Lecture 19:

Introduction to Physical Simulation

Computer Graphics and Imaging UC Berkeley CS184/284A

Physically Based Animation

Generate motion of objects using numerical simulation

CS184/284A

Ren Ng, James O'Brien

Example: Cloth Simulation

Example: Fluids

Macklin and Müller, Position Based Fluids TOG 2013

Example: Fracture

Particle Systems

Single particles are very simple
Large groups can produce interesting effects
Supplement basic ballistic rules

- Gravity
- Friction, drag
- Collisions
- Force fields
- Springs
- Interactions

Karl Sims, SIGGRAPH 1990
Ren Ng, James O'Brien

Example: Hair

Example: Adaptive Simulation

 TVCG 2015

CS184/284A
Ren Ng, James O’Brien

Mass + Spring Systems

Example: Mass Spring Rope

Example: Mass Spring Mesh

A Simple Spring

$$
\begin{aligned}
& \mathbf{a}_{0-M W-\infty} \underset{-}{\mathbf{b}} \\
& \boldsymbol{f}_{a \rightarrow b}=k_{S}(\boldsymbol{b}-\boldsymbol{a}) \\
& \boldsymbol{f}_{b \rightarrow a}=-\boldsymbol{f}_{a \rightarrow b}
\end{aligned}
$$

Problem: this spring wants to have zero length

A Simple Spring

Energy potential

$$
\begin{gathered}
E=1 / 2 k_{S}(\boldsymbol{b}-\boldsymbol{a}) \cdot(\boldsymbol{b}-\boldsymbol{a}) \\
\boldsymbol{f}_{a \rightarrow b}=k_{S}(\boldsymbol{b}-\boldsymbol{a}) \\
\boldsymbol{f}_{b \rightarrow a}=-\boldsymbol{f}_{a \rightarrow b} \\
\boldsymbol{f}_{a}=-\nabla_{a} E=-\left[\frac{\partial E}{\partial a_{x}}, \frac{\partial E}{\partial a_{y}}, \frac{\partial E}{\partial a_{z}}\right]
\end{gathered}
$$

Non-Zero Length Spring

$$
\begin{aligned}
& \boldsymbol{a} \\
& \boldsymbol{f}_{a \rightarrow b}=k_{s} \frac{\boldsymbol{b}-\boldsymbol{a}}{\|\boldsymbol{b}-\boldsymbol{a}\|}(\|\boldsymbol{b}-\boldsymbol{a}\|-l)
\end{aligned}
$$

Problem: oscillates forever

Non-Zero Length Springs

Comments on Springs

Springs with zero rest length are linear
Springs with non-zero rest length are nonlinear

- Force magnitude linear w/ displacement (from rest length)
- Force direction is non-linear
- Singularity at $\|\boldsymbol{b}-\boldsymbol{a}\|=0$

Dot Notation for Derivatives

A dot above a variable indicated taking a derivative w.r.t. time. For example:

- x might be a variable indicating the position of something
- $\dot{\mathbf{x}}$ would be $\frac{d \mathbf{x}}{d t}$, i.e., velocity
- $\ddot{\mathbf{x}}$ would be $\frac{d^{2} \mathbf{x}}{d t^{2}}$, i.e., acceleration

Simple Motion Damping

Simple motion damping

$$
\xrightarrow{f} \dot{b} \quad \boldsymbol{f}=-k_{d} \dot{\boldsymbol{b}}
$$

- Behaves like viscous drag on motion
- Slows down motion in the direction of motion
- k_{d} is a damping coefficient
- "Mass-proportional" damping

Problem: slows down all motion

- Want a rusty spring's oscillations to slow down, but should it also fall to the ground more slowly?

