Lecture 21a:

Modal Analysis

Computer Graphics and Imaging UC Berkeley CS184/284A

Note: The math on gray slides will not be on the exams.

CS184/284A

Modal Analysis

CS184/284A

Modal Decomposition

Linearize non-linear system

 $\mathcal{K}(d) + \mathcal{C}(d, d) + \mathcal{M}(\ddot{d}) = f$

Kd + Cd + Md = f

CS184/284A

Modal Decomposition

Consequences of linearization

No local rotations

CS184/284A

Modal Decomposition

$\boldsymbol{\Lambda}\boldsymbol{z} + (\alpha_1\boldsymbol{\Lambda} + \alpha_2\boldsymbol{I})\boldsymbol{\dot{z}} + \boldsymbol{\ddot{z}} = \boldsymbol{g}$

CS184/284A

Step 1: Linearization

 $\mathcal{K}(d) + \mathcal{C}(d) + \mathcal{M}(d) = f$ Kd + Cd + Md = fAssume: $C = \alpha_1 K + \alpha_2 M$ $K(d + \alpha_1 d) + M(\alpha_2 d + d) = f$

CS184/284A

Step 2: Normalize Mass

Normalize for mass by change of coordinates:

- Cholesky decompositions: $\mathbf{M} = \mathbf{L}\mathbf{L}^{\mathsf{T}}$
- Change of variables: $\mathbf{y} = \mathbf{L}^{\mathsf{T}} \mathbf{d}$ $\mathbf{d} = \mathbf{L}^{-\mathsf{T}} \mathbf{y}$

$$oldsymbol{K}(oldsymbol{d}+lpha_1oldsymbol{d})+oldsymbol{M}(lpha_2oldsymbol{d})\ iggee oldsymbol{L}^{-1}oldsymbol{K}oldsymbol{L}^{- extsf{T}}(oldsymbol{y}+lpha_1oldsymbol{\dot{y}})+(lpha_2oldsymbol{\dot{y}})$$

Step 3: Diagonalize

Diagonalize with second change of coordinates:

- Eigen decompositions: $\mathbf{L}^{-1}\mathbf{K}\mathbf{L}^{-\top} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^{\top}$
- Change of variables: $\mathbf{z} = \mathbf{V}^{\mathsf{T}} \mathbf{y}$ $\mathbf{y} = \mathbf{V} \mathbf{z}$

$$egin{aligned} oldsymbol{L}^{-1}oldsymbol{K}oldsymbol{L}^{- op}(oldsymbol{y}+lpha_1\dot{oldsymbol{y}})+(lpha_2\dot{oldsymbol{y}})\ &igvee \ oldsymbol{\Lambda}(oldsymbol{z}+lpha_1\dot{oldsymbol{z}})+(lpha_2\dot{oldsymbol{z}}+\ddot{oldsymbol{z}})\ &igvee \ oldsymbol{\Lambda}oldsymbol{z}+(lpha_1oldsymbol{\Lambda}+lpha_2oldsymbol{I})\dot{oldsymbol{z}}) \end{aligned}$$

$-\mathsf{T} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$ $\mathbf{y} = \mathbf{V} \mathbf{z}$

$egin{aligned} \dot{m{y}} + \ddot{m{y}}) &= m{L}^{-1}m{f} \ &= m{V}^{\mathsf{T}}m{L}^{-1}m{f} \ &= m{z} &= m{g} \end{aligned}$

Result: Individual Modes

$$\lambda_i z_i + (\alpha_1 \lambda_i + \alpha_2) z$$

Fast Simulation

Only a pair of complex multiplies per time step

$$e^{\omega(t+\Delta t)} = e^{\omega(t)}e^{\omega($$

- No stability limit on step size
- Jump to arbitrary point in time
- Only keep useful modes

 $\omega(\Delta t)$

CS184/284A

CS184/284A

Synthesizing Sounds from Rigid–Body Simulation

James F. O'Brien Chen Shen Christine M. Gatchalian

University of California, Berkeley

ACM SIGGRAPH Symposium on Computer Animation 2002

CS184/284A

Synthesizing Sounds from Rigid–Body Simulation

James F. O'Brien Chen Shen Christine M. Gatchalian

University of California, Berkeley

ACM SIGGRAPH Symposium on Computer Animation 2002

CS184/284A

High-order Differentiable Autoencoder for Nonlinear Model Reduction

SIGGRAPH 2021, Shen, et. al

High-order Differentiable Autoencoder for Nonlinear Model Reduction

Siyuan Shen^{*}, Yin Yang^{*}, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei Lan, Kun Zhou loint first authors

CS184/284A

High-order Differentiable Autoencoder for Nonlinear Model Reduction

SIGGRAPH 2021, Shen, et. al

High-order Differentiable Autoencoder for Nonlinear Model Reduction

Siyuan Shen^{*}, Yin Yang^{*}, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei Lan, Kun Zhou loint first authors

