
Computer Graphics and Imaging 
UC Berkeley CS184/284A

Lecture 21a:

Modal Analysis



Ren Ng, James O’BrienCS184/284A

Note: The math on gray slides will not be on the exams.



Ren Ng, James O’BrienCS184/284A

Modal Analysis



Ren Ng, James O’BrienCS184/284A

Deformation

Figure 2: Using a linear formulation to model a bend-
ing bar produces acceptable results for small to moderate
amounts of deformation. For larger deformations signif-
icant amounts of distortion appear. This example shows
the deformation corresponding to the bar’s second trans-
verse mode.

There are also two drawbacks to a modal approach.

First, linearizing the original nonlinear equations means

that the solution will only be a first order approximation

of the true solution. How objectionable the lineariza-

tion error is depends on the application and the extent

to which the objects deform from their initial configura-

tions. As illustrated by figure 2, small to moderate defor-

mations exhibit little or no noticeable error when casually

observed. Even when the errors do grow noticeable, they

have a cartoon-like, exaggerated appearance that may ac-

tually be desirable for some applications.

The second drawback arises because decoupling the

linear system requires computing its eigendecomposition.

However we do not believe that this drawback is partic-

ularly significant. The content in most interactive appli-

cations is constant, so that eigendecompositions can be

precomputed during content development and stored with

the objects. Furthermore, the linear systems are sparse,

so that fast, robust, publicly available codes may be used

to efficiently compute the decompositions (e.g. TRLAN

[29]).

The remainder of this section describes how one com-

putes the modal decomposition for a given object and

how that decomposition can be used to efficiently model

the object’s behavior. Some of this material has been pre-

sented elsewhere by others in the graphics community

(e.g. [10, 19]) but we include it here for completeness.

The discussion will focus in particular on including ma-

nipulation and collision constraints in the modal frame-

work. An overview of the entire process is shown in fig-

ure 3.

3.1 Modal Decomposition

The modal decomposition of a physical system begins

with a linear set of equations that describe the system’s

behavior. In general, the equations describing the system

Generate
tetrahedral mesh

Build
system matrices

Compute
eigen-decomposition

Object geometry
and material properties

Compute
rigid-body parameters

and build
collision structures

Preprocessing

Interactive

Deformable Object Motion

Rigid-body
simulationModal synthesis

Contact/Inertial
Forces

Collision
Geometry

User Interaction Constraints

Figure 3: This diagram illustrates both the preprocessing
steps used to construct the deformable modal model for
an object, and the processes that subsequently generate
interactive motion from this description.

may be nonlinear, and one obtains the linear equations by

linearizing about some point, typically the rest configu-

ration of the system. The linearized equations have the

general form:

Kd + Cḋ + Md̈ = f , (1)

where K, C, and M are respectively known as the sys-

tem’s stiffness, damping, and mass matrices, d and f re-
spectively as the vector of generalized displacements and

forces, and an overdot indicates differentiation with re-

spect to time. The physical meaning of the generalized

force and displacement vectors, and the method for com-

puting the system matrices will depend on the type of

method used for modeling the system. For general fi-

nite element methods, we refer the reader to the excellent

text by Cook, Malkus, and Plesha [5]. We are using an

implementation of the piecewise-linear tetrahedral finite

element method described by O’Brien and Hodgins [16].

Details on computing the system matrices appear in [17].

Modal decomposition refers to the process of diago-

nalizing equation (1). The most general form of modal

decomposition can be used for nearly arbitrary systems,

but the systems arising from the finite element method

we use have a structure that makes them amenable to a

simpler manipulation provided we assume that the damp-

ing matrix, C, is a linear combination of the K and M .