Internal Damping for Spring

Damp only the internal, spring-driven motion

$$
-M-\quad \boldsymbol{f}_{a}=-k_{d} \frac{\boldsymbol{b}-\boldsymbol{a}}{\|\boldsymbol{b}-\boldsymbol{a}\|}(\dot{\boldsymbol{b}}-\dot{\boldsymbol{a}}) \cdot \frac{\boldsymbol{b}-\boldsymbol{a}}{\|\boldsymbol{b}-\boldsymbol{a}\|}
$$

- Viscous drag only on change in spring length
- Won't slow group motion for the spring system (e.g. global translation or rotation of the group)
- "Stiffness proportional" damping

Gravity

Gravity at earth's surface due to earth

- $F=-m g$
- m is mass of object
- g is gravitational acceleration, $\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
F_{g} & =-m g \\
g & =(0,0,-9.8) \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

Standard Form

Nonlinear

Linearized

$$
\mathscr{K}(\mathbf{x})+\mathscr{D}(\mathbf{x}, \dot{\mathbf{x}})+\mathscr{M}(\mathbf{x}, \dot{\mathbf{x}}, \ddot{\mathbf{x}})=\mathbf{f}
$$

$$
\mathbf{K} \mathbf{x}+\mathbf{D} \dot{\mathbf{x}}+\mathbf{M} \ddot{\mathbf{x}}=\mathbf{f}
$$

Zero-length springs result in constant K and D
Typically M is constant
We can keep M diagonal by "lumping" called a "Lumped Mass Matrix"

Spring Constants

Consider two "resolutions" to model a single spring

Problem: constant k_{s} produces different force on bottom spring for these two different discretizations

Spring Constants

Problem: constant k_{s} gives inconsistent results with different discretizations of our spring/mass structures

- E.g. 10×10 vs 20×20 mesh for cloth simulation would give different results, and we want them to be the same, just higher level of detail
Solution:
- Change in length is not what we want to measure
- We want to consider the strain = change in length as fraction of original length

$$
\epsilon=\frac{\Delta l}{l_{0}}
$$

- Implementation 1: divide spring force by spring length
- Implementation 2: normalize $\boldsymbol{k}_{\mathrm{s}}$ by spring length

Structures from Springs

Sheets

Blocks

Others

CS184/284A

Structures from Springs

Behavior is determined by structure linkages

This structure will not resist shearing

This structure will not resist out-of-plane bending...

Structures from Springs

Behavior is determined by structure linkages

This structure will resist shearing but has anisotropic bias

This structure will not resist out-of-plane bending either...

Structures from Springs

Behavior is determined by structure linkages

This structure will resist shearing. Less directional bias.

This structure will not resist out-of-plane bending either...

Structures from Springs

Spring structures will behave like what they are (obviously?)

This structure will resist shearing. Less directional bias.

This structure will resist out-of-plane bending
Red springs should be much weaker

Edge Springs (bending)

$$
u_{1}=|E| \frac{N_{1}}{\left|N_{1}\right|^{2}} \quad u_{2}=|E| \frac{N_{2}}{\left|N_{2}\right|^{2}}
$$

$$
u_{3}=\frac{\left(x_{1}-x_{4}\right) \cdot E}{|E|} \frac{N_{1}}{\left|N_{1}\right|^{2}}+\frac{\left(x_{2}-x_{4}\right) \cdot E}{|E|} \frac{N_{2}}{\left|N_{2}\right|^{2}}
$$

$$
u_{4}=-\frac{\left(x_{1}-x_{3}\right) \cdot E}{|E|} \frac{N_{1}}{\left|N_{1}\right|^{2}}-\frac{\left(x_{2}-x_{3}\right) \cdot E}{|E|} \frac{N_{2}}{\left|N_{2}\right|^{2}}
$$

$$
F_{i}^{e}=k^{e} \frac{|E|^{2}}{\left|N_{1}\right|+\left|N_{2}\right|} \sin (\theta / 2) u_{i}
$$

Bending Springs and Sharp Creases

Example: Mass Spring Dress + Character

FEM (Finite Element Method) Instead of Springs

FEM: Variety of Materials

More Accurate Materials

Linear force-displacement (stress-strain) relationship limiting

- Bi-phasic materials, e.g.: cloth, biological tissues, etc.
- Other nonlinear material behaviors

One-dimensional strain doesn't capture everything

- Anisotropic materials
- Volume-preserving
- Interaction between directional behaviors
- Spring coupling is ad hoc and undesirable

Solution: non-linear FEM

- Not much harder to implement than springs!

