Lecture 19: Introduction to Physical Simulation

Computer Graphics and Imaging UC Berkeley CS184/284A

Physically Based Animation

Generate motion of objects using numerical simulation

CS184/284A

Example: Cloth Simulation

Rahul Narain, Armin Samii, James F. O'Brien SIGGRAPH Asia 2012

Example: Fluids

Macklin and Müller, Position Based Fluids TOG 2013

Example: Fracture

CS184/284A

Particle Systems

Single particles are very simple Large groups can produce interesting effects Supplement basic ballistic rules

- Gravity
- Friction, drag
- Collisions
- Force fields
- Springs
- Interactions

Karl Sims, SIGGRAPH 1990

CS184/284A

Example: Hair

Example: Adaptive Simulation

CS184/284A

Mass + Spring Systems

Example: Mass Spring Rope

Credit: Elizabeth Labelle, <u>https://youtu.be/Co8enp8CH34</u>

Example: Mass Spring Mesh

A Simple Spring

a b
$$f_{a \rightarrow b}$$

 $f_{b \rightarrow a}$

Problem: this spring wants to have zero length

CS184/284A

 $=k_{S}(\boldsymbol{b}-\boldsymbol{a})$ $=-\boldsymbol{f}_{a\rightarrow b}$

A Simple Spring

Energy potential

CS184/284A

Extra material for 284A

$E = 1/2 k_s (\boldsymbol{b} - \boldsymbol{a}) \cdot (\boldsymbol{b} - \boldsymbol{a})$ $\boldsymbol{f}_{a \to b} = k_s (\boldsymbol{b} - \boldsymbol{a})$ $\boldsymbol{f}_{b \to a} = -\boldsymbol{f}_{a \to b}$

 $\boldsymbol{f}_{a} = -\nabla_{a}E = -\left[\frac{\partial E}{\partial a_{x}}, \frac{\partial E}{\partial a_{y}}, \frac{\partial E}{\partial a_{z}}\right]$

Non-Zero Length Spring

$$\boldsymbol{f}_{a \rightarrow b} = k_{s} \frac{\boldsymbol{b} - \boldsymbol{a}}{||\boldsymbol{b} - \boldsymbol{a}||} (||\boldsymbol{b}|)$$

Problem: oscillates forever

CS184/284A

b - a || - l)Rest length

Non-Zero Length Springs

Extra material for 284A

$E = k_s (||\boldsymbol{b} - \boldsymbol{a}|| - l)^2$

Comments on Springs

Springs with zero rest length are linear

Springs with non-zero rest length are nonlinear

- Force *magnitude* linear w/ displacement (from rest length)
- Force direction is non-linear
- Singularity at $||\boldsymbol{b} \boldsymbol{a}|| = 0$

Dot Notation for Derivatives

A dot above a variable indicated taking a derivative w.r.t. time. For example:

• x might be a variable indicating the position of something

•
$$\dot{\mathbf{x}}$$
 would be $\frac{d\mathbf{x}}{dt}$, *i.e.*, velocity

•
$$\ddot{\mathbf{x}}$$
 would be $\frac{d^2 \mathbf{x}}{dt^2}$, i.e., accelerati

on

Simple Motion Damping

Simple motion damping

Behaves like viscous drag on motion

 $\underline{f} \quad \underline{b} \quad f = -k_d \dot{b}$

- Slows down motion in the direction of motion
- k_d is a damping coefficient
- "Mass-proportional" damping

Problem: slows down all motion

 Want a rusty spring's oscillations to slow down, but should it also fall to the ground more slowly?