This restriction is known as Rayleigh damping, and al-

though it is a restriction it still produces results superior to

the simple mass damping that is most commonly used in

3



Ren Ng, James O’BrienCS184/284A

Example



Ren Ng, James O’BrienCS184/284A

Example



Ren Ng, James O’BrienCS184/284A

Generate
tetrahedral mesh

Build
system matrices

Compute
eigen-decomposition

Object geometry
and material properties

Compute
rigid-body parameters

and build
collision structures

Preprocessing

Interactive

Animation with audio

Video renderer

Rigid-body
simulationModal synthesis

Audio renderer

Contact
Forces

Figure 2: This diagram illustrates both the preprocessing steps that
are used to construct the audio/visual model for an object, and the
processes that subsequently generate sound and motion from this
description at interactive speeds.

and Pai, 1996] and [van den Doel and Pai, 1998]. They showed
that the analytically computed vibrational modes of simply shaped
objects, such as square plates or cylindrical rods, could be used to
generate sound maps over the object surfaces. They constructed a
system that computed realistic contact sounds when an interactive
user indicated a point on the surfaces of the modeled objects. Be-
cause the maps were generated from the mode shapes, the system
correctly captured the variations that arise when objects are struck
at different locations. More recently, [van den Doel et al., 2001] de-
scribed a method that uses recorded data to construct sound maps
over the surface of an object. In addition to allowing a user to inter-
actively generate sounds by tapping the object surfaces, they used
contact forces from a real-time rigid-body simulation to excite the
sampled modes.

Our work builds on the ideas of these two previous methods by
extending the range of objects that can be modeled to include ones
that are neither simple shapes nor available to be measured. The
analytically computed modes used in [van den Doel and Pai, 1996]
and [van den Doel and Pai, 1998] are the continuous equivalent
of the numerically computed discretized modes described in Sec-
tion 3.1 of this paper. Numerical computation allows determining
the modes for essentially arbitrary shapes as opposed to a few sim-
ple shapes, and it makes fewer assumptions about the underling
differential equations. Our method for driving the sound generation
from a rigid-body simulation is essentially identical to the method
used in [van den Doel et al., 2001], but we have found that useful
results can be generated using “off-the-shelf” rigid-body simulators
and that a special contact method is not necessarily required unless
one wishes to produce rubbing or scraping sounds.

Another related method for generating sound has been described
in [O’Brien et al., 2001]. Their approach uses a nonlinear finite
element method to explicitly model the response of an object to
external forces. Audio is generated by analyzing the computed sur-
face behavior and then applying a set of filters to the computed
motion for extracting frequency components that fall within the au-
dible range. Unlike the method detailed in this paper and the previ-

ously described methods of van den Doel and his colleagues, the use
of a nonlinear finite element method allows them to model sounds
that arise from nonlinear behaviors such as buckling. The main
limitation of their method is that it requires large amounts of com-
putation. In contrast, our method can accurately model only sounds
produced by linear phenomena, but it can compute these sounds in
real-time.
In addition to the above physically motivated work on sound gen-

eration, other prior work in the graphics community has focused
on sound propagation and heuristic approaches to sound genera-
tion. Producing synchronized soundtracks for animations was ad-
dressed in [Takala and Hahn, 1992] and [Hahn et al., 1995]. For
modeling tearing cloth, [Terzopoulos and Fleischer, 1988] gener-
ated soundtracks by playing a pre-recorded sound whenever a con-
nection in a spring mesh failed. Work described in [Savioja et al.,
1997] focused on creating virtual musical performances in virtual
spaces using physically derived models of musical instruments and
acoustic ray-tracing for spatialization of the sound sources. Other
researchers have developed methods for correctly modeling reflec-
tions and transmissions within the sonic environment [Funkhouser
et al., 1998; Funkhouser et al., 1999; Min and Funkhouser, 2000;
Tsingos et al., 2001].
The method described in this paper is also related to previous

work in the graphics community on modeling deformable objects.
The idea of decoupling an object’s rigid-body behavior from it’s
elastic deformation was proposed in [Terzopoulos and Fleischer,
1988] as an efficient method for modeling deformable objects. This
idea was extended in [Pentland andWilliams, 1989] by using modal
analysis for modeling deformable objects, although instead of ac-
tually using the object’s vibrational modes they approximated them
with arbitrary linear and quadratic deformation fields.
Outside the field of computer graphics, an extensive amount of

research on sound modeling has been conducted in the digital sound
and music communities. There the focus has been primarily on ac-
curately modeling the sounds generated by musical instruments, in-
cluding the fine subtleties that distinguish high-quality instruments.
A comprehensive review of the work that has been done in those
areas can be found in [Cook, 2002].