Basic FEM

FEM Problem Setup

Lagrangian Formulation

- Where in space did this material mode to?
- Commonly used for solid materials

Eulerian Formulation

- What material is at this location in space?
- Commonly used for fluids

Problem Setup

Lagrangian Formulation

- Where in space did this material mode to?
- Commonly used for solid materials

$$
\boldsymbol{x}=\boldsymbol{x}(\boldsymbol{u})
$$

Lagrangian Formulation

Deformation described by mapping from material (local) to word coordinates

Example

Another Example

CS184/284A
Ren Ng, James O'Brien

Strain

Strain measures deformation
Purely geometric
Example: simple strain in a bar

Strain

Green's strain tensor

$$
\epsilon_{i j}=\left(\frac{\partial \boldsymbol{x}}{\partial u_{i}} \cdot \frac{\partial \boldsymbol{x}}{\partial u_{j}}\right)-\delta_{i j}
$$

Vanishes when not deformed
Only measures deformation
Does not depend on the coordinate system

Strain

Green's strain tensor

$$
\begin{gathered}
\epsilon_{i j}=\left(\frac{\partial \boldsymbol{x}}{\partial u_{i}} \cdot \frac{\partial \boldsymbol{x}}{\partial u_{j}}\right)-\delta_{i j} \\
l_{x}^{2}-l_{u}^{2}=\boldsymbol{d} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{d}
\end{gathered}
$$

Strain

Cauchy's strain tensor

$$
\epsilon_{i j}=\frac{1}{2}\left(\frac{\partial x_{i}}{\partial u_{j}}+\frac{\partial x_{j}}{\partial u_{i}}\right)-\delta_{i j}
$$

Linearization of Green's strain tensor
Vanishes when not deformed
Not invariant w.r.t rotations

$$
l_{x}-l_{u} \approx \boldsymbol{d} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{d}
$$

CS184/284A

Linearization Errors

We'll fix this problem later...

Strain Rate

Time derivative of Green's strain tensor
Measures rate of deformation
Used for internal damping

$$
\dot{\epsilon}_{i j}=\left(\frac{\partial \boldsymbol{x}}{\partial u_{i}} \cdot \frac{\partial \dot{\boldsymbol{x}}}{\partial u_{j}}\right)+\left(\frac{\partial \dot{\boldsymbol{x}}}{\partial u_{i}} \cdot \frac{\partial \boldsymbol{x}}{\partial u_{j}}\right)
$$

Strain Rate

Time derivative of Cauchy's strain tensor
Measures rate of deformation
Used for internal damping

$$
\dot{\epsilon}_{i j}=\frac{1}{2}\left(\frac{\partial \dot{x}_{i}}{\partial u_{j}}+\frac{\partial \dot{x}_{j}}{\partial u_{i}}\right)
$$

Stress

Stress determines internal forces
Measures how much material "wants" to return to original shape

Stress due to Strain (linear)

$$
\sigma_{i j}^{(\epsilon)}=C_{i j k l} \epsilon_{k l}
$$

Constitutive parameters

Generalization of $f=k d$

Stress due to Strain (linear, isotropic)

Stress due to Rate

Energy Potentials

Elastic Energy Density

$$
\eta=\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \sigma_{i j}^{(\epsilon)} \epsilon_{i j}
$$

$$
\begin{aligned}
& \text { Generalization of } \\
& \qquad E=\frac{1}{2} k d^{2}
\end{aligned}
$$

Kinetic Energy Density

$$
\kappa=\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \sigma_{i j}^{(\nu)} \dot{\epsilon}_{i j}
$$

$$
\begin{aligned}
& \text { Generalization of } \\
& \qquad E=\frac{1}{2} m v^{2}
\end{aligned}
$$

Discretization

Transition from continuous model to something we can compute with...

Finite Element Method

Disjoint elements tile material domain
Derivatives from shape functions
Nodes shared by adjacent elements

CS184/284A

Finite Element Method

Disjoint elements tile material domain
Derivatives from shape functions
Nodes shared by adjacent elements

FEM Discretization

Solid volumes

Tetrahedral elements
Linear shape functions

CS184/284A
Ren Ng, James O'Brien

FEM Discretization

Each Element defined sby four nades

- \boldsymbol{m}^{m}-location in material (liaf (local) coordinates
- p - position in world coordinates
- $\boldsymbol{p}_{\mathrm{V}}$ - position in world coordinates
- \boldsymbol{v} - velocity in world coordinates

Element Shape Functions

Barycentric coordinates

$$
\left[\begin{array}{c}
\boldsymbol{u} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\boldsymbol{m}_{[1]} & \boldsymbol{m}_{[2]} & \boldsymbol{m}_{[3]} & \boldsymbol{m}_{[4]} \\
1 & 1 & 1 & 1
\end{array}\right] b
$$