Internal Damping for Spring

Damp only the internal, spring-driven motion

Viscous drag only on change in spring length

 Won't slow group motion for the spring system (e.g. global translation or rotation of the group)

"Stiffness proportional" damping

Gravity

Gravity at earth's surface due to earth

- F = -mg
- m is mass of object
- g is gravitational acceleration, $g = -9.8 m/s^2$

$$F_g = -mg$$

 $g = (0, 0, -9.8) \text{ m/s}^2$

Standard Form

Zero-length springs result in constant K and D Typically M is constant

We can keep M diagonal by "lumping" called a "Lumped Mass Matrix" CS184/284A

Spring Constants

Consider two "resolutions" to model a single spring

Problem: constant k_s produces different force on bottom spring for these two different discretizations

CS184/284A

Spring Constants

Problem: constant k_s gives inconsistent results with different discretizations of our spring/mass structures

- E.g. 10x10 vs 20x20 mesh for cloth simulation would give different results, and we want them to be the same, just higher level of detail
- Solution:
 - Change in length is not what we want to measure
 - We want to consider the strain = change in length as fraction of original length $\epsilon = \frac{-}{l_0}$
 - Implementation 1: divide spring force by spring length

Implementation 2: normalize k_s by spring length **CS184/284A**

Sheets

Others

CS184/284A

Behavior is determined by structure linkages

This structure will not resist shearing

This structure will not resist out-of-plane

Behavior is determined by structure linkages

but has anisotropic bias

bending either...

This structure will resist shearing

This structure will not resist out-of-plane

Behavior is determined by structure linkages

Less directional bias.

bending either...

This structure will resist shearing.

This structure will not resist out-of-plane

Spring structures will behave like what they are (obviously?)

Less directional bias.

bending

This structure will resist shearing.

This structure will resist out-of-plane

Red springs should be much weaker

Edge Springs (bending)

$$F_i^e = k^e \frac{|E|^2}{|N_1| + |N|}$$

CS184/284A

Extra material for 284A

 $\overline{V_2}$ sin ($\theta/2$) u_i

From Bridson et al., 2003

Extra material for 284A Bending Springs and Sharp Creases

CS184/284A

Example: Mass Spring Dress + Character

FEM (Finite Element Method) Instead of Springs

CS184/284A

FEM: Variety of Materials

CS184/284A

More Accurate Materials

Linear force-displacement (stress-strain) relationship limiting

- Bi-phasic materials, e.g.: cloth, biological tissues, etc.
- Other nonlinear material behaviors

One-dimensional strain doesn't capture everything

- Anisotropic materials
- Volume-preserving
- Interaction between directional behaviors
 - Spring coupling is ad hoc and undesirable

Solution: non-linear FEM

• Not much harder to implement than springs!

CS184/284A

Basic FEM

FEM Problem Setup

Lagrangian Formulation

- Where in space did this material mode to?
- Commonly used for solid materials

Eulerian Formulation

- What material is at this location in space?
- Commonly used for fluids

Extra material for 284A
Problem Setup

Lagrangian Formulation

- Where in space did this material mode to?
- Commonly used for solid materials

$$\boldsymbol{x} = \boldsymbol{x}(\boldsymbol{u})$$

Extra material for 284A

Lagrangian Formulation

Deformation described by mapping from material (local) to word coordinates

CS184/284A

Extra material for 284A

CS184/284A

Extra material for 284A

Another Example

Video footage © LucasArts, used with permission.

CS184/284A

Extra material for 284A

Strain measures deformation Purely geometric Example: simple strain in a bar

CS184/284A

Extra material for 284A

Green's strain tensor

$\epsilon_{ij} = \left(\frac{\partial \boldsymbol{x}}{\partial u_i} \cdot \frac{\partial \boldsymbol{x}}{\partial u_j}\right) - \delta_{ij}$ Vanishes when not deformed **Only measures deformation** Does not depend on the coordinate system

Extra material for 284A

Green's strain tensor

 $l_{\mathcal{X}}^{Z} - l_{\mathcal{U}}^{Z} = \boldsymbol{d} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{d}$

CS184/284A

Extra material for 284A

Cauchy's strain tensor

$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial x_i}{\partial u_j} + \frac{\partial x_j}{\partial u_i} \right) - \delta_{ij}$

Linearization of Green's strain tensor Vanishes when not deformed Not invariant w.r.t rotations

Extra material for 284A

$l_x - l_u \approx \boldsymbol{d} \cdot \boldsymbol{\epsilon} \cdot \boldsymbol{d}$ Ren Ng, James O'Brien

Linearization Errors

We'll fix this problem later...

