Lecture 9/10:
Intro to Ray-Tracing &
Accelerating Ray-Scene Intersection

Computer Graphics and Imaging UC Berkeley CS184/284A

### Towards Photorealistic Rendering



Credit: Bertrand Benoit. "Sweet Feast," 2009. [Blender /VRay]

#### Discussion: What Do You See?

2 min, 2 people, 2 observations

 Look closely, curiously, and write down 2 visual features you want to know how to compute



Credit: Bertrand Benoit. /eet Feast," 2009. [Blender /VRay]

https://cgsociety.org/c/featured/6hgf/sweet-feast

# Discussion: What Do You See? Your observations Ng & O'Brien CS184/284A Image credit: Bertrand Benoit. "Sweet Feast," 2009. [Blender /VRay]

### Course Roadmap

#### Rasterization Pipeline

#### **Core Concepts**

- Sampling
- Antialiasing
- Transforms

#### Geometric Modeling

#### **Core Concepts**

- Splines, Bezier Curves
- Topological Mesh Representations
- Subdivision, Geometry Processing

#### Lighting & Materials

#### **Core Concepts**

- Measuring Light
- Unbiased Integral Estimation
- Light Transport & Materials

#### Cameras & Imaging

Rasterization

**Transforms & Projection** 

**Texture Mapping** 

Visibility, Shading, Overall Pipeline

Intro to Geometry

**Curves and Surfaces** 

**Geometry Processing** 

Ray-Tracing & Acceleration

Today

Radiometry & Photometry

**Monte Carlo Integration** 

**Global Illumination & Path Tracing** 

**Material Modeling** 

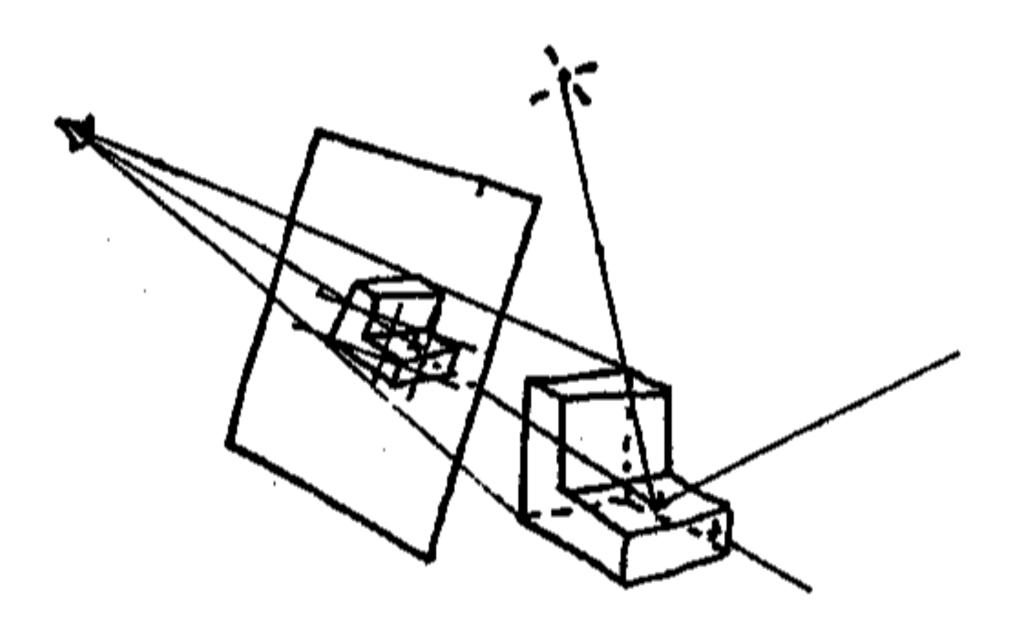


## Basic Ray-Tracing Algorithm

### Ray Casting

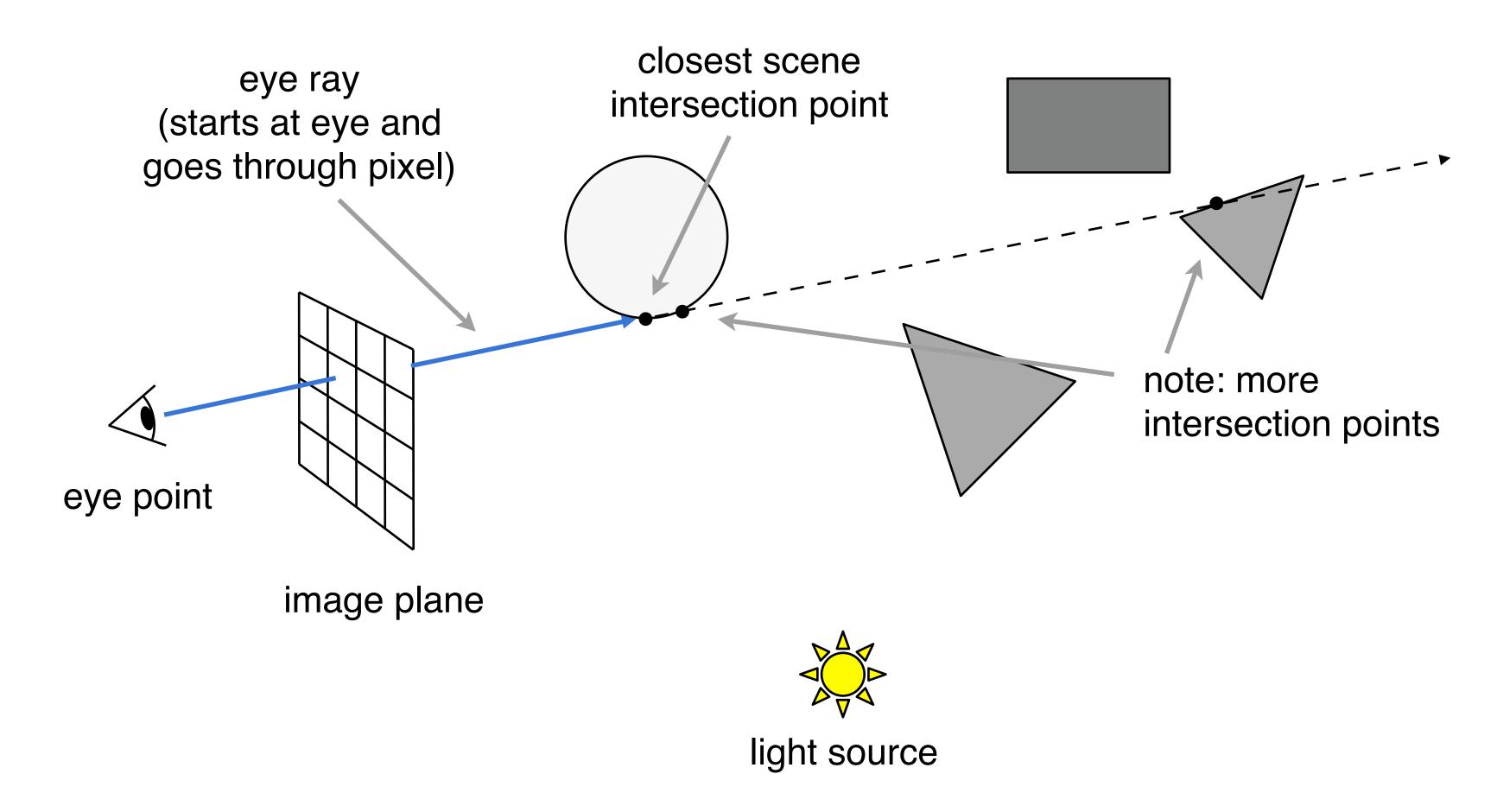
Appel 1968 - Ray casting

- 1. Generate an image by casting one ray per pixel
- 2. Check for shadows by sending a ray to the light



