zznww3aHUNIqaLTQSZusbLdfSwA==</latexit>

Ren Ng, James O’BrienCS184/284A

Euler’s Method and Instability

When mass is moving inward:

• Force is decreasing

• Each time-step overestimates the velocity change (increases
energy)

When mass gets to origin

• Has velocity that is too high, now traveling outward

When mass is moving outward

• Force is increasing

• Each time-step underestimates the velocity change (increases
energy)

At each motion cycle, mass gains energy exponentially

fa!b = ks(b� a)

Ren Ng, James O’BrienCS184/284A

Euler’s Method and Instability

-6 -4 -2 2 4 6

-1

-0.5

0.5

1 Ideal system:

• Preserves energy

• Cycle between kinetic and elastic

•

ET ≡ const

ET = EK + EE =
m ·x2

2
+

k x2

2Time

·xx

Base fixed at zero

Ren Ng, James O’BrienCS184/284A

Euler’s Method and Instability

-6 -4 -2 2 4 6

-1

-0.5

0.5

1 Ideal system:

• Preserves energy

• Cycle between kinetic and elastic

•

ET ≡ const

ET = EK + EE =
m ·x2

2
+

k x2

2Time

·xx

Base fixed at zero
Total acceleration is integral under curve.

Just Right Too Much!

Ren Ng, James O’BrienCS184/284A

Euler’s Method and Instability

-6 -4 -2 2 4 6

-1

-0.5

0.5

1 Ideal system:

• Preserves energy

• Cycle between kinetic and elastic

•

ET ≡ const

ET = EK + EE =
m ·x2

2
+

k x2

2Time

·xx

Base fixed at zero

When zero displacement reached,

going too fast!

Ren Ng, James O’BrienCS184/284A

Euler’s Method and Instability

-6 -4 -2 2 4 6

-1

-0.5

0.5

1 Ideal system:

• Preserves energy

• Cycle between kinetic and elastic

•

ET ≡ const

ET = EK + EE =
m ·x2

2
+

k x2

2Time

·xx

Base fixed at zero
Total deceleration is integral under curve.

Just Right Too Little!

Ren Ng, James O’BrienCS184/284A

Euler’s Method and Instability

-6 -4 -2 2 4 6

-1

-0.5

0.5

1 Ideal system:

• Preserves energy

• Cycle between kinetic and elastic

•

ET ≡ const

ET = EK + EE =
m ·x2

2
+

k x2

2Time

·xx

Base fixed at zero

Overshoots symmetric location

d0 −d0 −d0 × (1 + α)

Ren Ng, James O’BrienCS184/284A

Euler’s Method and Instability

-6 -4 -2 2 4 6

-1

-0.5

0.5

1 Ideal system:

• Preserves energy

• Cycle between kinetic and elastic

•

ET ≡ const

ET = EK + EE =
m ·x2

2
+

k x2

2Time

·xx

Overshoots symmetric location

−d0 × (1 + α)#cycles
Exponential divergence!

Ren Ng, James O’BrienCS184/284A

Euler’s Method and Instability

Forward Euler (explicit) 
 
 
 
Two key problems:

• Inaccuracies increase as
time step Δt increases

• Instability is a common,
serious problem that
can cause simulation to
diverge

Two Problems

Inaccuracy:
Error turns x(t) from a
circle into the spiral of
your choice.

Instability: off to
Neptune!

Figure 4: Above: the real integral curves form concentric circles, but Euler’s method always spirals

outward, because each step on the current circle’s tangent leads to a circle of larger radius. Shrinking

the stepsize doesn’t cure the problem, but only reduces the rate at which the error accumulates.

Below: too large a stepsize can make Euler’s method diverge.

Moreover, Euler’s method can be unstable. Consider a 1D function f = −kx , which should
make the point p decay exponentially to zero. For sufficiently small step sizes we get reasonable

behavior, but when h > 1/k, we have |!x | > |x |, so the solution oscillates about zero. Beyond
h = 2/k, the oscillation diverges, and the system blows up. See figure 4.