CS184/284A

Extra material for 284A

Strain Rate

Time derivative of Green's strain tensor Measures rate of deformation **Used for internal damping**

Extra material for 284A

Strain Rate

Time derivative of Cauchy's strain tensor Measures rate of deformation Used for internal damping

CS184/284A

Extra material for 284A

Stress determines internal forces Measures how much material "wants" to return to original shape

CS184/284A

Extra material for 284A

Stress due to Strain (linear)

 $\sigma_{ij}^{(\epsilon)} = C_{ijkl} \epsilon_{kl}$ Constitutive parameters -

CS184/284A

Extra material for 284A

Generalization of

$$f = kd$$

Extra material for 284A Stress due to Strain (linear, isotropic)

CS184/284A

Generalization of

Stress due to Rate

CS184/284A

Extra material for 284A

Energy Potentials

Kinetic Energy Density

CS184/284A

Extra material for 284A

Generalization of $E = \frac{1}{2}kd^2$

Generalization of
$$E = \frac{1}{2}mv^2$$

Discretization

Transition from continuous model to something we can compute with...

Extra material for 284A

Finite Element Method

Disjoint elements tile material domain Derivatives from shape functions Nodes shared by adjacent elements

CS184/284A

Extra material for 284A

Finite Element Method

Disjoint elements tile material domain Derivatives from shape functions Nodes shared by adjacent elements

Extra material for 284A

FEM Discretization

Solid volumes Tetrahedral elements Linear shape functions

CS184/284A

Extra material for 284A

FEM Discretization

Each element defined sy four nodes

- *m*-location in material (a) coordinates m location in material (local) coordinates
- p position in world coordinates
 p position in world coordinates
 v velocity in world coordinates
- v velocity in world coordinates

CS184/284A

Extra material for 284A

(b)

Element Shape Functions

Barycentric coordinates

$$\begin{bmatrix} \boldsymbol{u} \\ 1 \end{bmatrix} = \begin{bmatrix} \boldsymbol{m}_{[1]} \ \boldsymbol{m}_{[2]} \ \boldsymbol{m}_{[3]} \ \boldsymbol{m}_{[4]} \\ 1 \ 1 \ 1 \ 1 \ 1 \end{bmatrix}$$

Invert to obtain basis matrix

$$m{b}=oldsymbol{eta}egin{bmatrix} m{u}\1\end{bmatrix}$$
 where $oldsymbol{eta}=egin{bmatrix} m{u}\1\end{bmatrix}$

CS184/284A

Extra material for 284A

$\begin{bmatrix} m{m}_{[1]} \ m{m}_{[2]} \ m{m}_{[3]} \ m{m}_{[4]} \\ 1 \ 1 \ 1 \ 1 \ 1 \end{bmatrix}^{-1}$

b

Material Derivatives

World pos. as function of material coordinates

$$oldsymbol{x}(oldsymbol{u}) = oldsymbol{P}oldsymbol{eta} \begin{bmatrix} oldsymbol{u} \\ 1 \end{bmatrix}$$
 where $oldsymbol{P}$ is $oldsymbol{P}$ is $oldsymbol{P}$ is $oldsymbol{P}$ is $oldsymbol{P}$ is the transformation of transformatio

Derivative w.r.t. material coordinates

CS184/284A

Extra material for 284A

ere

 $=\left[oldsymbol{p}_{\left[1
ight]} \ oldsymbol{p}_{\left[2
ight]} \ oldsymbol{p}_{\left[3
ight]} \ oldsymbol{p}_{\left[4
ight]}
ight]$

Recall

 $\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial x_i}{\partial u_j} + \frac{\partial x_j}{\partial u_i} \right) - \delta_{ij}$

 $\sigma_{ij}^{(\epsilon)} = \sum_{k=1}^{3} \lambda \epsilon_{kk} \delta_{ij} + 2\mu \epsilon_{ij}$ k=1