### Ray Casting - Generating Eye Rays

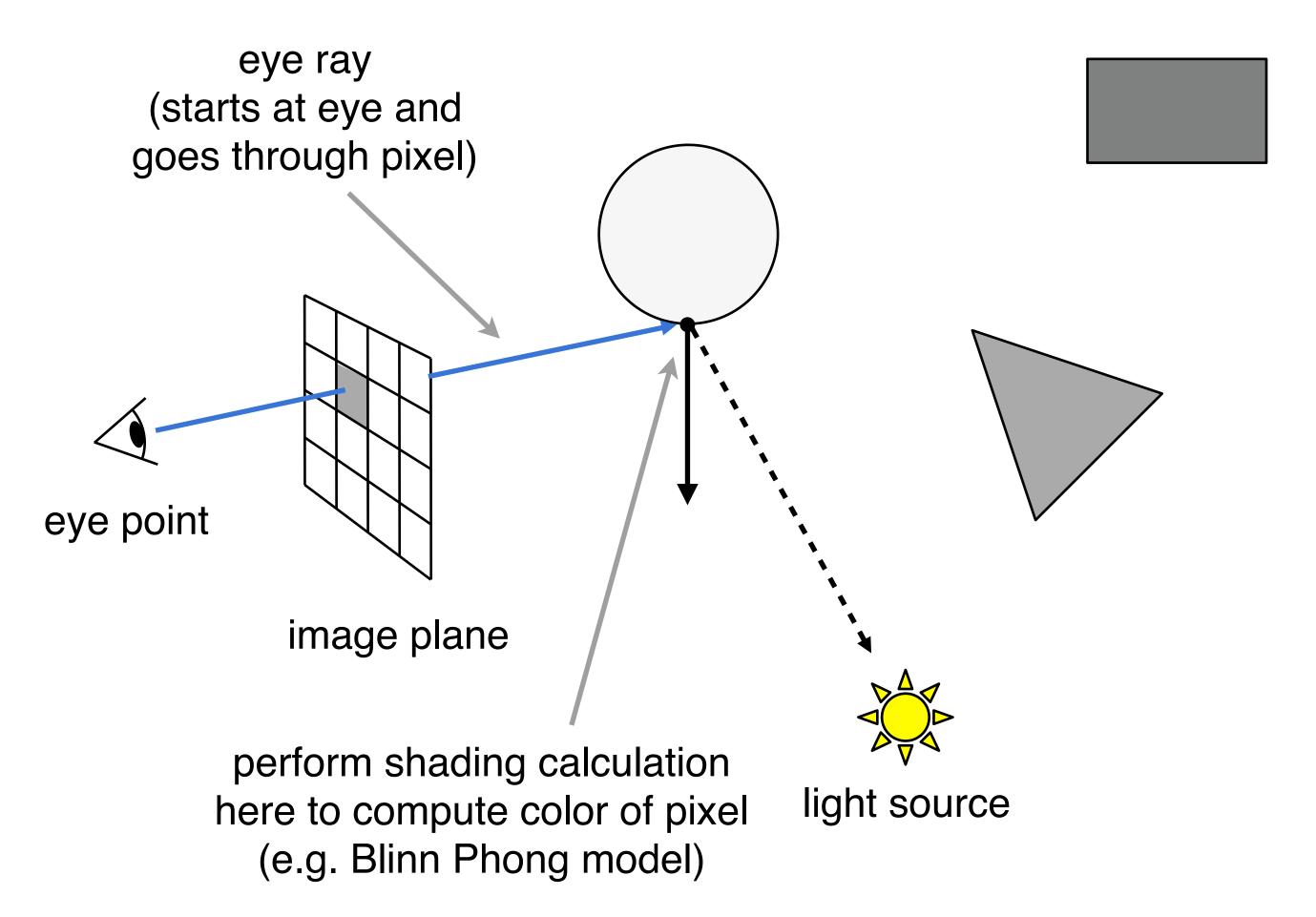
#### Pinhole Camera Model



**CS184/284A Ng & O'Brien** 

### Ray Casting - Shading Pixels (Local Only)

#### Pinhole Camera