3 Methods

The mechanical dynamics of a solid physical object can be decom-
posed into two components: idealized rigid-body motions and elas-
tic deformations. An object is referred to as being rigid, or incom-
pliant, if its response to typical interactions includes only negligi-
ble deformations. For example, when a person taps the side of a
drinking glass it flexes slightly but the amplitude of this deforma-
tion is small enough to be unobservable by sight. However, this
small deformation may be observable by hearing. In particular, if
the elastic properties of the glass are such that the small deforma-
tion induced by the tap results in vibrations at frequencies between
approximately 20 and 20, 000 Hz, then the small pressure fluctua-
tions caused by the oscillating deformation will be heard as sound.
For further information on the physical process of sound generation
we refer the reader to [Kinsler et al., 2000].

3.1 Modal Analysis

Our method for modeling the sounds generated by rigid objects
makes use of a well studied technique known as modal analysis.
This section presents a brief overview of modal analysis and pro-
vides the framework for describing our methods. We refer the
reader to [Cook et al., 1989] for additional information on modal
analysis.
A physical system that has been discretized using a finite ele-

ment, finite differencing, or other similar method can be expressed
in the following general form:

( ) + ( , ˙ ) + ( ¨) = (1)

2



Ren Ng, James O’BrienCS184/284A

Example



Ren Ng, James O’BrienCS184/284A

Example



Ren Ng, James O’BrienCS184/284A

Modal Decomposition

Linearize non-linear system

Generate
tetrahedral mesh

Build
system matrices

Compute
eigen-decomposition

Object geometry
and material properties

Compute
rigid-body parameters

and build
collision structures

Preprocessing

Interactive

Animation with audio

Video renderer

Rigid-body
simulationModal synthesis

Audio renderer

Contact
Forces

Figure 2: This diagram illustrates both the preprocessing steps that
are used to construct the audio/visual model for an object, and the
processes that subsequently generate sound and motion from this
description at interactive speeds.

and Pai, 1996] and [van den Doel and Pai, 1998]. They showed
that the analytically computed vibrational modes of simply shaped
objects, such as square plates or cylindrical rods, could be used to
generate sound maps over the object surfaces. They constructed a
system that computed realistic contact sounds when an interactive
user indicated a point on the surfaces of the modeled objects. Be-
cause the maps were generated from the mode shapes, the system
correctly captured the variations that arise when objects are struck
at different locations. More recently, [van den Doel et al., 2001] de-
scribed a method that uses recorded data to construct sound maps
over the surface of an object. In addition to allowing a user to inter-
actively generate sounds by tapping the object surfaces, they used
contact forces from a real-time rigid-body simulation to excite the
sampled modes.

Our work builds on the ideas of these two previous methods by
extending the range of objects that can be modeled to include ones
that are neither simple shapes nor available to be measured. The
analytically computed modes used in [van den Doel and Pai, 1996]
and [van den Doel and Pai, 1998] are the continuous equivalent
of the numerically computed discretized modes described in Sec-
tion 3.1 of this paper. Numerical computation allows determining
the modes for essentially arbitrary shapes as opposed to a few sim-
ple shapes, and it makes fewer assumptions about the underling
differential equations. Our method for driving the sound generation
from a rigid-body simulation is essentially identical to the method
used in [van den Doel et al., 2001], but we have found that useful
results can be generated using “off-the-shelf” rigid-body simulators
and that a special contact method is not necessarily required unless
one wishes to produce rubbing or scraping sounds.

Another related method for generating sound has been described
in [O’Brien et al., 2001]. Their approach uses a nonlinear finite
element method to explicitly model the response of an object to
external forces. Audio is generated by analyzing the computed sur-
face behavior and then applying a set of filters to the computed
motion for extracting frequency components that fall within the au-
dible range. Unlike the method detailed in this paper and the previ-

ously described methods of van den Doel and his colleagues, the use
of a nonlinear finite element method allows them to model sounds
that arise from nonlinear behaviors such as buckling. The main
limitation of their method is that it requires large amounts of com-
putation. In contrast, our method can accurately model only sounds
produced by linear phenomena, but it can compute these sounds in
real-time.
In addition to the above physically motivated work on sound gen-