 $\eta = \frac{1}{2} \sum_{j=1}^{3} \sigma_{ij}^{(\epsilon)} \epsilon_{ij}$ i = 1, j = 1

CS184/284A

Extra material for 284A

Node Forces

Combine derivative formula w/ equations for elastic energy

Integrate over volume of element Take derivative w.r.t. node positions

$$m{f}_{[i]}^{(\epsilon)} = -rac{\mathrm{vol}}{2} \sum_{j=1}^{4} m{p}_{[j]} \sum_{k=1}^{3} \sum_{l=1}^{3} m{p}_{l}$$

CS184/284A

Extra material for 284A

Corotational Method

Factor out rotation using polar decomposition

• Cauchy strain without errors due to rotations $\frac{\partial x}{\partial u} o QF$

CS184/284A

Extra material for 284A

omposition e to rotations

Node Forces and Jacobian

- **Combine derivative formula w/ equations for elastic** energy
- Integrate over volume of element
- Take derivative w.r.t. node positions

Jacobian core is constant • 12 x 12 made from little 3 x 3Jblocks

$$oldsymbol{f}_{[i]} = oldsymbol{Q} \, oldsymbol{\sigma} \, oldsymbol{n}_{[i]}$$
 $oldsymbol{J}_{[i][j]} = -oldsymbol{Q}(\lambda oldsymbol{n}_{[i]} oldsymbol{n}_{[j]}^{\mathsf{T}} + \mu (oldsymbol{n}_{[i]} \cdot oldsymbol{n}_{[i]})$

CS184/28

Extra material for 284A

 $\boldsymbol{\mathcal{G}}_{[j]}) \boldsymbol{I} + \mu \boldsymbol{n}_{[j]} \boldsymbol{n}_{[i]}^{\mathsf{T}}) \boldsymbol{Q}^{\mathsf{T}}$

rien

CS184/284A

Extra material for 284A

Extra material for 284A

Numerical Integration

Euler's Method

Euler's Method (a.k.a. Forward Euler, Explicit)

- Simple iterative method
- Commonly used
- Only first order accurate
- Most often goes unstable (bad)

$$oldsymbol{x}^{t+\Delta t} = oldsymbol{x}^t + \Delta$$
 $oldsymbol{\dot{x}}^{t+\Delta t} = oldsymbol{\dot{x}}^t + \Delta$

 $\mathbf{x}^t \dot{\mathbf{x}}^t$

 $t \, \ddot{r}^t$

When mass is moving inward: $\mathbf{f}_{a \to b} = k_{S}(\mathbf{b} - \mathbf{a})$ • Force is decreasing

- Each time-step overestimates the velocity change (increases energy)

When mass gets to origin

Has velocity that is too high, now traveling outward

When mass is moving outward

- Force is increasing
- Each time-step underestimates the velocity change (increases energy)

At each motion cycle, mass gains energy exponentially

CS184/284A

Ideal system:

Base fixed at zero

• Preserves energy $E_T \equiv \text{const}$ Cycle between kinetic and elastic • $E_T = E_K + E_E = \frac{m \dot{x}^2}{2} + \frac{k x^2}{2}$

Ideal system:

Base fixed at zero

CS184/284A

• Preserves energy $E_T \equiv \text{const}$ Cycle between kinetic and elastic • $E_T = E_K + E_E = \frac{m \dot{x}^2}{2} + \frac{k x^2}{2}$

Total *acceleration* is integral under curve.

Ideal system:

going too fast!

CS184/284A

• Preserves energy $E_T \equiv \text{const}$ Cycle between kinetic and elastic • $E_T = E_K + E_E = \frac{m \dot{x}^2}{2} + \frac{k x^2}{2}$

When zero displacement reached,

Ideal system:

• Preserves energy $E_T \equiv \text{const}$ Cycle between kinetic and elastic • $E_T = E_K + E_E = \frac{m \dot{x}^2}{2} + \frac{k x^2}{2}$

Total *deceleration* is integral under curve.
Euler's Method and Instability

CS184/284A

• Preserves energy $E_T \equiv \text{const}$ Cycle between kinetic and elastic • $E_T = E_K + E_E = \frac{m \dot{x}^2}{2} + \frac{k x^2}{2}$

Overshoots symmetric location

Euler's Method and Instability

Ideal system:

Overshoots symmetric location

Exponential divergence!

