Lecture 6:

The Rasterization Pipeline

Computer Graphics and Imaging UC Berkeley CS184/284A

What We've Covered So Far

Position objects and the camera in the world

Sample triangle coverage

Compute position of objects relative to the camera

Interpolate triangle attributes

Project objects onto the screen

Sample texture maps

Ren Ng, James O'Brien

Rotating Cubes in Perspective

Rotating Cubes in Perspective

Rotating Cubes in Perspective

What Else Are We Missing?

Credit: Bertrand Benoit. "Sweet Feast," 2009. [Blender /VRay]

What Else Are We Missing?

Credit: Giuseppe Albergo. "Colibri" [Blender]

What Else Are We Missing?

Surface representations

 Objects in the real world exhibit highly complex geometric details

Lighting and materials

 Appearance is a result of how light sources reflect off complex materials

Camera models

 Real lenses create images with focusing and other optical effects

Course Roadmap

Rasterization Pipeline

Core Concepts

- Sampling
- Antialiasing
- Transforms

Geometric Modeling

Lighting & Materials

Cameras & Imaging

Intro

Rasterization

Transforms & Projection

Texture Mapping

Today: Visibility, Shading, Overall Pipeline

Visibility

Painter's Algorithm

Inspired by how painters paint

Paint from back to front, overwrite in the framebuffer

Painter's Algorithm

Requires sorting in depth (O(n log n) for n triangles)

Can have unresolvable depth order

(BSP Trees will provide a way of dealing with this problem.)

Z-Buffer

This is the hidden-surface-removal algorithm that eventually won.

Idea:

- Store current min. z-value for each sample position
- Needs an additional buffer for depth values
 - framebuffer stores RBG color values
 - depth buffer (z-buffer) stores depth (16 to 32 bits)

Z-Buffer Example

Rendering

Depth buffer

Z-Buffer Algorithm

Initialize depth buffer to ∞ During rasterization:

Z-Buffer Algorithm

(Pretend these numbers are negative, i.e. distance from near plane.)

Z-Buffer Complexity

Complexity

- O(n) for n triangles
- How can we sort n triangles in linear time?

Most important visibility algorithm

- Implemented in hardware for all GPUs
- Used by OpenGL

Z-Buffer and Transparency

Transparency requires partial sorting

Common solution:

- Draw opaque polygons first
- Then draw transparent polygons (Ideally in sorted order)

Z-Buffer and Transparency

Transparency requires partial sorting

Another solution:

• Linked list of RGB-Z- α at each pixel (Alpha Buffer)

Shadow Maps

- Pre-render scene from perspective of light source
 - Only render Z-Buffer (the shadow buffer)
- Render scene from camera perspective
 - Compare with shadow buffer
 - If nearer light, if further shadow

Shadow Maps

Shadow Buffer

From Stamminger and Drettakis SIGGRAPH 2002

Image w/ Shadows

Ren Ng, James O'Brien

Note: These images don't really go together, see the paper...

Deep Shadow Maps

- · Some objects only partially occlude light
 - A single shadow value will not work
 - Similar to transparency in Z-Buffer

From Lokovic and Veach SIGGRAPH 2000

Ren Ng, James O'Brien

Simple Shading (Blinn-Phong Reflection Model)

Simple Shading vs Realistic Lighting & Materials

What we will cover today

- A local shading model: simple, per-pixel, fast
- Based on perceptual observations, not physics

What we will cover later in the course

- Physics-based lighting and material representations
- Global light transport simulation

Perceptual Observations

Photo credit: Jessica Andrews, flickr

Local Shading

Compute light reflected toward camera

Inputs:

- Viewer direction, v
- Surface normal, n
- Light direction, I
 (for each of many lights)
- Surface parameters (color, shininess, ...)

No "global" effects.

Falloff

Physically correct: $1/r^2$ light intensify falloff

Tends to look bad with local shading (why?)

Sometimes compromise of 1/r used.