CS184/284A

$$\mathbf{x}^{t+1} = \mathbf{x}^t + \Delta t \dot{\mathbf{x}}^t$$
$$\dot{\mathbf{x}}^{t+1} = \dot{\mathbf{x}}^t + \Delta t \ddot{\mathbf{x}}^t = \dot{\mathbf{x}}^t + \Delta t \mathbf{M}^{-1} \mathbf{f} (\mathbf{x})$$

Forward Euler

$$\Delta \mathbf{x}_F = \Delta t \dot{\mathbf{x}}^t$$
$$\Delta \dot{\mathbf{x}}_F = \Delta t \mathbf{M}^{-1} \mathbf{f}^t$$

Backward (semi-implicit) Euler

$$\Delta \mathbf{x}_B = \Delta t \dot{\mathbf{x}}^{t+1}$$

$$\Delta \dot{\mathbf{x}}_B = \Delta t \mathbf{M}^{-1} \mathbf{f}^{t+1} \approx \Delta t \mathbf{M}^{-1} (\mathbf{f}^t + 1)$$

CS184/284A

 $\Delta \mathbf{x}_B = \Delta t \dot{\mathbf{x}}^{t+1}$ $\Delta \dot{\mathbf{x}}_{B} = \Delta t \mathbf{M}^{-1} (\mathbf{f}^{t} + \mathbf{K} \Delta \mathbf{x}_{B})$

 $\Delta \mathbf{x}_{R} = \Delta t \dot{\mathbf{x}}^{t} + \Delta t \Delta \dot{\mathbf{x}}_{R}$ $\Delta \dot{\mathbf{x}}_{B} = \Delta t \mathbf{M}^{-1} \mathbf{f}^{t} + \Delta t \mathbf{M}^{-1} \mathbf{K} \Delta \mathbf{x}_{B}$ $\Delta \mathbf{x}_{B} = \Delta t \dot{\mathbf{x}}^{t} + \Delta t^{2} \mathbf{M}^{-1} \mathbf{f}^{t} + \Delta t^{2} \mathbf{M}^{-1} \mathbf{K} \Delta \mathbf{x}_{B}$ $(\mathbf{I} - \Delta t^2 \mathbf{M}^{-1} \mathbf{K}) \Delta \mathbf{x}_B = \Delta t \dot{\mathbf{x}}^t + \Delta t^2 \mathbf{M}^{-1} \mathbf{f}^t$ $\Delta \mathbf{x}_B = (\mathbf{I} - \Delta t^2 \mathbf{M}^{-1} \mathbf{K})^{-1} (\Delta \mathbf{x}_F + \Delta t^2 \mathbf{M}^{-1} \mathbf{f}^t)$

CS184/284A

 $\Delta \mathbf{x}_F = \Delta t \dot{\mathbf{x}}^t$ $\Delta \dot{\mathbf{x}}_F = \Delta t \mathbf{M}^{-1} \mathbf{f}^t$

Rewrite with deltas

Combine

Solve

$$\Delta \mathbf{x}_B = \Delta t \dot{\mathbf{x}}^{t+1}$$
$$\Delta \dot{\mathbf{x}}_B = \Delta t \mathbf{M}^{-1} (\mathbf{f}^t + \mathbf{K} \Delta \mathbf{x}_B)$$

$$\Delta \mathbf{x}_B = (\mathbf{I} - \Delta t^2 \mathbf{M}^{-1} \mathbf{K})^{-1} (\Delta \mathbf{x}_F + \Delta t^2 \mathbf{M}^{-1} \mathbf{f}^t)$$

$$\Delta \mathbf{x}_B = \mathbf{V}(\mathbf{I} - \Delta t^2 \mathbf{\Lambda})^{-1} \mathbf{V}^{\mathsf{T}} (\Delta \mathbf{x}_F + \Delta t^2 \mathbf{\Lambda})^$$

$$\Delta \mathbf{x}_B = \text{filter}(\Delta \mathbf{x}_F + \Delta t^2 \mathbf{f}^t)$$

Note: **K**, **V**, Λ , and filter change over time

CS184/284A

$$\Delta \mathbf{x}_F = \Delta t \dot{\mathbf{x}}^t$$
$$\Delta \dot{\mathbf{x}}_F = \Delta t \mathbf{M}^{-1} \mathbf{f}^t$$

$$\Delta \mathbf{x}_B = \mathbf{V}(\mathbf{I} - \Delta t^2 \mathbf{\Lambda})^{-1} \mathbf{V}^{\mathsf{T}} (\Delta \mathbf{x}_F + \Delta t^2 \mathbf{f}^t)$$
$$\Delta \mathbf{x}_B = \text{filter}(\Delta \mathbf{x}_F + \Delta t^2 \mathbf{f}^t)$$

Note: \mathbf{K} , \mathbf{V} , $\boldsymbol{\Lambda}$, and filter change over time

• PCA vs Eigen System

- Dynamic orthogonality
- Energy leakage
- Limited sample states for PCA

CS184/284A

Acknowledgments

This slide set contain contributions from:

- Kayvon Fatahalian
- David Forsyth
- Pat Hanrahan
- Angjoo Kanazawa
- Steve Marschner
- Ren Ng
- James F. O'Brien
- Mark Pauly

CS184/284A