• Preserves energy $E_T \equiv \text{const}$ Cycle between kinetic and elastic • $E_T = E_K + E_E = \frac{m \dot{x}^2}{2} + \frac{k x^2}{2}$

 $-d_0 \times (1 + \alpha)^{\text{#cycles}}$

Euler's Method and Instability

Forward Euler (explicit)

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \Delta t \, \boldsymbol{v}(\boldsymbol{x}, t)$$

Two key problems:

- Inaccuracies increase as time step Δt increases
- Instability is a common, serious problem that can cause simulation to diverge

Integration Errors Accumulate

Evaluating known function (a circle)

CS184/284A

Errors and Instability

Solving by numerical integration with finite differences leads to two problems

Errors

- Errors at each time step accumulate. Accuracy decreases as simulation proceeds
- Accuracy may not be critical in graphics applications

Instability

- Errors can compound, causing the simulation to diverge even when the underlying system does not
- Lack of stability is a fundamental problem in simulation, and cannot be ignored

CS184/284A

Combating Instability

Some Methods to Combat Instability

Modified Euler

Average velocities at start and endpoint

Adaptive step size

- Compare one step and two half-steps, recursively, until error is acceptable
- Implicit methods
 - Use the velocity at the next time step (hard)

Position-based / Verlet integration

 Constrain positions and velocities of particles after time step

CS184/284A

Modified Euler

Modified Euler

- Average velocity at start and end of step
- OK if system is not very stiff (e.g.: k_s is small)
- But, still unstable

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \ \ddot{\boldsymbol{x}}^t$$
$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \frac{\Delta t}{2} \ (\dot{\boldsymbol{x}}^t + \frac{\Delta t}{2} \ \dot{\boldsymbol{x}}^t + \frac{\Delta$$

d of step g.: k_s is small)

 $\dot{oldsymbol{x}}^{t+\Delta t})$ $(\Delta t)^2$ $\ddot{\mathbf{r}}^t$ \mathbf{U} •)

Adaptive Step Size

Adaptive step size

- Technique for choosing step size based on error estimate
- Highly recommended technique
- But may need very small steps!

Repeat until error is below threshold:

- Compute x_T an Euler step, size T
- Compute x_{T/2} two Euler steps, size T/2
- Compute error $\| \mathbf{x}_T \mathbf{x}_{T/2} \|$
- If (error > threshold) reduce step size and try again

Slide credit: Funkhouser

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step

Forward/Explicit Euler

$$\mathscr{K}(\mathbf{x}^t) + \mathscr{D}(\mathbf{x}^t, \dot{\mathbf{x}}^t) + \mathbf{M} \, \dot{\mathbf{x}} = \mathbf{f}^t$$

Backward/Implicit Euler

 $\mathscr{K}(\mathbf{x}^{t+\Delta t}) + \mathscr{D}(\mathbf{x}^{t+\Delta t}, \dot{\mathbf{x}}^{t+\Delta t}) + \mathbf{M} \dot{\mathbf{x}} = \mathbf{f}^{t}$

Red variables are unknown.

CS184/284A

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step

Forward/Explicit Euler

 $\mathscr{K}(\mathbf{x}^t) + \mathscr{D}(\mathbf{x}^t, \dot{\mathbf{x}}^t) + \mathbf{M} \dot{\mathbf{x}} = \mathbf{f}^t$

Backward/Implicit Euler

 $\mathscr{K}(\mathbf{x}^t + \Delta \mathbf{x}) + \mathscr{D}(\mathbf{x}^t + \Delta \mathbf{x}, \dot{\mathbf{x}}^t + \Delta \dot{\mathbf{x}}) + \mathbf{M} \, \dot{\mathbf{x}} = \mathbf{f}^t$