Very important to use $1/r^2$ for correct global illumination methods.

Diffuse Reflection

Light is scattered uniformly in all directions

Surface color is the same for all viewing directions

Lambert's cosine law

Top face of cube receives a certain amount of light

Top face of 60° rotated cube intercepts half the light

In general, light per unit area is proportional to $\cos \theta = \mathbf{I} \cdot \mathbf{n}$

Ren Ng, James O'Brien

Lambertian (Diffuse) Shading

Shading independent of view direction

CS184/284A

Ren Ng, James O'Brien

Lambertian (Diffuse) Shading

Produces matte appearance

 $k_d \longrightarrow$

Perceptual Observations

Photo credit: Jessica Andrews, flickr

Specular Shading (Blinn-Phong)

Intensity depends on view direction

Bright near mirror reflection direction

Specular Shading (Blinn-Phong)

Close to mirror direction \(\Delta\) half vector near normal

Measure "near" by dot product of unit vectors

[Foley et al.]

Cosine Power Plots

Increasing p narrows the reflection lobe

Specular Shading (Blinn-Phong)

$$L_s = k_s (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{h})^p$$

$$p \longrightarrow$$

Specular Shading (Blinn-Phong)

Direction -vs- Point Lights

For a point light, the light direction changes over the surface.

For "distant" light, the direction is constant

Similar for orthographic/perspective viewer

Ren Ng, James O'Brien

Spot and Other Lights

Other calculations for useful effects

- Spot light
- Only light certain objects
- Negative lights
- etc.

Ugly....

CS184/284A

Ren Ng, James O'Brien

Ugly....

CS184/284A

Ren Ng, James O'Brien

Perceptual Observations

Photo credit: Jessica Andrews, flickr

Ambient Shading

CS184/284A

Shading that does not depend on anything

 Add constant color to account for disregarded illumination and fill in black shadows

Blinn-Phong Reflection Model

Ambient + Diffuse + Specular = Phong Reflection

$$L = L_a + L_d + L_s$$

= $k_a I_a + k_d (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{h})^p$

Blinn-Phong Reflection Model

Photo credit: Jessica Andrews, flickr

$$L = L_a + L_d + L_s$$

= $k_a I_a + k_d (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s (I/r^2) \max(0, \mathbf{n} \cdot \mathbf{h})^p$

- More realistic specular term (for some materials)
- Anisotropic specularities
- Fresnel behavior (grazing angle highlights)
- Energy preserving diffuse term
- Sum of diffuse and specular terms (as before)

$$\rho(\hat{\mathbf{l}}, \hat{\mathbf{v}}) = \rho_d(\hat{\mathbf{l}}, \hat{\mathbf{v}}) + \rho_s(\hat{\mathbf{l}}, \hat{\mathbf{v}})$$

Michael Ashikhmin and Peter Shirley. 2000. An anisotropic phong BRDF model. J. Graph. Tools 5, 2 (February 2000), 25-32.

https://www.cs.utah.edu/~shirley/papers/jgtbrdf.pdf

$$\rho_s(\hat{\mathbf{l}}, \hat{\mathbf{e}}) = \frac{\sqrt{(p_u + 1)(p_v + 1)}}{8\pi} \frac{(\hat{\mathbf{n}} \cdot \hat{\mathbf{h}})^{p_u \cos^2 \phi + p_v \sin^2 \phi}}{(\hat{\mathbf{h}} \cdot \hat{\mathbf{e}}) \max \left((\hat{\mathbf{n}} \cdot \hat{\mathbf{e}}), (\hat{\mathbf{n}} \cdot \hat{\mathbf{l}}) \right)} F(\hat{\mathbf{h}} \cdot \hat{\mathbf{e}})$$

$$F(\hat{\mathbf{h}} \cdot \hat{\mathbf{e}}) = K_s + (1 - K_s)(1 - (\hat{\mathbf{h}} \cdot \hat{\mathbf{e}}))^5$$