Invert to obtain basis matrix

$$
\begin{array}{ll}
\boldsymbol{b}=\boldsymbol{\beta}\left[\begin{array}{l}
\boldsymbol{u} \\
1
\end{array}\right] & \text { where } \\
& \boldsymbol{\beta}=\left[\begin{array}{cccc}
m_{[1]} & m_{[2]} & m_{[3]} & m_{[4]} \\
1 & 1 & 1 & 1
\end{array}\right]^{-1}
\end{array}
$$

Material Derivatives

World pos. as function of material coordinates

$$
\boldsymbol{x}(\boldsymbol{u})=\boldsymbol{P} \boldsymbol{\beta}\left[\begin{array}{l}
\boldsymbol{u} \\
1
\end{array}\right] \quad \begin{aligned}
& \text { where } \\
& \boldsymbol{P}=\left[\boldsymbol{p}_{[1]} p_{[2]} p_{[3]} p_{[4]}\right]
\end{aligned}
$$

Derivative w.r.t. material coordinates

$$
\epsilon_{i j}=\frac{1}{2}\left(\frac{\partial x_{i}}{\partial u_{j}}+\frac{\partial x_{j}}{\partial u_{i}}\right)-\delta_{i j}
$$

$$
\begin{aligned}
& \epsilon_{i j}=\frac{1}{2}\left(\frac{\partial x_{i}}{\partial u_{j}}+\frac{\partial x_{j}}{\partial u_{i}}\right)-\delta_{i j} \\
& \sigma_{i j}^{(\epsilon)}=\sum_{k=1}^{3} \lambda \epsilon_{k k^{\prime}} \delta_{i j}+2 \mu \epsilon_{i j} \\
& \eta=\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \sigma_{i j}^{(\epsilon)} \epsilon_{i j}
\end{aligned}
$$

Node Forces

Combine derivative formula w/ equations for elastic energy
Integrate over volume of element
Take derivative w.r.t. node positions

$$
\boldsymbol{f}_{[i]}^{(\epsilon)}=-\frac{\mathrm{vol}}{2} \sum_{j=1}^{4} \boldsymbol{p}_{[j]} \sum_{k=1}^{3} \sum_{l=1}^{3} \beta_{j l} \beta_{i k} \sigma_{k l}^{(\epsilon)}
$$

Corotational Method

Factor out rotation using polar decomposition

- Cauchy strain without errors due to rotations

$$
\frac{\partial x}{\partial u} \rightarrow Q F
$$

Node Forces and Jacobian

Combine derivative formula w/ equations for elastic energy
Integrate over volume of element
Take derivative w.r.t. node positions

Jacobian core is constant

- 12×12 made from little 3×3 blolocks

Numerical Integration

Euler's Method

Euler's Method (a.k.a. Forward Euler, Explicit)

- Simple iterative method
- Commonly used
- Only first order accurate
- Most often goes unstable (bad)

$$
\begin{aligned}
\boldsymbol{x}^{t+\Delta t} & =\boldsymbol{x}^{t}+\Delta t \dot{\boldsymbol{x}}^{t} \\
\dot{\boldsymbol{x}}^{t+\Delta t} & =\dot{\boldsymbol{x}}^{t}+\Delta t \ddot{\boldsymbol{x}}^{t}
\end{aligned}
$$

Euler's Method and Instability

When mass is mgving inward:

- Force is decreasing
- Each time-step overestimates the velocity change (increases energy)

When mass gets to origin

- Has velocity that is too high, now traveling outward

When mass is moving outward

- Force is increasing
- Each time-step underestimates the velocity change (increases energy)

At each motion cycle, mass gains energy exponentially

Euler's Method and Instability

Ideal system:

- Preserves energy $E_{T} \equiv$ const
- Cycle between kinetic and elastic

$$
E_{T}=E_{K}+E_{E}=\frac{m \dot{x}^{2}}{2}+\frac{k x^{2}}{2}
$$

Base fixed at zero

Euler's Method and Instability

Ideal system:

- Preserves energy $E_{T} \equiv$ const
- Cycle between kinetic and elastic

$$
E_{T}=E_{K}+E_{E}=\frac{m \dot{x}^{2}}{2}+\frac{k x^{2}}{2}
$$

Base fixed at zero

Just Right

Too Much!