 $\Delta \mathbf{x} = \Delta t \, \dot{\mathbf{x}}^{t+\Delta t} \, \mathbf{k}$

 $\Delta \dot{\mathbf{x}} = \Delta t \, \dot{\mathbf{x}}$

CS184/284A

Substitute and solve for $\ddot{\boldsymbol{x}}$

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step

Forward/Explicit Euler

$$\mathscr{K}(\mathbf{x}^t) + \mathscr{D}(\mathbf{x}^t, \dot{\mathbf{x}}^t) + \mathbf{M} \, \dot{\mathbf{x}} = \mathbf{f}^t$$

Semi-Implicit Euler / Linearized Implicit Euler (also one Newton solve)

$$\mathbf{K} \cdot (\mathbf{x}^{t} + \Delta \mathbf{x}) + \mathbf{D} \cdot (\dot{\mathbf{x}}^{t} + \Delta \dot{\mathbf{x}}) + \Delta \mathbf{x} = \Delta t \, \dot{\mathbf{x}}^{t+\Delta t}$$

 $\Delta \dot{\mathbf{x}} = \Delta t \, \dot{\mathbf{x}}$

CS184/284A

t

$+ \mathbf{M} \cdot \mathbf{\dot{x}} = \mathbf{f}^t$

ubstitute and solve for **x**

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step
- Solve nonlinear problem for **X**
- Use root-finding algorithm, e.g. Newton's method
- Can be made unconditionally stable
- Dump energy and may look over-damped

Position-Based / Verlet Integration

Idea:

- After modified Euler forward-step, constrain positions of particles to prevent divergent, unstable behavior
- Use constrained positions to calculate velocity
- Both of these ideas will dissipate energy, stabilize

Pros / cons

- Fast and simple
- Dissipates energy in constraints
- Highly recommended (assignment)

Position-Based / Verlet Integration

Algorithm 1 Position-based dynamics

1: for all vertices *i* do initialize $\mathbf{x}_i = \mathbf{x}_i^0$, $\mathbf{v}_i = \mathbf{v}_i^0$, $w_i = 1/m_i$ 2: 3: end for 4: **loop** for all vertices *i* do $\mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t w_i \mathbf{f}_{ext}(\mathbf{x}_i)$ 5: for all vertices *i* do $\mathbf{p}_i \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i$ 6: for all vertices *i* do genCollConstraints($\mathbf{x}_i \rightarrow \mathbf{p}_i$) 7: **loop** solverIteration **times** 8: projectConstraints($C_1, \ldots, C_{M+M_{Coll}}, \mathbf{p}_1, \ldots, \mathbf{p}_N$) 9: end loop 10: for all vertices *i* do 11: $\mathbf{v}_i \leftarrow (\mathbf{p}_i - \mathbf{x}_i) / \Delta t$ 12: 13: $\mathbf{x}_i \leftarrow \mathbf{p}_i$ end for 14: velocityUpdate($\mathbf{v}_1, \ldots, \mathbf{v}_N$) 15: 16: **end loop**

Position-Based Simulation Methods in Computer Graphics Bender, Müller, Macklin, Eurographics 2015

CS184/284A

Projective Dynamics

Examples of Projective Dynamics

- Position Based Dynamics
 - "Position Based Dynamics," VRIPHYS 2006
- Provot's Method
 - "Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior," GI 95
- Fast Springs
 - "Fast Simulation of Mass-Spring Systems," SIGGRAPH Asia 2013
- Shape Matching
 - "Meshless Deformations Based on Shape Matching," SIGGRAPH 2005
- and many others are examples of

CS184/284A

Projective Dynamics

General Approach

- Separate system into stiff and non-stiff aspects
 - Stiff expressed as constraints
 - e.g.: $||\mathbf{a} \mathbf{b}|| max_{length} \le 0$
 - Non-stiff expressed as forces

• e.g.:
$$\mathbf{f}_a = k_d(\mathbf{b} - \mathbf{a})$$

- For each time step
 - Integrate non-stiff stuff normally
 - Enforce stiff constraints
 - Update velocities to satisfy constraints