Model

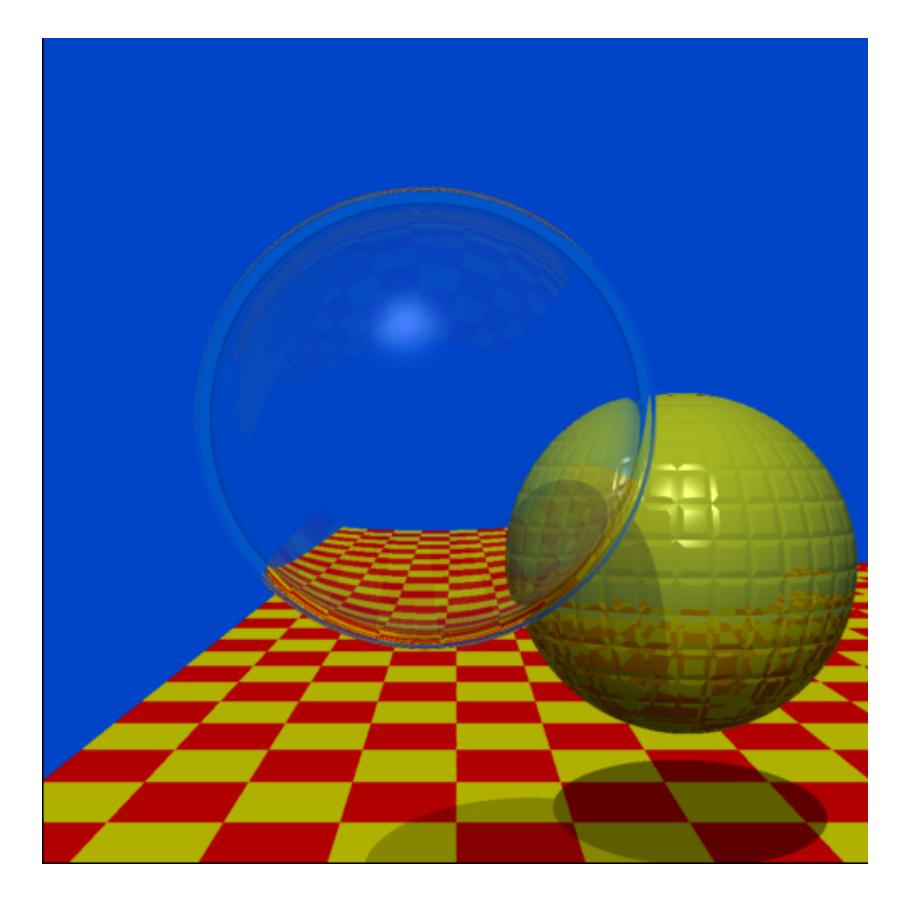


**CS184/284A Ng & O'Brien** 

"An improved Illumination model for shaded display" T. Whitted, CACM 1980

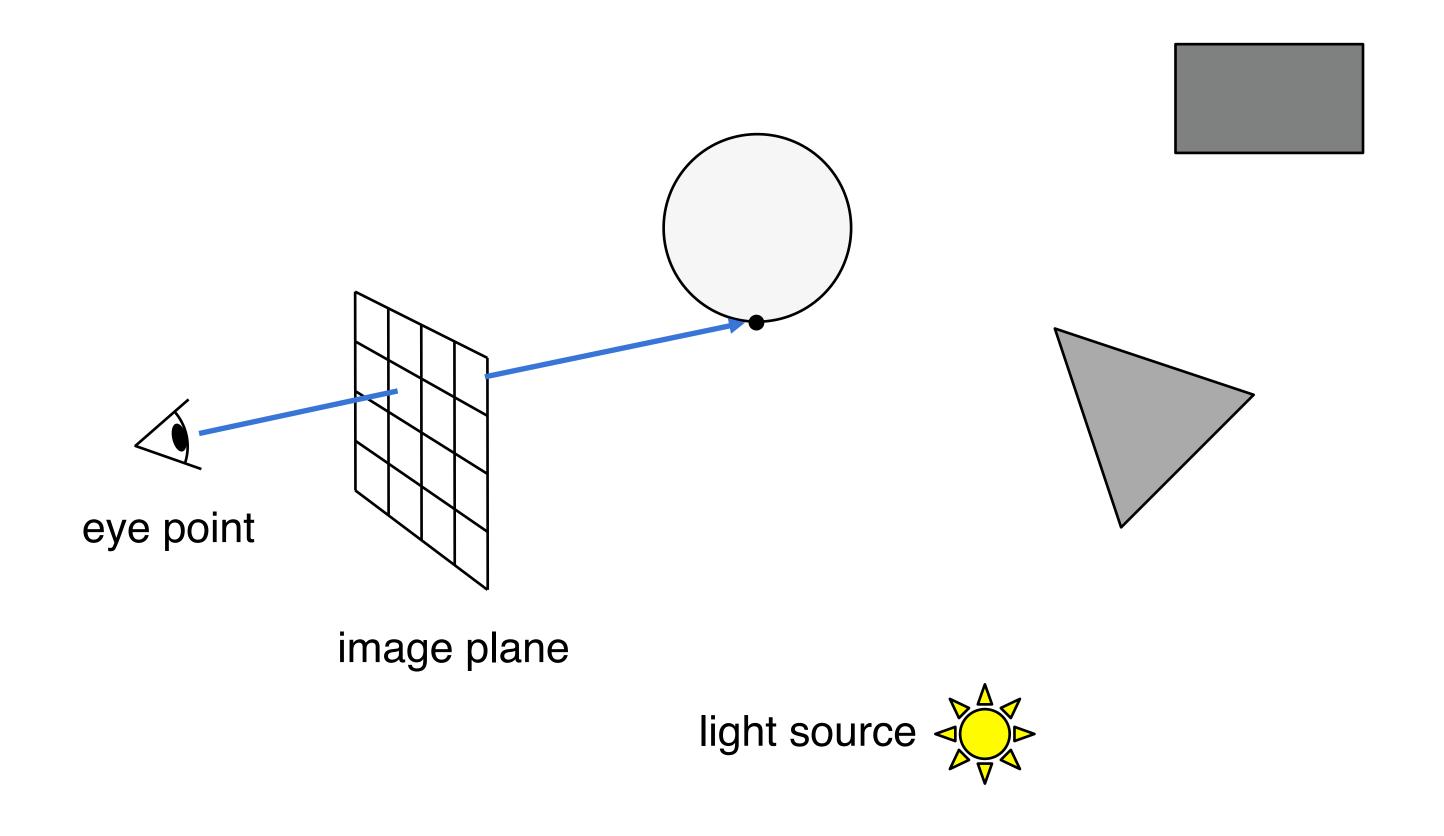
#### Time:

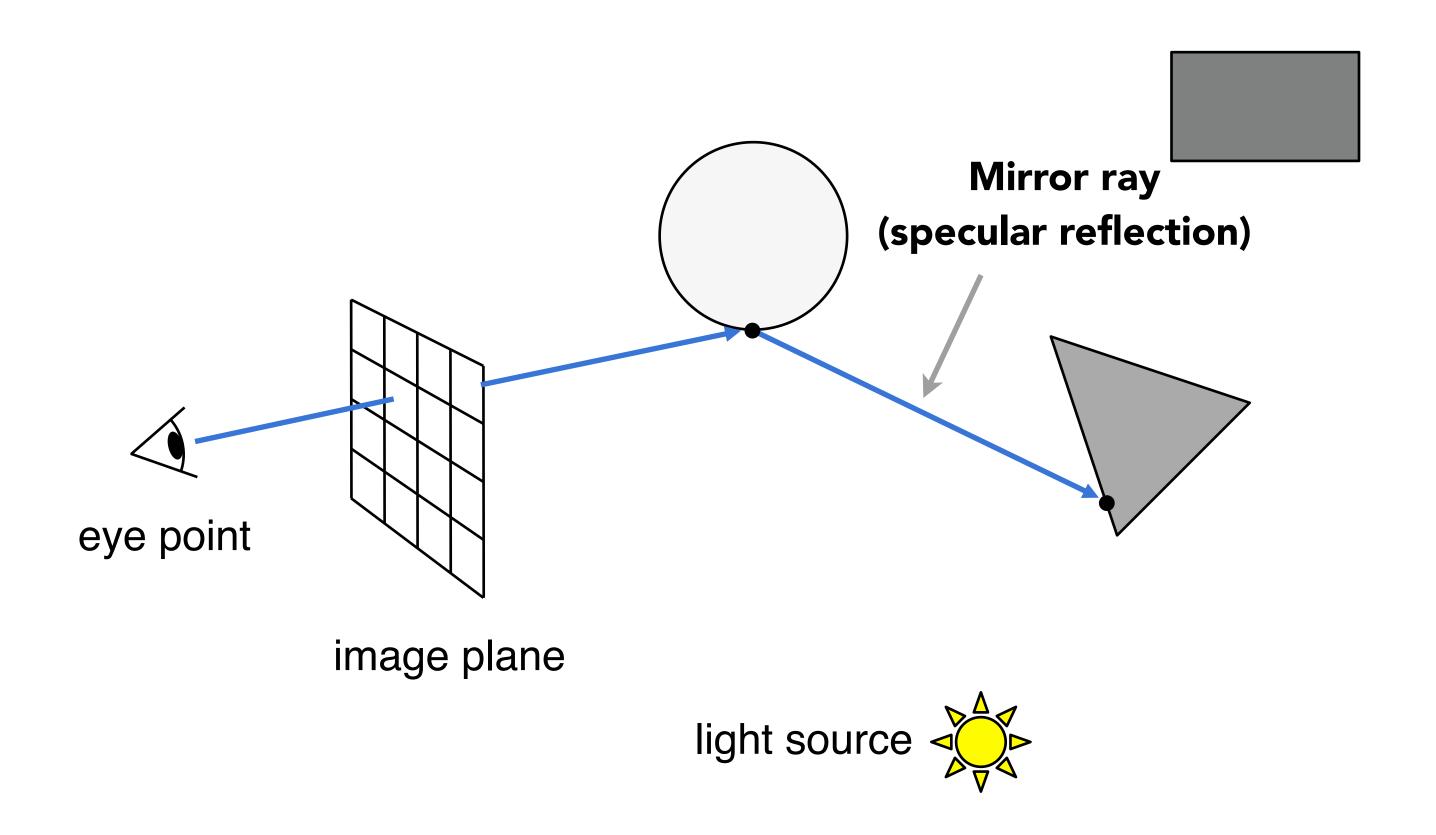
- VAX 11/780 (1979) 74m
- PC (2006) 6s
- GPU (2012) 1/30s