Total acceleration is integral under curve.
Ren Ng, James O’Brien

Euler's Method and Instability

Ideal system:

- Preserves energy $E_{T} \equiv$ const
- Cycle between kinetic and elastic
- $E_{T}=E_{K}+E_{E}=\frac{m \dot{x}^{2}}{2}+\frac{k x^{2}}{2}$

When zero displacement reached, going too fast!

Base fixed at zero

Euler's Method and Instability

Ideal system:

- Preserves energy $E_{T} \equiv$ const
- Cycle between kinetic and elastic

$$
E_{T}=E_{K}+E_{E}=\frac{m \dot{x}^{2}}{2}+\frac{k x^{2}}{2}
$$

Base fixed at zero

Euler's Method and Instability

Ideal system:

- Preserves energy $E_{T} \equiv$ const
- Cycle between kinetic and elastic
- $E_{T}=E_{K}+E_{E}=\frac{m \dot{x}^{2}}{2}+\frac{k x^{2}}{2}$

Overshoots symmetric location

Euler's Method and Instability

Ideal system:

- Preserves energy $E_{T} \equiv$ const
- Cycle between kinetic and elastic
- $E_{T}=E_{K}+E_{E}=\frac{m \dot{x}^{2}}{2}+\frac{k x^{2}}{2}$

Overshoots symmetric location

Exponential divergence!

$$
-d_{0} \times(1+\alpha)^{\# \text { cycles }}
$$

Euler's Method and Instability

Forward Euler (explicit)

$$
\boldsymbol{x}^{t+\Delta t}=\boldsymbol{x}^{t}+\Delta t \boldsymbol{v}(\boldsymbol{x}, t)
$$

Two key problems:

- Inaccuracies increase as time step Δt increases
- Instability is a common, serious problem that can cause simulation to diverge

Ren Ng, James O'Brien

Integration Errors Accumulate

Evaluating known function (a circle)

Integrating first derivative

CS184/284A

Errors and Instability

Solving by numerical integration with finite differences leads to two problems

Errors

- Errors at each time step accumulate. Accuracy decreases as simulation proceeds
- Accuracy may not be critical in graphics applications Instability
- Errors can compound, causing the simulation to diverge even when the underlying system does not
- Lack of stability is a fundamental problem in simulation, and cannot be ignored

Combating Instability

Some Methods to Combat Instability

Modified Euler

- Average velocities at start and endpoint

Adaptive step size

- Compare one step and two half-steps, recursively, until error is acceptable
Implicit methods
- Use the velocity at the next time step (hard)

Position-based / Verlet integration

- Constrain positions and velocities of particles after time step

Modified Euler

Modified Euler

- Average velocity at start and end of step
- OK if system is not very stiff (e.g.: \boldsymbol{k}_{s} is small)
- But, still unstable

$$
\begin{aligned}
\dot{\boldsymbol{x}}^{t+\Delta t} & =\dot{\boldsymbol{x}}^{t}+\Delta t \ddot{\boldsymbol{x}}^{t} \\
\boldsymbol{x}^{t+\Delta t} & =\boldsymbol{x}^{t}+\frac{\Delta t}{2}\left(\dot{\boldsymbol{x}}^{t}+\dot{\boldsymbol{x}}^{t+\Delta t}\right) \\
\boldsymbol{x}^{t+\Delta t} & =\boldsymbol{x}^{t}+\Delta t \dot{\boldsymbol{x}}^{t}+\frac{(\Delta t)^{2}}{2} \ddot{\boldsymbol{x}}^{t}
\end{aligned}
$$

Adaptive Step Size

Adaptive step size

- Technique for choosing step size based on error estimate
- Highly recommended technique
- But may need very small steps!