eration, other prior work in the graphics community has focused
on sound propagation and heuristic approaches to sound genera-
tion. Producing synchronized soundtracks for animations was ad-
dressed in [Takala and Hahn, 1992] and [Hahn et al., 1995]. For
modeling tearing cloth, [Terzopoulos and Fleischer, 1988] gener-
ated soundtracks by playing a pre-recorded sound whenever a con-
nection in a spring mesh failed. Work described in [Savioja et al.,
1997] focused on creating virtual musical performances in virtual
spaces using physically derived models of musical instruments and
acoustic ray-tracing for spatialization of the sound sources. Other
researchers have developed methods for correctly modeling reflec-
tions and transmissions within the sonic environment [Funkhouser
et al., 1998; Funkhouser et al., 1999; Min and Funkhouser, 2000;
Tsingos et al., 2001].
The method described in this paper is also related to previous

work in the graphics community on modeling deformable objects.
The idea of decoupling an object’s rigid-body behavior from it’s
elastic deformation was proposed in [Terzopoulos and Fleischer,
1988] as an efficient method for modeling deformable objects. This
idea was extended in [Pentland andWilliams, 1989] by using modal
analysis for modeling deformable objects, although instead of ac-
tually using the object’s vibrational modes they approximated them
with arbitrary linear and quadratic deformation fields.
Outside the field of computer graphics, an extensive amount of

research on sound modeling has been conducted in the digital sound
and music communities. There the focus has been primarily on ac-
curately modeling the sounds generated by musical instruments, in-
cluding the fine subtleties that distinguish high-quality instruments.
A comprehensive review of the work that has been done in those
areas can be found in [Cook, 2002].

3 Methods

The mechanical dynamics of a solid physical object can be decom-
posed into two components: idealized rigid-body motions and elas-
tic deformations. An object is referred to as being rigid, or incom-
pliant, if its response to typical interactions includes only negligi-
ble deformations. For example, when a person taps the side of a
drinking glass it flexes slightly but the amplitude of this deforma-
tion is small enough to be unobservable by sight. However, this
small deformation may be observable by hearing. In particular, if
the elastic properties of the glass are such that the small deforma-
tion induced by the tap results in vibrations at frequencies between
approximately 20 and 20, 000 Hz, then the small pressure fluctua-
tions caused by the oscillating deformation will be heard as sound.
For further information on the physical process of sound generation
we refer the reader to [Kinsler et al., 2000].

3.1 Modal Analysis

Our method for modeling the sounds generated by rigid objects
makes use of a well studied technique known as modal analysis.
This section presents a brief overview of modal analysis and pro-
vides the framework for describing our methods. We refer the
reader to [Cook et al., 1989] for additional information on modal
analysis.
A physical system that has been discretized using a finite ele-

ment, finite differencing, or other similar method can be expressed
in the following general form:

( ) + ( , ˙ ) + ( ¨) = (1)

2

Figure 2: Using a linear formulation to model a bend-
ing bar produces acceptable results for small to moderate
amounts of deformation. For larger deformations signif-
icant amounts of distortion appear. This example shows
the deformation corresponding to the bar’s second trans-
verse mode.

There are also two drawbacks to a modal approach.

First, linearizing the original nonlinear equations means

that the solution will only be a first order approximation

of the true solution. How objectionable the lineariza-

tion error is depends on the application and the extent

to which the objects deform from their initial configura-

tions. As illustrated by figure 2, small to moderate defor-

mations exhibit little or no noticeable error when casually

observed. Even when the errors do grow noticeable, they

have a cartoon-like, exaggerated appearance that may ac-

tually be desirable for some applications.

The second drawback arises because decoupling the

linear system requires computing its eigendecomposition.

However we do not believe that this drawback is partic-

ularly significant. The content in most interactive appli-

cations is constant, so that eigendecompositions can be

precomputed during content development and stored with

the objects. Furthermore, the linear systems are sparse,

so that fast, robust, publicly available codes may be used

to efficiently compute the decompositions (e.g. TRLAN

[29]).

The remainder of this section describes how one com-

putes the modal decomposition for a given object and

how that decomposition can be used to efficiently model

the object’s behavior. Some of this material has been pre-

sented elsewhere by others in the graphics community

(e.g. [10, 19]) but we include it here for completeness.