Finally, Euler’s method isn’t even efficient. Most numerical solution methods spend nearly all

their time performing derivative evaluations, so the computational cost per step is determined by

the number of evaluations per step. Though Euler’s method only requires one evaluation per step,

the real efficiency of a method depends on the size of the steps it lets you take—while preserving

accuracy and stability—as well as on the cost per step. More sophisticated methods, even some re-

quiring as many as four or five evaluations per step, can greatly outperform Euler’s method because

their higher cost per step is more than offset by the larger stepsizes they allow.

To understand how we go about improving on Euler’s method, we need to look more closely at

the error that the method produces. The key to understanding what’s going on is the Taylor series:

Assuming x(t) is smooth, we can express its value at the end of the step as an infinite sum involving

the the value and derivatives at the beginning:

x(t0 + h) = x(t0) + hẋ(t0) + h2

2!
ẍ(t0) + h3

3!
x˙̇ ˙(t0) + . . . + hn

n!

∂nx

∂tn
+ . . .

As you can see, we get the Euler update formula by truncating the series, discarding all but the

first two terms on the right hand side. This means that Euler’s method would be correct only if

all derivatives beyond the first were zero, i.e. if x(t) were linear. The error term, the difference

SIGGRAPH ’97 COURSE NOTES B4 PHYSICALLY BASEDMODELING

Two Problems

Inaccuracy:
Error turns x(t) from a
circle into the spiral of
your choice.

Instability: off to
Neptune!

Figure 4: Above: the real integral curves form concentric circles, but Euler’s method always spirals

outward, because each step on the current circle’s tangent leads to a circle of larger radius. Shrinking

the stepsize doesn’t cure the problem, but only reduces the rate at which the error accumulates.

Below: too large a stepsize can make Euler’s method diverge.

Moreover, Euler’s method can be unstable. Consider a 1D function f = −kx , which should
make the point p decay exponentially to zero. For sufficiently small step sizes we get reasonable

behavior, but when h > 1/k, we have |!x | > |x |, so the solution oscillates about zero. Beyond
h = 2/k, the oscillation diverges, and the system blows up. See figure 4.

Finally, Euler’s method isn’t even efficient. Most numerical solution methods spend nearly all

their time performing derivative evaluations, so the computational cost per step is determined by

the number of evaluations per step. Though Euler’s method only requires one evaluation per step,

the real efficiency of a method depends on the size of the steps it lets you take—while preserving

accuracy and stability—as well as on the cost per step. More sophisticated methods, even some re-

quiring as many as four or five evaluations per step, can greatly outperform Euler’s method because

their higher cost per step is more than offset by the larger stepsizes they allow.

To understand how we go about improving on Euler’s method, we need to look more closely at

the error that the method produces. The key to understanding what’s going on is the Taylor series:

Assuming x(t) is smooth, we can express its value at the end of the step as an infinite sum involving

the the value and derivatives at the beginning:

x(t0 + h) = x(t0) + hẋ(t0) + h2

2!
ẍ(t0) + h3

3!
x˙̇ ˙(t0) + . . . + hn

n!

∂nx

∂tn
+ . . .

As you can see, we get the Euler update formula by truncating the series, discarding all but the

first two terms on the right hand side. This means that Euler’s method would be correct only if

all derivatives beyond the first were zero, i.e. if x(t) were linear. The error term, the difference

