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Physically Based Animation

ion of objects using numerical simulation
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Example: Cloth Simulation
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Rahul Narain, Armin Samii, James F. O'Brien
SIGGRAPH Asia 2012



Example: Fluids

Macklin and Miiller, Position Based Fluids TOG 2013



Example: Fracture
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Particle Systems

Single particles are very simple
Large groups can produce interesting effects
Supplement basic ballistic rules
® Gravity
® Friction, drag
® Collisions
® Force fields

® Springs

® |nteractions

Karl Sims, SIGGRAPH 1990
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Example: Hair




Example: Adaptive Simulation
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Mass + Spring Systems



Example: Mass Spring Rope

Credit: Elizabeth Labelle, https:


https://youtu.be/Co8enp8CH34
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A Simple Spring

Problem: this spring wants to have zero length
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Extra material for 284A

A Simple Spring

Energy potential
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Non-Zero Length Spring
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Rest length

Problem: oscillates forever
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Non-Zero Length Springs
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Comments on Springs

Springs with zero rest length are linear

Springs with non-zero rest length are nonlinear
® Force magnitude linear w/ displacement
(from rest length)
® Force direction is non-linear
® Singularity at ||b — al|| = 0
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Dot Notation for Derivatives

A dot above a variable indicated taking a derivative
w.r.t. time. For example:

® X might be a variable indicating the position of
something

e X would be —, i.e., velocity

dt

. d*x .
e X would be —, i.e., acceleration

dt?
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Simple Motion Damping

Simple motion damping
‘o> f=—kab

® Behaves like viscous drag on motion

® Slows down motion in the direction of motion
® kyis a damping coefficient

III

® “Mass-proportional” damping
Problem: slows down all motion

® Want a rusty spring’s oscillations to slow down, but
should it also fall to the ground more slowly?
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Internal Damping for Spring

Damp only the internal, spring-driven motion
b—a . b—a

— bh—a).
OVWWVe  fu = ka0 )y

® Viscous drag only on change in spring length

® Won't slow group motion for the spring
system (e.g. global translation or rotation of
the group)

® “Stiffness proportional” damping
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Gravity

Gravity at earth’s surface due to earth
o F = -mg
® m is mass of object

® g is gravitational acceleration,
g = —-9.8m/s?

b, =—mg
g=(0,0,-9.8) m/s”
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Standard Form

Nonlinear

K (X) + D(X,X) + %(X,X,X) =f

\a Elasts Damping | Momentum /External Forces
Linearized

Kx+Dx+MX—f

Zero-length springs result in constant K and D
Typically M is constant
We can keep M diagonal by “lumping” called a “Lumped Mass Matrix"
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Spring Constants

Consider two “resolutions” to model a single spring

vV V vV V
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Problem: constant ks produces different force on bottom
spring for these two different discretizations
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Spring Constants

Problem: constant ks gives inconsistent results with different
discretizations of our spring/mass structures

® E.g. 10x10 vs 20x20 mesh for cloth simulation would give
different results, and we want them to be the same, just
higher level of detail

Solution:
® Change in length is not what we want to measure

® We want to consider the strain = change in length as fraction
of original length - Al

)

® Implementation 1: divide spring force by spring length
® Implementation 2: normalize k; by spring length
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Structures from Springs
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Structures from Springs

Behavior is determined by structure linkages

/

This structure will not resist shearing

This structure will not resist out-of-plane
bending...

/
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Structures from Springs

Behavior is determined by structure linkages

/ This structure will resist shearing
but has anisotropic bias

This structure will not resist out-of-plane
bending either...

/
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Structures from Springs

Behavior is determined by structure linkages

/ This structure will resist shearing.
Less directional bias.

This structure will not resist out-of-plane
bending either...

/
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Structures from Springs

Spring structures will behave like what they are
(obviously?)

/ This structure will resist shearing.
Less directional bias.

bending
/ Red springs should be much weaker

‘bs This structure will resist out-of-plane
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Edge Springs (bending)

| |2
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N+ IN,

From Bridson et al., 2003
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Bending Springs and Sharp Creases

v Paper Folding
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Example: Mass Spring Dress + Character




FEM (Finite Element Method) Instead of Springs
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FEM: Variety of Materials
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More Accurate Materials

Linear force-displacement (stress-strain) relationship limiting
® Bi-phasic materials, e.g.: cloth, biological tissues, etc.
® Other nonlinear material behaviors

One-dimensional strain doesn’t capture everything
® Anisotropic materials

® Volume-preserving

® |nteraction between directional behaviors

® Spring coupling is ad hoc and undesirable

Solution: non-linear FEM

® Not much harder to implement than springs!
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Basic FEM




Extra material for 284A

FEM Problem Setup

Lagrangian Formulation
® Where in space did this material mode to?