The discussion will focus in particular on including ma-

nipulation and collision constraints in the modal frame-

work. An overview of the entire process is shown in fig-

ure 3.

3.1 Modal Decomposition

The modal decomposition of a physical system begins

with a linear set of equations that describe the system’s

behavior. In general, the equations describing the system

Generate
tetrahedral mesh

Build
system matrices

Compute
eigen-decomposition

Object geometry
and material properties

Compute
rigid-body parameters

and build
collision structures

Preprocessing

Interactive

Deformable Object Motion

Rigid-body
simulationModal synthesis

Contact/Inertial
Forces

Collision
Geometry

User Interaction Constraints

Figure 3: This diagram illustrates both the preprocessing
steps used to construct the deformable modal model for
an object, and the processes that subsequently generate
interactive motion from this description.

may be nonlinear, and one obtains the linear equations by

linearizing about some point, typically the rest configu-

ration of the system. The linearized equations have the

general form:

Kd + Cḋ + Md̈ = f , (1)

where K, C, and M are respectively known as the sys-

tem’s stiffness, damping, and mass matrices, d and f re-
spectively as the vector of generalized displacements and

forces, and an overdot indicates differentiation with re-

spect to time. The physical meaning of the generalized

force and displacement vectors, and the method for com-

puting the system matrices will depend on the type of

method used for modeling the system. For general fi-

nite element methods, we refer the reader to the excellent

text by Cook, Malkus, and Plesha [5]. We are using an

implementation of the piecewise-linear tetrahedral finite

element method described by O’Brien and Hodgins [16].

Details on computing the system matrices appear in [17].

Modal decomposition refers to the process of diago-

nalizing equation (1). The most general form of modal

decomposition can be used for nearly arbitrary systems,

but the systems arising from the finite element method

we use have a structure that makes them amenable to a

simpler manipulation provided we assume that the damp-

ing matrix, C, is a linear combination of the K and M .

This restriction is known as Rayleigh damping, and al-

though it is a restriction it still produces results superior to

the simple mass damping that is most commonly used in

3



Ren Ng, James O’BrienCS184/284A

Modal Decomposition

Consequences of linearization 

• No local rotations



Ren Ng, James O’BrienCS184/284A

Modal Decomposition

where is the vector of node displacements, an overdot indicates
a derivative with respect to time, and are nonlinear functions
that respectively determine the internal forces due to node displace-
ments and node velocities, maps node accelerations to node
momenta, and represents any other (e.g. external) forces. Typi-
cally, the forces determined by are internal elastic forces and
determines damping forces.
In general, equation (1) is nonlinear, however if we assume that

the displacements are small then we may linearize about the sys-
tem’s rest configuration giving:

+ ˙+ ¨= (2)

where , , and are respectively known as the system’s stiff-
ness, damping, and mass matrices. For the physical systems corre-
sponding to solid objects, all three matrices are real and symmet-
ric. Both and are positive semi-definite, and is positive
definite. Linearizing in this fashion is consistent with our goal of
modeling the small-amplitude, high-frequency vibrations in solid
objects that produce sound. Unfortunately, the linearized system
cannot model the rotational components of rigid-body motion. We
will put this issue aside for now, but later we will return to it and
show how the rigid-body modes can be decoupled from all other
modes.
Once we have the linearized system, the next step in the modal

analysis is to perform a series of manipulations that will diagonal-
ize equation (2). To facilitate this process, we will first assume
that = α1 + α2 for some α1 and α2. Expressing the
damping matrix as a linear combination of the stiffness and mass
matrices is known as Raleigh damping. Although this assumption
simplifies diagonalization while still producing good results, it is
not strictly necessary. A more general assumption, known as pro-
portional damping, that expresses the damping matrix as a linear
combination of powers of the stiffness and mass matrices would
also be diagonalized by the process described below but the equa-
tions would be more cumbersome. Additionally, even if for some
reason must be arbitrary, then other, slightly more complicated,
methods are available for decoupling equation (2) [Anderson et al.,
1999; Bai et al., 2000].
Replacing with α1 + α2 gives:

( + α1 ˙) + (α2 ˙+ )̈ = . (3)

Since is symmetric and positive definite, it may be decomposed

using a Cholesky factorization so that = T. If we introduce

another variable, = T , and then rewrite equation (3) in terms
of after pre-multiplying by −1 we then have:

−1 −T( + α1 ˙) + (α2 ˙ + ¨) = −1 . (4)

The real and symmetric matrix −1 −T can be decomposed

into −1 −T = Λ T where is the orthogonal ma-

trix whose columns are the eigenvectors of −1 −T and Λ is
the diagonal matrix of eigenvalues. Introducing another variable,

= T , and pre-multiplying by T transforms equation (4)
into:

Λ( + α1 ˙) + (α2 ˙ + ¨) = T −1
(5)

which can be rearranged to give:

Λ + (α1Λ + α2 ) ˙ + ¨ = (6)

where = T −1 .
At this point the original linear system of equation (3) has been

diagonalized into a set of decoupled oscillators. The i’th row of
equation (6) is the scalar second-order differential equation:

λizi + (α1λi + α2)żi + z̈i = gi (7)

where λi is the i’th entry of the diagonal matrix Λ. Equation (7)
may be solved by numerical integration or it may be solved more
efficiently using the analytic solution:

zi = c1e
tω+

i + c2e
tω−

i (8)

where c1 and c2 are arbitrary (complex) constants, and ωi is the
complex frequency given by

ω±
i =

−(α1λi + α2) ±
√

(α1λi + α2)2 − 4λi

2
. (9)

The absolute value of the imaginary part of ωi is the frequency
(in radians/second, not Hertz) of the mode, and the real part is the
mode’s decay rate.
The decoupled system of equation (6) is not an approximation

of the original linear system in equation (3), it is exactly the same
as the original linear system. Of course the linear system was an
approximation of the original nonlinear one, but any problem that
could be solved using equation (3) could also be solved with equa-
tion (6).
The columns of −T are the vibrational modes of the object

being modeled. (See figure 3.) Each mode has the property that
a displacement or velocity over the object that is a scalar multi-
ple of the mode will produce an acceleration that is also a scalar
multiple of the mode. This property means that the modes do not
interact with each other, which is why decoupling the system into a
set of independent oscillators was possible. The eigenvalue for each
mode is the ratio of the mode’s elastic stiffness to the mode’s mass,
and it is the square of the mode’s natural frequency (in radians per
second). In general the eigenvalues will be nonzero, but for each
free body in the system there will be six zero eigenvalues that cor-
respond to the body’s six rigid-body modes. The rigid-body eigen-
values are zero because a rigid-body displacement will not generate
any elastic forces.

3.2 Rigid Body Simulation

As discussed previously, the rigid-body modes for an object do not
interact with the object’s deformation modes provided the amount

of elastic deformation experienced by the object is small.1 Addi-
tionally, small-amplitude elastic deformations will not significantly
effect the rigid-body collisions between objects. These observa-
tions allow us to model the rigid-body behavior of the objects in al-
most the same way as if we were not interested in generating audio.
The only change that must be made to the rigid-body simulation is
that information about contact forces must be gathered and exported
to another process that will generate the audio. Of course, hearing
the results of the rigid-body simulation, in addition to seeing them,
may reveal previously unnoticed inadequacies of the simulator, but
we have not found this to be a problem with the simulation engines
we have worked with.
We have implemented our system using two existing rigid-body

simulation engines that were not originally designed for generating
audio. Our choice of engines was motivated by what systems were
readily available and how well they were able to model the scenar-
ios we wished to test. The first is a commercial software package,
Vortex, sold by Critical Mass Labs. The second system we are us-
ing had been previously written by Okan Arikan, a graduate student

1Actually, the requirement was that all displacements be small, includ-

ing displacements corresponding to the rigid-body modes. The translation

modes are inherently linear so they cannot interact with the elastic modes

regardless of their magnitude, but for a rapidly rotating body there will be

some coupling between the rotation modes and the elastic ones. Unless the

object is rotating very rapidly or experiencing large angular accelerations,

the coupling between rotation and elastic modes with frequencies in the au-

dible range will be negligible, so we ignore this interaction.