SIGGRAPH ’97 COURSE NOTES B4 PHYSICALLY BASEDMODELING

W
itkin and Baraff

xt+�t = xt +�tv(x, t)t
<latexit sha1_base64="LrLmWxd2lQCNLGZVU6vAMxN0FLg=">AAACTXicbVFNSwMxEM3W7/pV9eglWJRKS9mKoB4EQQ96U7Ba6LYlm07b0OwHyaxYlv2FXsSbP8OLBxUxWytY60DI4703zOTFDaXQaNvPVmZqemZ2bn4hu7i0vLKaW1u/0UGkOFR5IANVc5kGKXyookAJtVAB81wJt27/NNVv70BpEfjXOAih4bGuLzqCMzRUKweOG8i2Hnjmiu+TZoxF5wwkMooJ3TmmE3JCi/THQZ3SmOEuKYz7S7jbRMfJtnJ5u2wPi06CygjkyaguW7knpx3wyAMfuWRa1yt2iI2YKRRcQpJ1Ig0h433WhbqBPvNAN+JhHAndNkybdgJljo90yP7uiJmn0xWN02PY03+1lPxPq0fYOWzEwg8jBJ9/D+pEkmJA02xpWyjgKAcGMK6E2ZXyHlOMo/mBNITK3ydPgupe+ahsX+3nTy5GacyTTbJFCqRCDsgJOSeXpEo4eSAv5I28W4/Wq/VhfX5bM9aoZ4OMVWbuC2MrtVA=</latexit><latexit sha1_base64="LrLmWxd2lQCNLGZVU6vAMxN0FLg=">AAACTXicbVFNSwMxEM3W7/pV9eglWJRKS9mKoB4EQQ96U7Ba6LYlm07b0OwHyaxYlv2FXsSbP8OLBxUxWytY60DI4703zOTFDaXQaNvPVmZqemZ2bn4hu7i0vLKaW1u/0UGkOFR5IANVc5kGKXyookAJtVAB81wJt27/NNVv70BpEfjXOAih4bGuLzqCMzRUKweOG8i2Hnjmiu+TZoxF5wwkMooJ3TmmE3JCi/THQZ3SmOEuKYz7S7jbRMfJtnJ5u2wPi06CygjkyaguW7knpx3wyAMfuWRa1yt2iI2YKRRcQpJ1Ig0h433WhbqBPvNAN+JhHAndNkybdgJljo90yP7uiJmn0xWN02PY03+1lPxPq0fYOWzEwg8jBJ9/D+pEkmJA02xpWyjgKAcGMK6E2ZXyHlOMo/mBNITK3ydPgupe+ahsX+3nTy5GacyTTbJFCqRCDsgJOSeXpEo4eSAv5I28W4/Wq/VhfX5bM9aoZ4OMVWbuC2MrtVA=</latexit><latexit sha1_base64="LrLmWxd2lQCNLGZVU6vAMxN0FLg=">AAACTXicbVFNSwMxEM3W7/pV9eglWJRKS9mKoB4EQQ96U7Ba6LYlm07b0OwHyaxYlv2FXsSbP8OLBxUxWytY60DI4703zOTFDaXQaNvPVmZqemZ2bn4hu7i0vLKaW1u/0UGkOFR5IANVc5kGKXyookAJtVAB81wJt27/NNVv70BpEfjXOAih4bGuLzqCMzRUKweOG8i2Hnjmiu+TZoxF5wwkMooJ3TmmE3JCi/THQZ3SmOEuKYz7S7jbRMfJtnJ5u2wPi06CygjkyaguW7knpx3wyAMfuWRa1yt2iI2YKRRcQpJ1Ig0h433WhbqBPvNAN+JhHAndNkybdgJljo90yP7uiJmn0xWN02PY03+1lPxPq0fYOWzEwg8jBJ9/D+pEkmJA02xpWyjgKAcGMK6E2ZXyHlOMo/mBNITK3ydPgupe+ahsX+3nTy5GacyTTbJFCqRCDsgJOSeXpEo4eSAv5I28W4/Wq/VhfX5bM9aoZ4OMVWbuC2MrtVA=</latexit>

Ren Ng, James O’BrienCS184/284A

Integration Errors Accumulate

100 10
4

100

10

4

Evaluating known function (a circle)

Integrating first derivative

Ren Ng, James O’BrienCS184/284A

Errors and Instability

Solving by numerical integration with finite differences leads
to two problems

Errors

• Errors at each time step accumulate. Accuracy decreases
as simulation proceeds

• Accuracy may not be critical in graphics applications

Instability

• Errors can compound, causing the simulation to diverge
even when the underlying system does not