® Commonly used for solid materials

Eulerian Formulation
® What material is at this location in space?

® Commonly used for fluids
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Extra material for 284A

Lagrangian Formulation

Deformation described by mapping from material
(local) to word coordinates

x(u)

/

P
.
SN

x(u’’)
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Example
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Another Example

sArts,

Video footage © Luca
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Strain

Green’s strain tensor

- oxr Ox s
67’]_ 8% ﬁu] v

Vanishes when not deformed

Only measures deformation

Does not depend on the coordinate system
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Strain

Green’s strain tensor

- oxr Ox s
GZJ_ 3% 8uj tJ

2 12 =d-€-d
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Extra material for 284A

Strain

Cauchy’s strain tensor

€ = —
/ 2 auj Buz

Linearization of Green'’s strain tensor

Vanishes when not deformed

Not invariant w.r.t rotations

l, —l,~d-€e-d
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Linearization Errors

| ——— | —————
We'll fix this problem later...
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Extra material for 284A

Strain Rate

Time derivative of Green’s strain tensor
Measures rate of deformation

Used for internal damping

(o= oz (0% Oa
62] - 8u2 8uj 5’2% 8u]
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Extra material for 284A

Strain Rate

Time derivative of Cauchy’s strain tensor
Measures rate of deformation

Used for internal damping

1 (0 0%,
€. 7
/ 2 8%j Buz
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Stress due to Strain (linear)

(€) _
0;;° = Cijki€kl

A

Constrtutive parameters —

Generalization of

f = kd
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Extra material for 284A

Stress due to Strain (linear, isotropic)

3

Z )\6]{]{7529 —I—Q,MGZ]
k=1

“lastic (Lamé) Constants

(In)compressibility <~
Generalization of

f=kd

rigidity -
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Extra material for 284A

Stress due to Rate

3
O-z’(ju) — Z Verk0i; + 210€;;
k=] == e

Damping Constants

¢( Generalization of

P [ =cv
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Extra material for 284A

Energy Potentials

-lastic Energy Density

1 3 3 <€> Generalization of
n:§zzaij€ij E:%kdz

i=1j=1

Kinetic Energy Density

3 3 -
| (V). Generalization of
“2522%‘ “i) a1l 9
1=17=1 — 5"
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Discretization

Transition from continuous model to something we can
compute with...
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Extra material for 284A

Finite Element Method

Disjoint elements tile material domain
Derivatives from shape functions

Nodes shared by adjacent elements
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Extra material for 284A

Finite Element Method

Disjoint elements tile material domain
Derivatives from shape functions

Nodes shared by adjacent elements

CS18




Extra material for 284A

FEM Discretization

Solid volumes
Tetrahedral elements

Linear shape functions
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Element Shape Functions

Barycentric coordinates

u _m[ll Tre[g) T3] m[4]_
1 1 1 |

Invert to obtain basis matrix

b=3 |,
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Extra material for 284A

Material Derivatives

World pos. as function of material coordinates

m(u) _ PIB qlL where
Ly P = [pm Py Py3] p[4ﬂ

Derivative w.rit. material coordinates

ox
8%@

=Pp col,

1 8(1}& | 8(]3]'
T (auj ' auJ O
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Recall
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Extra material for 284A

Node Forces

Combine derivative formula w/ equations for elastic
energy

Integrate over volume of element

Take derivative w.r.t. node positions

3 3
fff]) — vo Z Z Zﬁjlﬂz‘kdg)

k=1 [=1
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Extra material for 284A

Corotational Method

Factor out rotation using polar decomposition

® Cauchy strain without errors due to rotations

ox
ou QE

See paper by
Muller & Gross, 2004

CS184/284A - —sames O’Brien



Extra material for 284A

Node Forces and Jacobian

Combine derivative formula w/ equations for elastic
energy

Integrate over volume of element

Take derivative w.r.t. node positions

Jacobian core is constant
® 12 x 12 made from little 3 x 37blocks

f[q;] — Qa'n[z‘]

T T T
iy = — QA + p(ng - np) I + pnpgng)Q
CS184/28 rien
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Numerical Integration



Euler's Method

Euler's Method (a.k.a. Forward Euler, Explicit)
® Simple iterative method
¢ Commonly used
® Only first order accurate

® Most often goes unstable (bad)

mt—l—At

AN L

,’j}t_l_At L'Et At f:i‘t
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Euler’s Method and Instability

When mass is moyvi

ingard:fa%b _ kg(b B a)

® Force is decreasing

® Each time-step overestimates the velocity change (increases
energy)

When mass gets to origin

® Has velocity that is too high, now traveling outward
When mass is moving outward

® Force is increasing

® Each time-step underestimates the velocity change (increases
energy)

At each motion cycle, mass gains energy exponentially

CS184/284A Ren Ng, James O’Brien



Euler’s Method and Instability

Ideal system:

* Preserves energy L = const

* Cycle between kinetic and elastic

mx*  kx?
2 : ° 0E=EK+E= +
2 2

Base fixed at zero

CS184/284A Ren Ng, James O’Brien



Euler’s Method and Instability

Ideal system:

* Preserves energy L = const

* Cycle between kinetic and elastic

E.=E.+E —'/'/”.Cz+kx2
TR 2 2

------------
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Base fixed at zero Just Rignht Too Much!