Repeat until error is below threshold:

- Compute \mathbf{x}_{T} an Euler step, size \mathbf{T}
- Compute $\mathrm{X}_{\mathrm{T} / 2}$ two Euler steps, size $\mathrm{T} / 2$
- Compute error || $\mathbf{x}_{T}-\mathbf{x}_{\mathrm{T} / 2} \|$
- If (error > threshold) reduce step size and try again

Slide credit: Funkhouser

Implicit Euler Method

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step

Forward/Explicit Euler

$$
\mathscr{K}\left(\mathbf{x}^{t}\right)+\mathscr{D}\left(\mathbf{x}^{t}, \dot{\mathbf{x}}^{t}\right)+\mathbf{M} \ddot{\mathbf{x}}=\mathbf{f}^{t}
$$

Backward/Implicit Euler

$$
\mathscr{K}\left(\mathbf{x}^{t+\Delta t}\right)+\mathscr{D}\left(\mathbf{x}^{t+\Delta t}, \dot{\mathbf{x}}^{t+\Delta t}\right)+\mathbf{M} \ddot{\mathbf{x}}=\mathbf{f}^{t}
$$

Red variables are unknown.

Implicit Euler Method

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step

Forward/Explicit Euler

$$
\mathscr{K}\left(\mathbf{x}^{t}\right)+\mathscr{D}\left(\mathbf{x}^{t}, \dot{\mathbf{x}}^{t}\right)+\mathbf{M} \ddot{\mathbf{x}}=\mathbf{f}^{t}
$$

Backward/Implicit Euler

$$
\mathscr{K}\left(\mathbf{x}^{t}+\Delta \mathbf{x}\right)+\mathscr{D}\left(\mathbf{x}^{t}+\Delta \mathbf{x}, \dot{\mathbf{x}}^{t}+\Delta \dot{\mathbf{x}}\right)+\mathbf{M} \ddot{\mathbf{x}}=\mathbf{f}^{t}
$$

CS184/284A

$$
\left.\begin{array}{l}
\Delta \mathbf{X}=\Delta t \dot{\mathbf{x}}^{t+\Delta t} \\
\Delta \dot{\mathbf{X}}=\Delta t \ddot{\mathbf{X}}
\end{array}\right\} \quad \int_{\text {Substitute and solve for } \ddot{\mathbf{x}}} \begin{array}{r}
\text { Ren Ng, James O’Brien }
\end{array}
$$

Implicit Euler Method

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step

Forward/Explicit Euler

$$
\mathscr{K}\left(\mathbf{x}^{t}\right)+\mathscr{D}\left(\mathbf{x}^{t}, \dot{\mathbf{x}}^{t}\right)+\mathbf{M} \ddot{\mathbf{x}}=\mathbf{f}^{t}
$$

Semi-Implicit Euler / Linearized Implicit Euler (also one Newton solve)

$$
\mathbf{K} \cdot\left(\mathbf{x}^{t}+\Delta \mathbf{x}\right)+\mathbf{D} \cdot\left(\dot{\mathbf{x}}^{t}+\Delta \dot{\mathbf{x}}\right)+\mathbf{M} \cdot \ddot{\mathbf{x}}=\mathbf{f}^{t}
$$

$$
\begin{aligned}
& \Delta \mathbf{x}=\Delta t \dot{\mathbf{x}}^{t+\Delta t} \\
& \Delta \dot{\mathbf{x}}=\Delta t \ddot{\mathbf{x}}
\end{aligned}
$$

Implicit Euler Method

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step
- Solve nonlinear problem for \ddot{x}
- Use root-finding algorithm, e.g. Newton's method
- Can be made unconditionally stable
- Dump energy and may look over-damped

Position-Based / Verlet Integration

Idea:

- After modified Euler forward-step, constrain positions of particles to prevent divergent, unstable behavior
- Use constrained positions to calculate velocity
- Both of these ideas will dissipate energy, stabilize

Pros/cons

- Fast and simple
- Dissipates energy in constraints
- Highly recommended (assignment)

Position-Based / Verlet Integration

```
Algorithm 1 Position-based dynamics
    for all vertices \(i\) do
        initialize \(\mathbf{x}_{i}=\mathbf{x}_{i}^{0}, \mathbf{v}_{i}=\mathbf{v}_{i}^{0}, w_{i}=1 / m_{i}\)
    end for
    loop
        for all vertices \(i\) do \(\mathbf{v}_{i} \leftarrow \mathbf{v}_{i}+\Delta t w_{i} \mathbf{f}_{\mathrm{ext}}\left(\mathbf{x}_{i}\right)\)
        for all vertices \(i\) do \(\mathbf{p}_{i} \leftarrow \mathbf{x}_{i}+\Delta t \mathbf{v}_{i}\)
        for all vertices \(i\) do genCollConstraints \(\left(\mathbf{x}_{i} \rightarrow \mathbf{p}_{i}\right)\)
        loop solverIteration times
            projectConstraints \(\left(C_{1}, \ldots, C_{M+M_{\text {Coll }}}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{N}\right)\)
        end loop
        for all vertices \(i\) do
            \(\mathbf{v}_{i} \leftarrow\left(\mathbf{p}_{i}-\mathbf{x}_{i}\right) / \Delta t\)
            \(\mathbf{x}_{i} \leftarrow \mathbf{p}_{i}\)
        end for
        velocityUpdate \(\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{N}\right)\)
    end loop
```