3



Ren Ng, James O’BrienCS184/284A

Step 1: Linearization

Assume:



Ren Ng, James O’BrienCS184/284A

Step 2: Normalize Mass

Normalize for mass by change of coordinates: 

• Cholesky decompositions:  

• Change of variables:        

M = LL𝖳

y = L𝖳d d = L−𝖳y



Ren Ng, James O’BrienCS184/284A

Step 3: Diagonalize

Diagonalize with second change of coordinates: 

• Eigen decompositions:  

• Change of variables:        

L−1KL−𝖳 = VΛV𝖳

z = V𝖳y y = Vz



Ren Ng, James O’BrienCS184/284A

Result: Individual Modes



Ren Ng, James O’BrienCS184/284A

Fast Simulation

Only a pair of complex multiplies per time step 

• No stability limit on step size 

• Jump to arbitrary point in time 

• Only keep useful modes

e!(t+�t) = e!(t)e!(�t)



Ren Ng, James O’BrienCS184/284A

Examples



Ren Ng, James O’BrienCS184/284A

Examples



Ren Ng, James O’BrienCS184/284A

Examples



Ren Ng, James O’BrienCS184/284A

Examples



Ren Ng, James O’BrienCS184/284A

Examples



Ren Ng, James O’BrienCS184/284A

Examples



Ren Ng, James O’BrienCS184/284A

Examples



Ren Ng, James O’BrienCS184/284A

Examples



Ren Ng, James O’BrienCS184/284A

High-order Differentiable Autoencoder for Nonlinear Model Reduction  
SIGGRAPH 2021, Shen, et. al



Ren Ng, James O’BrienCS184/284A

High-order Differentiable Autoencoder for Nonlinear Model Reduction  
SIGGRAPH 2021, Shen, et. al



Ren Ng, James O’BrienCS184/284A

Backward vs Forward Euler Integration

xt+1 = xt + Δt ·xt

·xt+1 = ·xt + Δt··xt = ·xt + ΔtM−1f(xt, ·xt)

Δ ·xF = ΔtM−1ft
ΔxF = Δt ·xt

Δ ·xB = ΔtM−1ft+1 ≈ ΔtM−1(ft + KΔx)
ΔxB = Δt ·xt+1

Forward Euler

Backward (semi-implicit) Euler



Ren Ng, James O’BrienCS184/284A

Backward vs Forward Euler Integration

Δ ·xF = ΔtM−1ft
ΔxF = Δt ·xt

Δ ·xB = ΔtM−1ft + ΔtM−1KΔxB)
ΔxB = Δt ·xt + ΔtΔ ·xB

Δ ·xB = ΔtM−1(ft + KΔxB)
ΔxB = Δt ·xt+1

ΔxB = Δt ·xt + Δt2M−1ft + Δt2M−1KΔxB)

(I − Δt2M−1K)ΔxB = Δt ·xt + Δt2M−1ft

ΔxB = (I − Δt2M−1K)−1(ΔxF + Δt2M−1ft)

Rewrite with deltas

Combine

Solve



Ren Ng, James O’BrienCS184/284A

Backward vs Forward Euler Integration

Δ ·xF = ΔtM−1ft
ΔxF = Δt ·xt

Δ ·xB = ΔtM−1(ft + KΔxB)
ΔxB = Δt ·xt+1

ΔxB = (I − Δt2M−1K)−1(ΔxF + Δt2M−1ft) Solve

ΔxB = V(I − Δt2Λ)−1V𝖳(ΔxF + Δt2ft)

ΔxB = filter(ΔxF + Δt2f t)

Note: , , , and  change over timeK V Λ filter



Ren Ng, James O’BrienCS184/284A

Backward vs Forward Euler Integration

ΔxB = V(I − Δt2Λ)−1V𝖳(ΔxF + Δt2ft)

ΔxB = filter(ΔxF + Δt2f t)

Note: , , , and  change over timeK V Λ filter

Δ ·xF = ΔtM−1ft
ΔxF = Δt ·xt

• PCA vs Eigen System
• Dynamic orthogonality 
• Energy leakage
• Limited sample states for PCA



Ren Ng, James O’BrienCS184/284A

Acknowledgments

This slide set contain contributions from: 

• Kayvon Fatahalian 

• David Forsyth 

• Pat Hanrahan 

• Angjoo Kanazawa 

• Steve Marschner 

• Ren Ng 

• James F. O’Brien 

• Mark Pauly 