• Lack of stability is a fundamental problem in simulation,
and cannot be ignored

Combating Instability

Ren Ng, James O’BrienCS184/284A

Some Methods to Combat Instability

Modified Euler

• Average velocities at start and endpoint

Adaptive step size

• Compare one step and two half-steps, recursively, until
error is acceptable

Implicit methods

• Use the velocity at the next time step (hard)

Position-based / Verlet integration

• Constrain positions and velocities of particles after
time step

Ren Ng, James O’BrienCS184/284A

Modified Euler

Modified Euler

• Average velocity at start and end of step

• OK if system is not very stiff (e.g.: ks is small)

• But, still unstable

ẋt+�t = ẋt + �t ẍt

xt+�t = xt +
�t

2
(ẋt + ẋt+�t)

xt+�t = xt + �t ẋt +
(�t)2

2
ẍt

Adaptive Step Size

Adaptive step size

• Technique for choosing step size
based on error estimate

• Highly recommended technique

• But may need very small steps!

Repeat until error is below threshold:

• Compute xT an Euler step, size T

• Compute xT/2 two Euler steps, size T/2

• Compute error || xT – xT/2 ||

• If (error > threshold) reduce step size
and try again

Slide credit: Funkhouser

xT

xT/2

Ren Ng, James O’BrienCS184/284A

Implicit Euler Method

Implicit methods

• Informally called backward methods

• Use derivatives in the future, for the current step

𝒦(xt) + 𝒟(xt, ·xt) + M ··x = ft

𝒦(xt+Δt) + 𝒟(xt+Δt, ·xt+Δt) + M ··x = ft

Forward/Explicit Euler

Backward/Implicit Euler

Red variables are unknown.

Ren Ng, James O’BrienCS184/284A

Implicit Euler Method

Implicit methods

• Informally called backward methods

• Use derivatives in the future, for the current step

𝒦(xt) + 𝒟(xt, ·xt) + M ··x = ft
Forward/Explicit Euler

Backward/Implicit Euler

𝒦(xt+Δx) + 𝒟(xt+Δx, ·xt+Δ ·x) + M ··x = ft

Δx = Δt ·xt+Δt

Δ ·x = Δt ··x } Substitute and solve for ··x

Ren Ng, James O’BrienCS184/284A

Implicit Euler Method

Implicit methods

• Informally called backward methods

• Use derivatives in the future, for the current step

𝒦(xt) + 𝒟(xt, ·xt) + M ··x = ft
Forward/Explicit Euler

Semi-Implicit Euler / Linearized Implicit Euler (also one Newton solve)

K ⋅ (xt+Δx) + D ⋅ (·xt+Δ ·x) + M ⋅ ··x = ft

} Substitute and solve for ··x
Δx = Δt ·xt+Δt

Δ ·x = Δt ··x

Ren Ng, James O’BrienCS184/284A

Implicit Euler Method

Implicit methods

• Informally called backward methods

• Use derivatives in the future, for the current step

• Solve nonlinear problem for

• Use root-finding algorithm, e.g. Newton’s method

• Can be made unconditionally stable

• Dump energy and may look over-damped

··x

Ren Ng, James O’BrienCS184/284A

Position-Based / Verlet Integration

Idea:

• After modified Euler forward-step, constrain positions
of particles to prevent divergent, unstable behavior

• Use constrained positions to calculate velocity

• Both of these ideas will dissipate energy, stabilize

Pros / cons

• Fast and simple

• Dissipates energy in constraints

• Highly recommended (assignment)

CS184/284A Ren Ng, James O’Brien

Position-Based / Verlet Integration

J. Bender, M. Müller and M. Macklin / Position-Based Simulation Methods in Computer Graphics

4. The Core Of Position Based Dynamics

In this section we present Position-Based Dynamics (PBD),
an approach which omits the velocity and acceleration layer
and immediately works on the positions [MHHR07]. We
will first describe the basic idea and the simulation algo-
rithm of PBD. Then we will focus specifically on how to
solve the system of constraints that describe the object to be
simulated.