î Light direction

ê Viewer (eye) direction

 p_u, p_v Specular powers

n Normal

h Half angle

 K_s Specular coefficient (color)

û, î Parametric directions

$$\rho_s(\hat{\mathbf{l}}, \hat{\mathbf{e}}) = \frac{\sqrt{(p_u + 1)(p_v + 1)}}{8\pi} \frac{(\hat{\mathbf{n}} \cdot \hat{\mathbf{h}})^{\frac{p_u(\hat{\mathbf{h}} \cdot \hat{\mathbf{u}})^2 + p_u(\hat{\mathbf{h}} \cdot \hat{\mathbf{v}})^2}{1 - (\hat{\mathbf{h}} \cdot \hat{\mathbf{n}})^2}}{(\hat{\mathbf{h}} \cdot \hat{\mathbf{e}}) \max\left((\hat{\mathbf{n}} \cdot \hat{\mathbf{e}}), (\hat{\mathbf{n}} \cdot \hat{\mathbf{l}})\right)} F(\hat{\mathbf{h}} \cdot \hat{\mathbf{e}})$$

$$F(\hat{\mathbf{h}} \cdot \hat{\mathbf{e}}) = K_s + (1 - K_s)(1 - (\hat{\mathbf{h}} \cdot \hat{\mathbf{e}}))^5$$

Approximate Fresnel function

- î Light direction
- ê Viewer (eye) direction
- p_u, p_v Specular powers
 - **n** Normal
 - h Half angle
 - K_s Specular coefficient (color)
 - û, î Parametric directions

$$\rho_d(\hat{\mathbf{l}}, \hat{\mathbf{e}}) = \frac{28K_d}{23\pi} (1 - K_s) \left(1 - \left(1 - \frac{\hat{\mathbf{n}} \cdot \hat{\mathbf{e}}}{2} \right)^5 \right) \left(1 - \left(1 - \frac{\hat{\mathbf{n}} \cdot \hat{\mathbf{l}}}{2} \right)^5 \right)$$

Note: The Phong diffuse term (Lambertian) is independent of view. But this term accounts for unavailable light due to specular/ Fresnel reflection.

- î Light direction
- ê Viewer (eye) direction
- p_u, p_v Specular powers
 - **n** Normal
 - h Half angle
 - K_s Specular coefficient (color)
 - û, î Parametric directions

Beyond BRDFs

The BRDF model does not capture everything

• e.g. Subsurface scattering (BSSRDF)

Images from Jensen et. al, SIGGRAPH 2001

Beyond BRDFs

The BRDF model does not capture everything

• e.g. Inter-frequency interactions

$$ho =
ho(\theta_V, \theta_L, \lambda_{
m in}, \lambda_{
m out})$$
 This version would work...

BRDFs for automotive paint

BRDFs for aerosol spray paint

BRDFs for house paint

BRDFs for lucite sheet

Measuring BRDF

Images from Marc Levoy

Other Color Effects

Images from Gooch et. al, 1998

Ren Ng, James O'Brien

Shading Triangle Meshes

Shading Frequency: Triangle, Vertex or Pixel

Shade each triangle (flat shading)

- Triangle face is flat one normal vector
- Not good for smooth surfaces

Shade each vertex ("Gouraud" shading)

- Interpolate colors from vertices across triangle
- Each vertex has a normal vector

Shade each pixel ("Phong" shading)

- Interpolate normal vectors across each triangle
- Compute full shading model at each pixel

Shading Frequency: Face, Vertex or Pixel

Image credit: Happyman, http://cg2010studio.com/

Defining Per-Vertex Normal Vectors

Best to get vertex normals from the underlying geometry

• e.g. consider a sphere

Otherwise have to infer vertex normals from triangle faces

• Simple scheme: average surrounding face normals

$$N_v = \frac{\sum_i N_i}{\|\sum_i N_i\|}$$

Defining Per-Pixel Normal Vectors

Barycentric interpolation of vertex normals

Problem: length of vectors?