CS184/284A

Simulation as Constraint Optimization

Simulation as Constraint Optimization

Standard view of simulation:

- Start with initial configuration, e.g.: $\mathbf{q} = \begin{vmatrix} \mathbf{x} \\ \mathbf{\dot{x}} \end{vmatrix}$
- Integrate forward, e.g.: $\mathbf{q}^{t+\Delta t} = \mathbf{q}^t + \Delta \mathbf{q}$
- Keep going until end of time
- **Optimization view**
 - Start with initial configuration, q^t₀, and final configuration, q^{t_N} .
 - Interpolate to get initial interior states, $\{\mathbf{q}^{t_1}, \mathbf{q}^{t_2}, \mathbf{q}^{t_3}, \dots, \mathbf{q}^{t_{N-1}}\}$
 - Minimize dynamics error over sequence

CS184/284A

Simulation as Constraint Optimization

Dynamics Error:

$$E = \sum_{i} \left(\left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t} + \Delta t \, \dot{\mathbf{q}}^{t} \right)^{2} + \left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t} + \Delta t \, \dot{\mathbf{q}}^{t} \right)^{2} \right)^{2} + \left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t} + \Delta t \, \dot{\mathbf{q}}^{t} \right)^{2} + \left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t} + \Delta t \, \dot{\mathbf{q}}^{t} \right)^{2} + \left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t} + \Delta t \, \dot{\mathbf{q}}^{t} \right)^{2} + \left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t} + \Delta t \, \dot{\mathbf{q}}^{t} \right)^{2} + \left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t} + \Delta t \, \dot{\mathbf{q}}^{t} \right)^{2} + \left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t} + \Delta t \, \dot{\mathbf{q}}^{t} \right)^{2} + \left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t} + \Delta t \, \dot{\mathbf{q}}^{t} \right)^{2} + \left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t+\Delta t} + \Delta t \, \dot{\mathbf{q}}^{t} \right)^{2} + \left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t+\Delta t} + \Delta t \, \dot{\mathbf{q}}^{t} \right)^{2} + \left(\mathbf{q}^{t+\Delta t} - \mathbf{q}^{t+\Delta t} + \Delta t \, \dot{\mathbf{q}}^{t+\Delta t} \right)^{2}$$

Add more constraints to provide controls. Add energy terms to control qualities of motion. Maybe add some control force terms. Collisions can be annoying because they are discontinuities.

$+\Delta t - \mathbf{q}^t + \Delta t \dot{\mathbf{q}}^{t+\Delta t} \Big) \Big)$

Example: Galaxy Simulation

Disk galaxy simulation, NASA Goddard

CS184/284A

Gravitational Attraction

Newton's universal law of gravitation

Gravitational pull between particles

$$F_g = G \frac{m_1 m_2}{d^2}$$
$$G = 6.67428 \times 10^{-11}$$

 m_1

d

CS184/284A

on cles

$\mathrm{Nm}^{2}\mathrm{kg}^{-2}$

 m_2

Example: Particle-Based Fluids

Macklin and Müller, Position Based Fluids , TOG 2013

Example: Granular Materials

Bell et al, "Particle-Based Simulation of Granular Materials"

Example: Flocking Birds

Example: Flocking Birds

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/)

Simulated Flocking as an ODE

Model each bird as a particle Subject to very simple forces:

- <u>attraction</u> to center of neighbors
- <u>repulsion</u> from individual neighbors
- <u>alignment</u> toward average trajectory of neighbors

Simulate evolution of large particle system numerically

Emergent complex behavior (also seen in fish, bees, ...)

repulsion

Credit: Craig Reynolds (see <u>http://www.red3d.com/cwr/boids/</u>)

alignment

Slide credit: Keenan Crane

Example: Crowds

Where are the bottlenecks in a building plan?

Example: Crowds + "Rock" Dynamics

Acknowledgments

This slide set contain contributions from:

- Kayvon Fatahalian
- David Forsyth
- Pat Hanrahan
- Angjoo Kanazawa
- Steve Marschner
- Ren Ng
- James F. O'Brien
- Mark Pauly

CS184/284A