In the following the position-based approach is introduced
first for particle systems. An extension to handle rigid bodies
is presented in Section 5.9.

4.1. The Algorithm

The objects to be simulated are represented by a set of N
particles and a set of M constraints. For each constraint we
introduce a stiffness parameter k which defines the strength
of the constraint in a range from zero to one. This gives a
user more control over the elasticity of a body.

4.1.1. Time Integration

Algorithm 1 Position-based dynamics
1: for all vertices i do
2: initialize xi = x0

i , vi = v0
i , wi = 1/mi

3: end for
4: loop
5: for all vertices i do vi vi +Dtwifext(xi)
6: for all vertices i do pi xi +Dtvi
7: for all vertices i do genCollConstraints(xi! pi)
8: loop solverIteration times
9: projectConstraints(C1, . . . ,CM+MColl ,p1, . . . ,pN)

10: end loop
11: for all vertices i do
12: vi (pi�xi)/Dt
13: xi pi
14: end for
15: velocityUpdate(v1, . . . ,vN)
16: end loop

Given this data and a time step Dt, the simulation proceeds
as described by Algorithm 1. Since the algorithm simulates
a system which is second order in time, both the positions
and the velocities of the particles need to be specified in (1)-
(3) before the simulation loop starts. Lines (5)-(6) perform
a simple symplectic Euler integration step on the velocities
and the positions. The new locations pi are not assigned to
the positions directly but are only used as predictions. Non-
permanent external constraints such as collision constraints
are generated at the beginning of each time step from scratch
in line (7). Here the original and the predicted positions are
used in order to perform continuous collision detection. The
solver (8)-(10) then iteratively corrects the predicted posi-
tions such that they satisfy the Mcoll external as well as the

M internal constraints. Finally, the corrected positions pi are
used to update the positions and the velocities. It is essential
here to update the velocities along with the positions. If this
is not done, the simulation does not produce the correct be-
havior of a second order system. As you can see, the integra-
tion scheme used here is very similar to the Verlet method. It
is also closely related to Jos Stam’s Nucleus solver [Sta09]
which also uses a set of contraints to describe the objects to
be simulated. The main difference is that Nucleus solves the
constraints for velocities, not positions.

4.1.2. Damping

The quality of dynamic simulations can generally be im-
proved by the incorporation of an appropriate damping
scheme. As a positive effect, damping can improve the sta-
bility by reducing temporal oscillations of the point posi-
tions of an object. This enables the use of larger time steps
which increases the performance of a dynamic simulation.
On the other hand, damping changes the dynamic motion
of the simulated objects. The resulting effects can be either
desired, e.g. reduced oscillations of a deformable solid, or
disturbing, e.g. changes of the linear or angular momentum
of the entire object.

Generally, a damping term CẊ can be incorporated into
the motion equation of an object where Ẋ denotes the vector
of all first time derivatives of positions. If the user-defined
matrix C is diagonal, absolute velocities of the points are
damped, which sometimes is referred to as point damping. If
appropriately computed, such point damping forces result in
an improved numerical stability by reducing the acceleration
of a point. Such characteristics are desired in some settings,
e.g. in the context of friction. In the general case, however,
the overall slow-down of an object, caused by point damp-
ing forces, is not desired. Point damping forces are, e.g.,
used in [TF88] or in [PB88], where point damping is used
for dynamic simulations with geometric constraints such as
point-to-nail.

In order to preserve linear and angular momentum of
deformable objects, symmetric damping forces, usually re-
ferred to as spring damping forces, can be used. Such
forces can be represented by non-diagonal entries in the ma-
trix C. Damping forces are, e.g., described by Baraff and
Witkin [BW98] or Nealen et al. [NMK⇤06]. These forces
can also be applied to position-based methods. However, as
the approaches of Baraff and Witkin and Nealen et al. rely on
topological information of the object geometry, they cannot
be applied to meshless techniques such as shape matching.