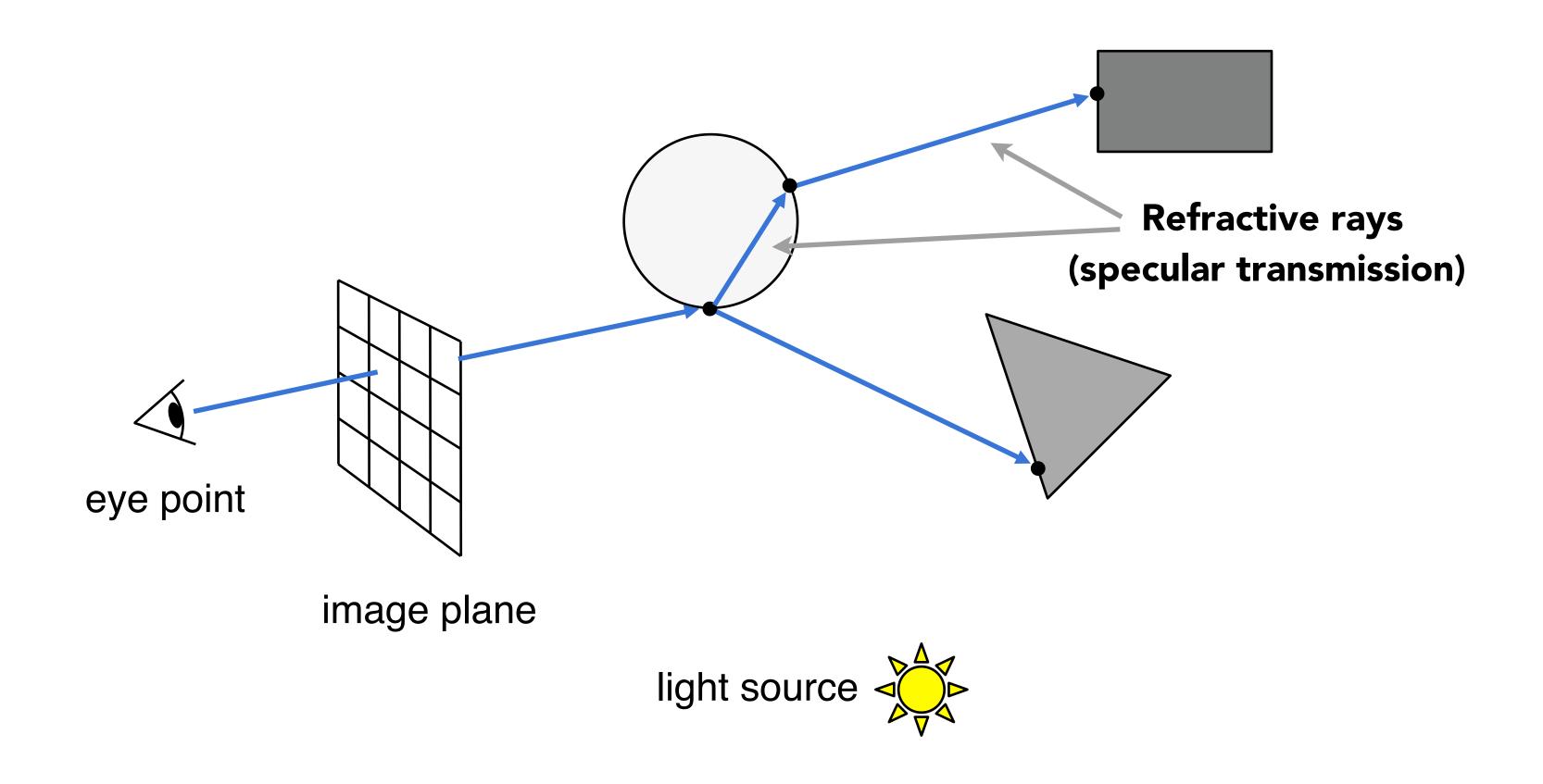


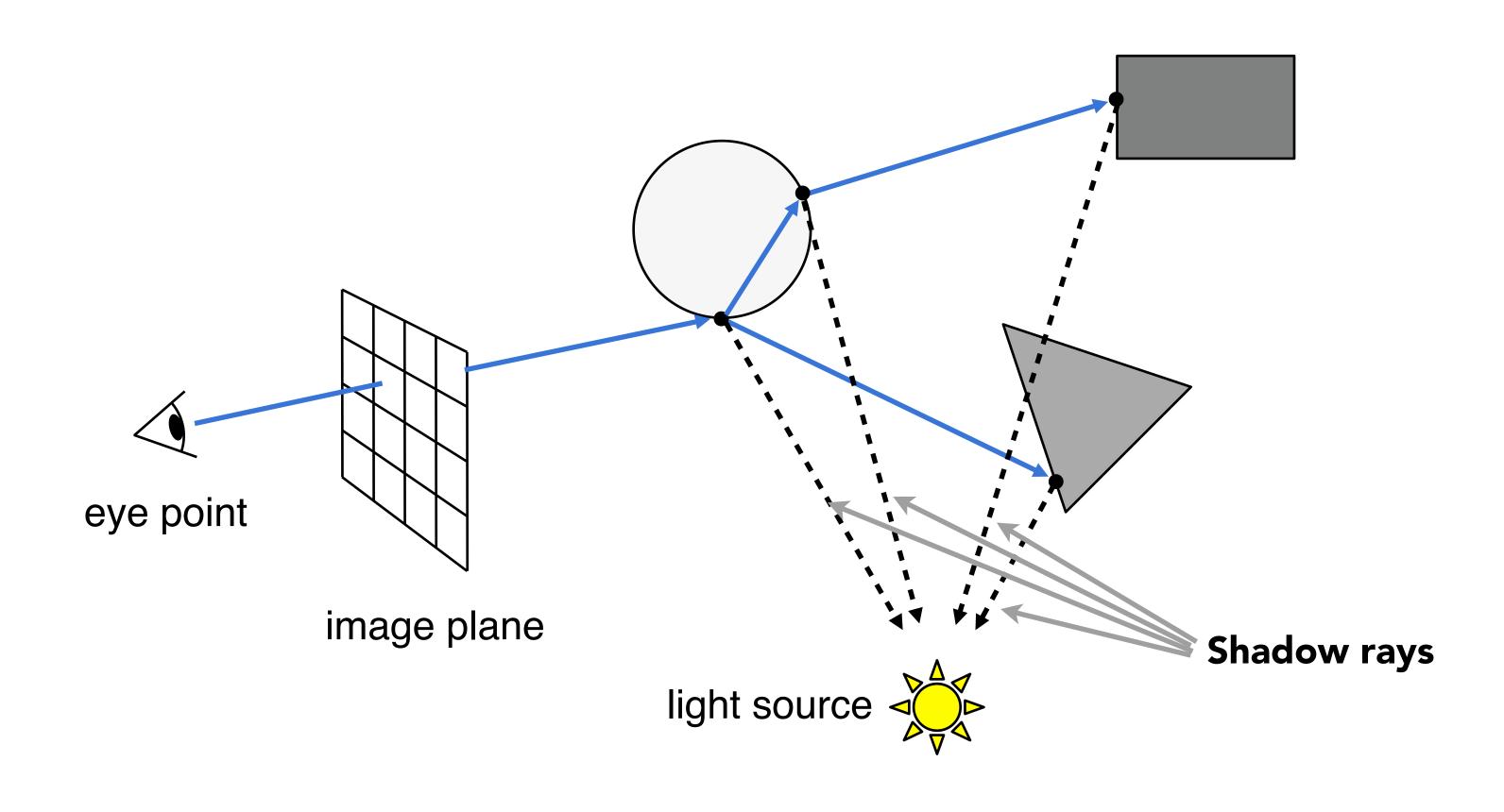
Spheres and Checkerboard, T. Whitted, 1979