Position-Based Simulation Methods in Computer Graphics

Bender, Müller, Macklin, Eurographics 2015

Projective Dynamics

Examples of Projective Dynamics

- Position Based Dynamics
- "Position Based Dynamics," VRIPHYS 2006
- Provot's Method
- "Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior," GI 95
- Fast Springs
- "Fast Simulation of Mass-Spring Systems," SIGGRAPH Asia 2013
- Shape Matching
- "Meshless Deformations Based on Shape Matching," SIGGRAPH 2005
- and many others are examples of

Projective Dynamics

General Approach

- Separate system into stiff and non-stiff aspects
- Stiff expressed as constraints
- e.g.: ||a-b||-max_length ≤ 0
- Non-stiff expressed as forces
- e.g.: $\mathbf{f}_{a}=k_{d}(\mathbf{b}-\mathbf{a})$
- For each time step
- Integrate non-stiff stuff normally
- Enforce stiff constraints
- Update velocities to satisfy constraints

Simulation as Constraint Optimization

Simulation as Constraint Optimization

Standard view of simulation:

- Start with initial configuration, e.g.: $\mathbf{q}=\left[\begin{array}{l}\mathbf{x} \\ \dot{\mathbf{x}}\end{array}\right]$
- Integrate forward, e.g.: $\mathbf{q}^{t+\Delta t}=\mathbf{q}^{t}+\Delta \mathbf{q}$
- Keep going until end of time

Optimization view

- Start with initial configuration, $\mathbf{q}^{t_{0}}$, and final configuration, $\mathbf{q}^{t_{N}}$.
- Interpolate to get initial interior states, $\left\{\mathbf{q}^{t_{1}}, \mathbf{q}^{t_{2}}, \mathbf{q}^{t_{3}}, \ldots, \mathbf{q}^{t_{N-1}}\right\}$
- Minimize dynamics error over sequence

Simulation as Constraint Optimization

Dynamics Error:

$$
E=\sum_{i}\left(\left(\mathbf{q}^{t+\Delta t}-\mathbf{q}^{t}+\Delta t \dot{\mathbf{q}}^{t}\right)^{2}+\left(\mathbf{q}^{t+\Delta t}-\mathbf{q}^{t}+\Delta t \dot{\mathbf{q}}^{t+\Delta t}\right)\right)
$$

Add more constraints to provide controls.
Add energy terms to control qualities of motion.
Maybe add some control force terms.
Collisions can be annoying because they are discontinuities.

Example: Galaxy Simulation

Disk galaxy simulation, NASA Goddard

Gravitational Attraction

Newton's universal law of gravitation

- Gravitational pull between particles

Example: Particle-Based Fluids

Macklin and Müller, Position Based Fluids , TOG 2013

Example: Granular Materials

Bell et al, "Particle-Based Simulation of Granular Materials"

Example: Flocking Birds

Vildaboutimages

Example: Flocking Birds

Simulated Flocking as an ODE

Model each bird as a particle Subject to very simple forces:

- attraction to center of neighbors
- repulsion from individual neighbors
- alignment toward average trajectory of neighbors

Simulate evolution of large particle system numerically
Emergent complex behavior (also seen in fish, bees, ...)

attraction

repulsion

alignment

Example: Crowds

Where are the bottlenecks in a building plan?

Example: Crowds + "Rock" Dynamics

Acknowledgments

This slide set contain contributions from:

- Kayvon Fatahalian
- David Forsyth
- Pat Hanrahan
- Angjoo Kanazawa
- Steve Marschner
- Ren Ng
- James F. O’Brien
- Mark Pauly