Smooth Shading

From blender.stackexchange.com

Rasterization Pipeline

Rasterization Pipeline

- Program vertex and fragment processing stages
- Describe operation on a single vertex (or fragment)

Example GLSL fragment shader program

```
uniform sampler2D myTexture;
uniform vec3 lightDir;
varying vec2 uv;
varying vec3 norm;
void diffuseShader()
 vec3 kd;
 kd = texture2d(myTexture, uv);
 kd *= clamp(dot(-lightDir, norm), 0.0, 1.0);
 gl_FragColor = vec4(kd, 1.0);
```

- Shader function executes once per fragment.
- Outputs color of surface at the current fragment's screen sample position.
- This shader performs a texture lookup to obtain the surface's material color at this point, then performs a diffuse lighting calculation.

- Program vertex and fragment processing stages
- Describe operation on a single vertex (or fragment)

Example GLSL fragment shader program

```
uniform sampler2D myTexture;
                                  // program parameter
uniform vec3 lightDir;
                                  // program parameter
                                  // per fragment value (interp. by rasterizer)
varying vec2 uv;
                                  // per fragment value (interp. by rasterizer)
varying vec3 norm;
void diffuseShader()
 vec3 kd;
                                                    // material color from texture
 kd = texture2d(myTexture, uv);
 kd *= clamp(dot(-lightDir, norm), 0.0, 1.0);
                                                    // Lambertian shading model
 gl_FragColor = vec4(kd, 1.0);
                                                    // output fragment color
```

- Program vertex and fragment processing stages
- Describe operation on a single vertex (or fragment)

Example GLSL fragment shader program

```
uniform sampler2D myTexture;
                                  // program parameter
uniform vec3 lightDir;
                                  // program parameter
                                  // per fragment value (interp. by rasterizer)
varying vec2 uv;
                                  // per fragment value (interp. by rasterizer)
varying vec3 norm;
void diffuseShader()
 vec3 kd;
                                                    // material color from texture
 kd = texture2d(myTexture, uv);
 kd *= clamp(dot(-lightDir, norm), 0.0, 1.0);
                                                    // Lambertian shading model
 gl_FragColor = vec4(kd, 1.0);
                                                    // output fragment color
```


Measuring and Modeling the Appearance of Finished Wood

Stephen R. Marschner, Stephen H. Westin, Adam Arbree, and Jonathan T. Moon. In Proceedings of SIGGRAPH 2005. Held in Los Angeles, California, July 2005.

Code on GitHub: https://github.com/mckennapsean/wood-shader

Goal: Highly Complex 3D Scenes in Realtime

Graphics Pipeline Implementation: GPUs

Specialized processors for executing graphics pipeline computations

Discrete GPU Card (NVIDIA GeForce Titan X)

Integrated GPU: (Part of Intel CPU die)

CPU vs GPU

CPU

https://www.youtube.com/watch?v=ZrJeYFxpUyQ

CPU vs GPU

GPU

https://www.youtube.com/watch?v=ZrJeYFxpUyQ

GPU: Heterogeneous, Multi-Core Procesor

Modern GPUs offer ~2-4 Tera-FLOPs of performance for executing vertex and fragment shader programs

Tera-Op's of fixed-function compute capability over here

Things to Remember

Visibility

Painter's algorithm and Z-Buffer algorithm

Simple Shading Model

- Key geometry: lighting, viewing & normal vectors
- Ambient, diffuse & specular reflection functions
- Shading frequency: triangle, vertex or fragment

Graphics Rasterization Pipeline

- Where do transforms, rasterization, shading, texturing and visibility computations occur?
- GPU = parallel processor implementing graphics pipeline

Acknowledgments

This slide set contain contributions from:

- Kayvon Fatahalian
- David Forsyth
- Pat Hanrahan
- Angjoo Kanazawa
- Ren Ng
- James O'Brien
- Mark Pauly