**CS184/284A Ng & O'Brien** 



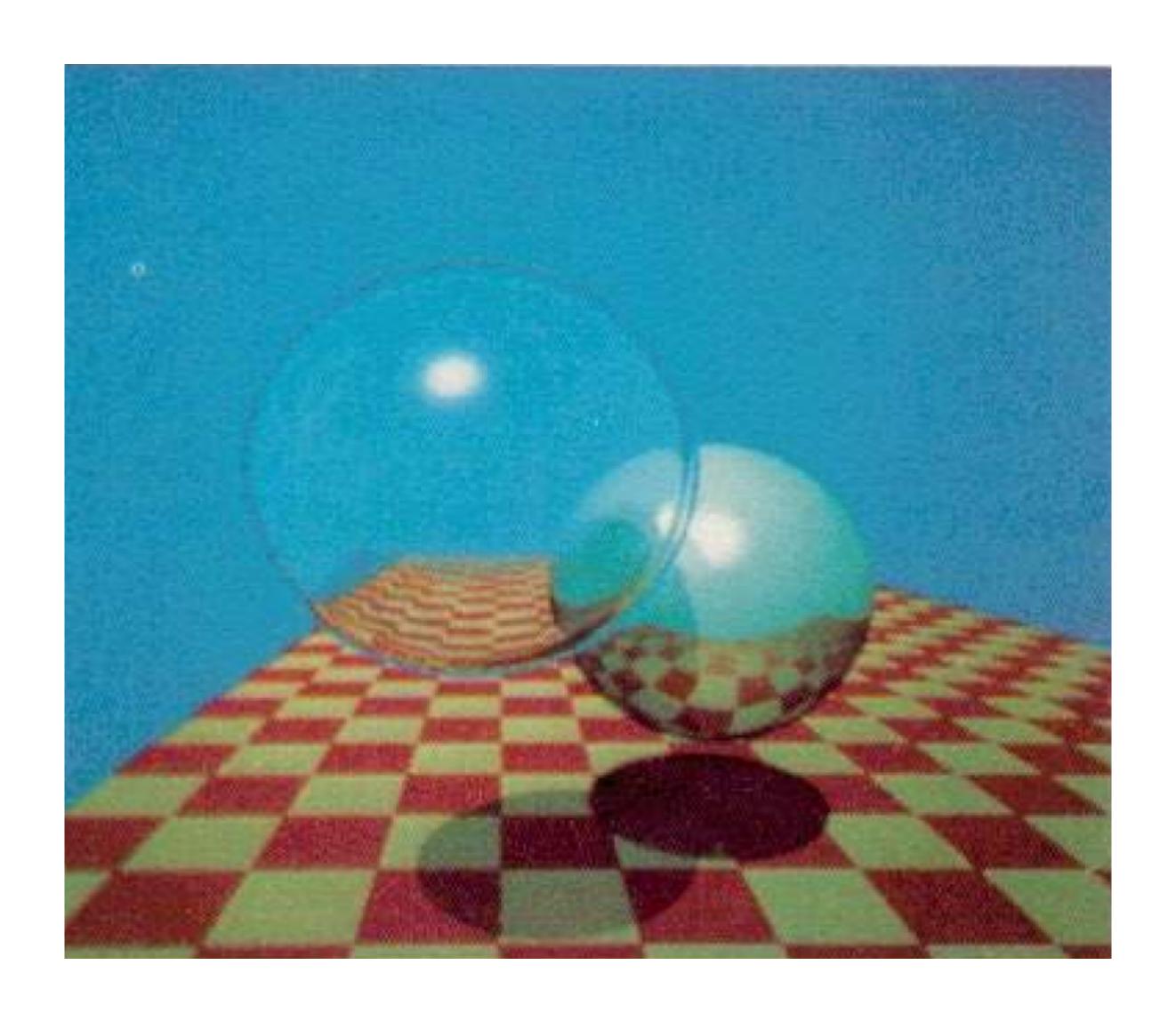








- Trace secondary rays recursively until hit a non-specular surface (or max desired levels of recursion)
- At each hit point, trace shadow rays to test light visibility (no contribution if blocked)
- Final pixel color is weighted sum of contributions along rays, as shown
- Gives more sophisticated effects (e.g. specular reflection, refraction, shadows), but we will go much further to derive a physically-based illumination model



# Ray-Surface Intersection

### Ray Intersection With Triangle Mesh

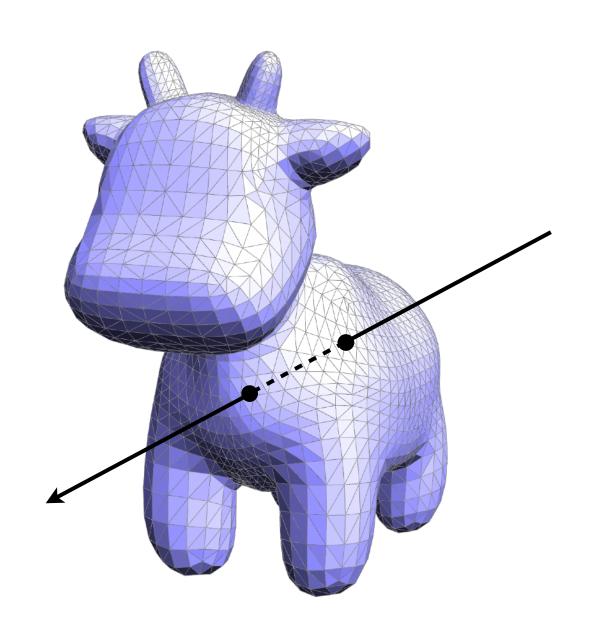
#### Why?