Total acceleration is integral under curve.

CS184/284A Ren Ng, James O’Brien



Euler’s Method and Instability

Ideal system:

* Preserves energy L = const

* Cycle between kinetic and elastic

mx®>  kx*
2 : ° 0E=EK+E= +
2 2

When zero displacement reached,
going too fast!

Base fixed at zero

CS184/284A Ren Ng, James O’Brien



Euler’s Method and Instability

Ideal system:

* Preserves energy L = const

* Cycle between kinetic and elastic

E.=E.+E —'/'/”.Cz+kx2
TR 2 2
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Base fixed at zero Just Rignht Too Little!

Total deceleration is integral under curve.
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Euler’s Method and Instability

Ideal system:

* Preserves energy L = const

* Cycle between kinetic and elastic

mx*  kx?
2 : ° 0E=EK+E= +
2 2

Overshoots symmetric location

—dy X (1 + a)
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Euler’s Method and Instability

Ideal system:

* Preserves energy L = const

* Cycle between kinetic and elastic

mx*  kx?
2 : ° 0E=EK+E= +
2 2

Overshoots symmetric location

-w

~
N emceeaceaneace @B ———————- e O
0.‘Q

_dO % (1 4 a)icycles

Exponential divergence!
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Euler’s Method and Instability

I
Forward Euler (explicit) N
p Sl
TR = gt + Atv(x,t) 2N

W \x\ \// ’///41
Two key problems: * /5/'
® |naccuracies increase as
time step At increases \
I \\\b\ A
® |nstability is a common, A AANANY

AN
serious problem that AN AK
can cause simulation to 7177,
diverge L]

jeleg pue upjuA
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Integration Errors Accumulate

Evaluating known function (a circle)

Integrating first derivative

=/
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Errors and Instability

Solving by numerical integration with finite differences leads
to two problems

Errors

® Errors at each time step accumulate. Accuracy decreases
as simulation proceeds

® Accuracy may not be critical in graphics applications

Instability

® Errors can compound, causing the simulation to diverge
even when the underlying system does not

® Lack of stability is a fundamental problem in simulation,
and cannot be ignored
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Combating Instability



Some Methods to Combat Instability

Modified Euler
® Average velocities at start and endpoint
Adaptive step size

® Compare one step and two half-steps, recursively, until
error is acceptable

Implicit methods
® Use the velocity at the next time step (hard)
Position-based / Verlet integration

® Constrain positions and velocities of particles after
time step

CS184/284A Ren Ng, James O’Brien



Modified Euler

Modified Euler
® Average velocity at start and end of step
o OK if system is not very stiff (e.g.: k; is small)

® But, still unstable

:bt—l—At _ ff/’t 4 At fi’t

mt—l—At __ ZBt I Azt (Q?t 4 d’;t_l_At)
At)?
:Bt—l-At __ ZBt 14 At th I ( 2> Zi‘t
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Adaptive Step Size

Adaptive step size

® Technique for choosing step size
based on error estimate

® Highly recommended technique

® But may need very small steps!
Repeat until error is below threshold:

® Compute xr an Euler step, size T

® Compute xt/2 two Euler steps, size T/2

® Compute error || xt — x1/2]||

® |f (error > threshold) reduce step size
and try again

Slide credit: Funkhouser



Implicit Euler Method

Implicit methods
® |Informally called backward methods

® Use derivatives in the future, for the current step

Forward/Explicit Euler

H(x) + D, X))+ Mx = f
Backward/Implicit Euler

%(Xt+At) n @(XH_At, Xt+At) + MK = ft

Red variables are unknown.
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Implicit Euler Method

Implicit methods
® |Informally called backward methods

® Use derivatives in the future, for the current step

Forward/Explicit Euler

H(x) + D, X))+ Mx = f
Backward/Implicit Euler

F(X'+Ax) + DX+AX, X'+AX) + Mx = 1"