Point and spring damping can be used to reduce cur-
rent velocities or relative velocities. However, it is generally
more appropriate to consider predicted velocities or relative
velocities for the next time step.

An interesting damping alternative has been presented
in [SGT09]. Here, the idea of symmetric, momentum-
conserving forces is extended to meshless representations.

© The Eurographics Association 2015.

Position-Based Simulation Methods in Computer Graphics

Bender, Müller, Macklin, Eurographics 2015

CS184/284A Ren Ng, James O’Brien

Projective Dynamics

Examples of Projective Dynamics

• Position Based Dynamics

• “Position Based Dynamics,” VRIPHYS 2006

• Provot’s Method

• “Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior,” GI 95

• Fast Springs

• “Fast Simulation of Mass-Spring Systems,” SIGGRAPH Asia 2013

• Shape Matching

• “Meshless Deformations Based on Shape Matching,” SIGGRAPH 2005

• and many others are examples of

CS184/284A Ren Ng, James O’Brien

Projective Dynamics
General Approach

• Separate system into stiff and non-stiff aspects

• Stiff expressed as constraints

• e.g.:

• Non-stiff expressed as forces

• e.g.:

• For each time step

• Integrate non-stiff stuff normally

• Enforce stiff constraints

• Update velocities to satisfy constraints

| |a − b | |−max_length ≤ 0

fa = kd(b − a)

Simulation as Constraint
Optimization

Ren Ng, James O’BrienCS184/284A

Simulation as Constraint Optimization
Standard view of simulation:

• Start with initial configuration, e.g.:

• Integrate forward, e.g.:

• Keep going until end of time

Optimization view

• Start with initial configuration, , and final
configuration, .

• Interpolate to get initial interior states,

• Minimize dynamics error over sequence

q = [x
·x]

qt+Δt = qt + Δq

qt0

qtN

{qt1, qt2, qt3, …, qtN−1}

Ren Ng, James O’BrienCS184/284A

Simulation as Constraint Optimization

Dynamics Error:

Add more constraints to provide controls.

Add energy terms to control qualities of motion.

Maybe add some control force terms.

Collisions can be annoying because they are
discontinuities.

E = ∑
i

((qt+Δt − qt + Δt ·qt)2 + (qt+Δt − qt + Δt ·qt+Δt))

CS184/284A Ren Ng, James O’Brien

Example: Galaxy Simulation

Disk galaxy simulation, NASA Goddard

Ren Ng, James O’BrienCS184/284A

Gravitational Attraction

Newton’s universal law of gravitation

• Gravitational pull between particles

Fg = G
m1m2

d2

G = 6.67428⇥ 10�11 Nm2kg�2

d

m1 m2

Example: Particle-Based Fluids

Macklin and Müller, Position Based Fluids , TOG 2013

Example: Granular Materials

Bell et al, “Particle-Based Simulation of Granular Materials”

Example: Flocking Birds

Example: Flocking Birds

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/)

http://www.red3d.com/cwr/boids/

Simulated Flocking as an ODE

Model each bird as a particle

Subject to very simple forces:

• attraction to center of neighbors

• repulsion from individual neighbors

• alignment toward average trajectory of neighbors

Simulate evolution of large particle system numerically

Emergent complex behavior (also seen in fish, bees, ...)

attraction repulsion alignment

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/) Slide credit: Keenan Crane

http://www.red3d.com/cwr/boids/

Example: Crowds

Where are the bottlenecks in a building plan?

Ren Ng, James O’BrienCS184/284A

Example: Crowds + “Rock” Dynamics

Ren Ng, James O’BrienCS184/284A

Acknowledgments

This slide set contain contributions from:

• Kayvon Fatahalian

• David Forsyth

• Pat Hanrahan

• Angjoo Kanazawa

• Steve Marschner

• Ren Ng

• James F. O’Brien

• Mark Pauly