- Rendering: visibility, shadows, lighting ...
- Geometry: inside/outside test

How to compute?

#### Let's break this down:

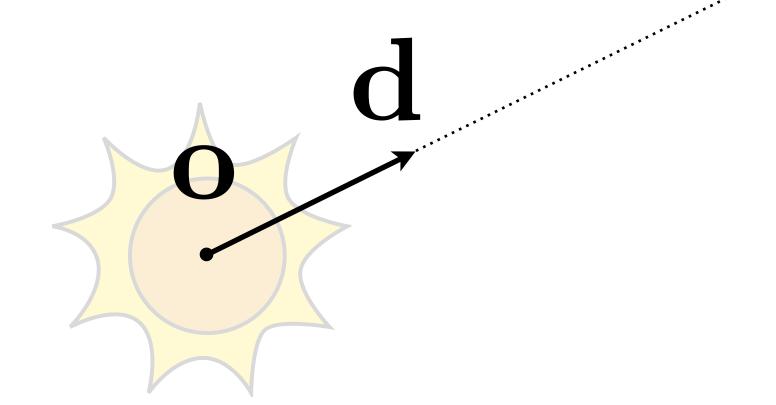
- Simple idea: just intersect ray with each triangle
- Simple, but slow (study acceleration later)
- Note: can have 0, 1 or multiple intersections



### Ray Equation

Ray is defined by its origin and a direction vector

**Example:** 



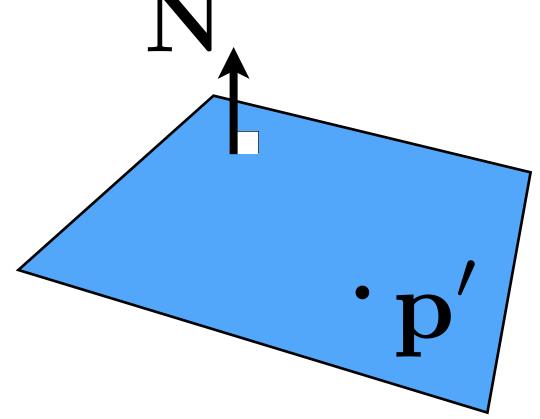
Ray equation:

$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$$
  $0 \le t < \infty$ 

### Plane Equation

Plane is defined by normal vector and a point on plane

Example:



Plane Equation:

$$\mathbf{p}:(\mathbf{p}-\mathbf{p}')\cdot\mathbf{N}=0$$

$$ax + by + cz + d = 0$$

all points on plane point on plane normal vector

### Ray Intersection With Plane

#### Ray equation:

$$\mathbf{r}(t) = \mathbf{o} + t \mathbf{d}, \ 0 \le t < \infty$$

#### Plane equation:

$$\mathbf{p}:(\mathbf{p}-\mathbf{p}')\cdot\mathbf{N}=0$$



Set 
$$\mathbf{p} = \mathbf{r}(t)$$
 and solve for  $t$ 

$$(\mathbf{p} - \mathbf{p}') \cdot \mathbf{N} = (\mathbf{o} + t \, \mathbf{d} - \mathbf{p}') \cdot \mathbf{N} = 0$$

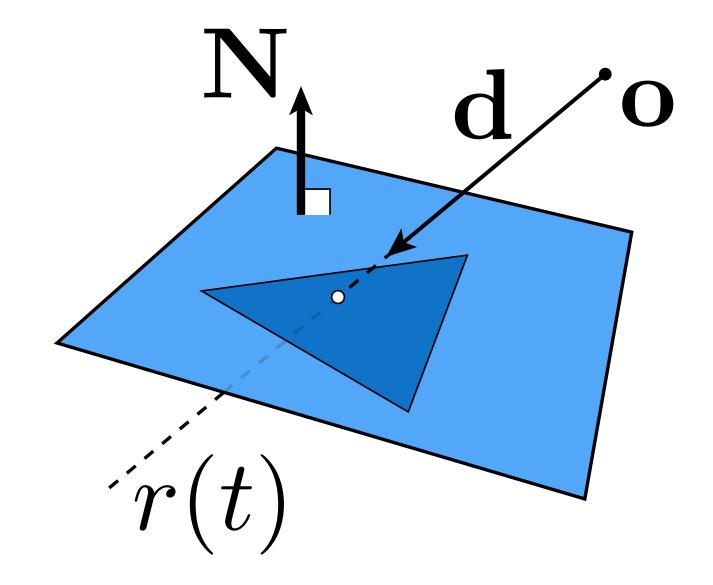
$$t = \frac{(\mathbf{p}' - \mathbf{o}) \cdot \mathbf{N}}{\mathbf{d} \cdot \mathbf{N}}$$
 Check:  $0 \le t < \infty$ 

### Ray Intersection With Triangle

#### Triangle is in a plane

- Ray-plane intersection
- Test if hit point is inside triangle (Assignment 1!)

Many ways to optimize...



#### Can Optimize: e.g. Möller Trumbore Algorithm

$$\vec{\mathbf{O}} + t\vec{\mathbf{D}} = (1 - b_1 - b_2)\vec{\mathbf{P}}_0 + b_1\vec{\mathbf{P}}_1 + b_2\vec{\mathbf{P}}_2$$

$$\begin{bmatrix} t \\ b_1 \\ b_2 \end{bmatrix} = \frac{1}{\vec{\mathbf{S}}_1 \cdot \vec{\mathbf{E}}_1} \begin{bmatrix} \vec{\mathbf{S}}_2 \cdot \vec{\mathbf{E}}_2 \\ \vec{\mathbf{S}}_1 \cdot \vec{\mathbf{S}} \\ \vec{\mathbf{S}}_2 \cdot \vec{\mathbf{D}} \end{bmatrix} \qquad \vec{\mathbf{E}}_1 = \vec{\mathbf{P}}_1 - \vec{\mathbf{P}}_0 \\ \vec{\mathbf{E}}_2 = \vec{\mathbf{P}}_2 - \vec{\mathbf{P}}_0 \end{bmatrix}$$