AX = At x/TA! }J ”
Substitute and solve for X

CS184/284A AX — At X Ren Ng, James O’Brien



Implicit Euler Method

Implicit methods
® |Informally called backward methods

® Use derivatives in the future, for the current step

Forward/Explicit Euler

X+ I, X+ Mx=f1"
Semi-Implicit Euler / Linearized Implicit Euler (also one Newton solve)

K- X+Ax)+D-X+Ax)+M - -x =1

AX = At x/TA! }J ”
Substitute and solve for X

CS184/284A AX — At X Ren Ng, James O’Brien



Implicit Euler Method

Implicit methods
® |Informally called backward methods

® Use derivatives in the future, for the current step

® Solve nonlinear problem for X
® Use root-finding algorithm, e.g. Newton’s method

® Can be made unconditionally stable

® Dump energy and may look over-damped
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Position-Based / Verlet Integration

ldea:

® After modified Euler forward-step, constrain positions
of particles to prevent divergent, unstable behavior

® Use constrained positions to calculate velocity

® Both of these ideas will dissipate energy, stabilize
Pros / cons

® Fast and simple

® Dissipates energy in constraints

® Highly recommended (assignment)
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Position-Based / Verlet Integration

Algorithm 1 Position-based dynamics

1: for all vertices i do

2:  initialize x; = X0, vi = VO, w; = 1 /m;
3: end for
4: loop
5: for all vertices i do v; < v; + Atw;fext (X;)
6: for all vertices i do p; < X; + Arv;
7: for all vertices i do genCollConstraints(x; — p;)
8: loop solverlteration times
9: projectConstraints(Cy, ... ,Cyr4+-Megy s P15 - - - s PN)
10: end loop
11: for all vertices i do
12: v < (pi —X;) /At
13: X; < Pi

14: end for
15: velocityUpdate(vy,...,vy)
16: end loop

Position-Based Simulation Methods in Computer Graphics
Bender, Miiller, Macklin, Eurographics 2015
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Projective Dynamics

Examples of Projective Dynamics

® Position Based Dynamics

® "“Position Based Dynamics,” VRIPHYS 2006

® Provot's Method

® “Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior,” Gl 95

® Fast Springs

® "“Fast Simulation of Mass-Spring Systems,” SIGGRAPH Asia 2013

® Shape Matching

® "“Meshless Deformations Based on Shape Matching,” SIGGRAPH 2005

® and many others are examples of

CS184/284A Ren Ng, James O’Brien



Projective Dynamics
General Approach

® Separate system into stiff and non-stiff aspects
o Stiff expressed as constraints
® e.g.:||la—Db||—max_length <0
® Non-stiff expressed as forces
e eg.:f =k, (b—a)
® For each time step
® |ntegrate non-stiff stuff normally
® Enforce stiff constraints

® Update velocities to satisfy constraints
CS184/284A Ren Ng, James O’Brien



Simulation as Constraint
Optimization




Simulation as Constraint Optimization

Standard view of simulation:

e Start with initial configuration, e.g.: q = li]

® Integrate forward, e.qg.: qt+At =q' + Aq

e Keep going until end of time

Optimization view
e Start with initial configuration, q’, and final
configuration, q'».

® |nterpolate to get initial interior states,
{qtl, qu, th, e, qtN—l}
® Minimize dynamics error over sequence

CS184/284A Ren Ng, James O’Brien



Simulation as Constraint Optimization

Dynamics Error:

F— Z ((qt+At_ qt_l_ At(]t)z n (qt+At_ qt_l_ At(]HAt))

Add more constraints to provide controls.
Add energy terms to control qualities of motion.
Maybe add some control force terms.

Collisions can be annoying because they are
discontinuities.
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Example: Galaxy Simulation

Disk galaxy simulation, NASA Goddard
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Gravitational Attraction

Newton'’s universal law of gravitation
® Gravitational pull between particles

1T
d2
G = 6.67428 x 10~ Nm?kg 2

F,=G
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Example: Particle-Based Fluids

v

Macklin and Miiller, Position Based Fluids , TOG 2013



Example: Granular Materials
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Bell et al, "Particle-Based Simulation of Granular Materials”




Example: Flocking Birds




Example: Flocking Birds

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/)



http://www.red3d.com/cwr/boids/

Simulated Flocking as an ODE

Model each bird as a particle
Subject to very simple forces:

® attraction to center of neighbors

® repulsion from individual neighbors

® alignment toward average trajectory of neighbors

Simulate evolution of large particle system numerically

Emergent complex behavior (also seen in fish, bees, ...)

| l,
A | |

&

attraction repulsion alignment

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/) Slide credit: Keenan Crane


http://www.red3d.com/cwr/boids/

Example: Crowds

Where are the bottlenecks in a building plan?




Example: Crowds + “Rock” Dynamics
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