Cost = (1 div, 27 mul, 17 add)

#### Where:

$$\mathbf{E}_{1} = \mathbf{P}_{1} - \mathbf{P}_{0}$$

$$\mathbf{\vec{E}}_{2} = \mathbf{\vec{P}}_{2} - \mathbf{\vec{P}}_{0}$$

$$\mathbf{\vec{S}} = \mathbf{\vec{O}} - \mathbf{\vec{P}}_{0}$$

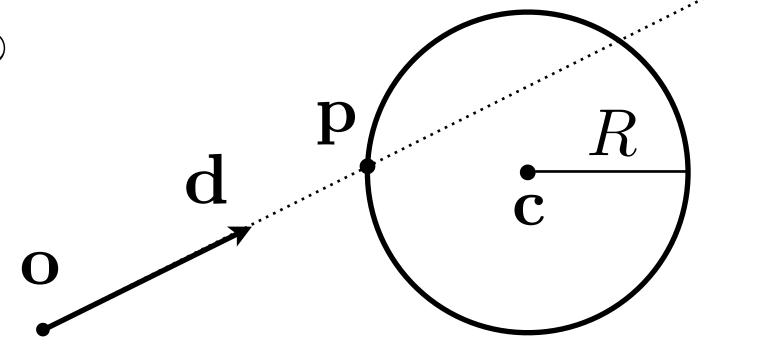
$$\mathbf{\vec{S}}_{1} = \mathbf{\vec{D}} \times \mathbf{\vec{E}}_{2}$$

$$\mathbf{\vec{S}}_{2} = \mathbf{\vec{S}} \times \mathbf{\vec{E}}_{1}$$

### Ray Intersection With Sphere

**Ray:** 
$$\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d}, \ 0 \le t < \infty$$

**Sphere:** 
$$p : (p - c)^2 - R^2 = 0$$



#### Solve for intersection:

$$(\mathbf{o} + t\,\mathbf{d} - \mathbf{c})^2 - R^2 = 0$$

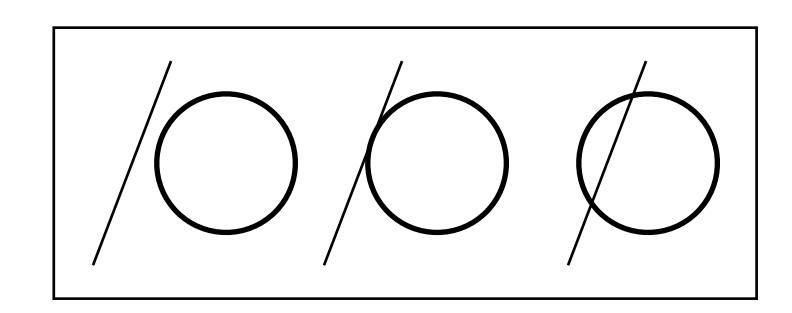
$$at^{2} + bt + c = 0$$
, where

$$a = \mathbf{d} \cdot \mathbf{d}$$

$$b = 2(\mathbf{o} - \mathbf{c}) \cdot \mathbf{d}$$

$$c = (\mathbf{o} - \mathbf{c}) \cdot (\mathbf{o} - \mathbf{c}) - R^2$$

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

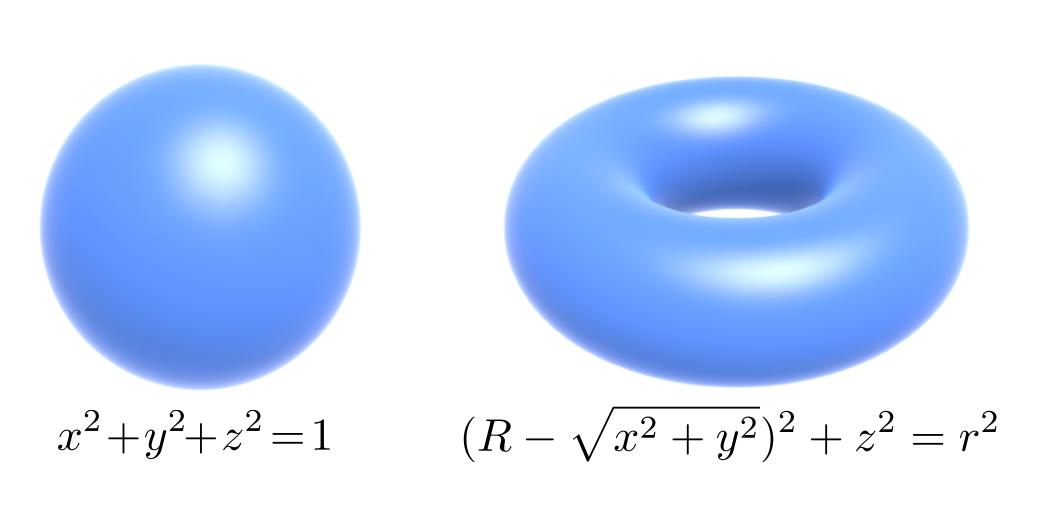


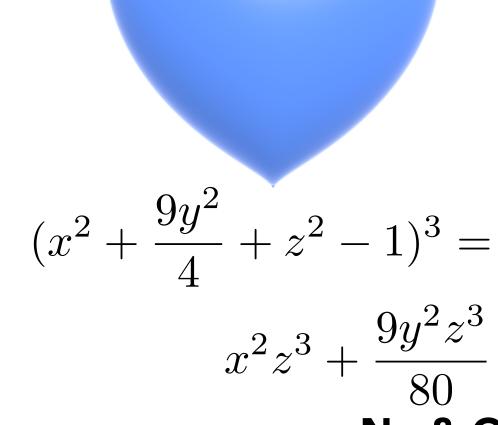
### Ray Intersection With Implicit Surface

**Ray:**  $\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d}, \ 0 \le t < \infty$ 

General implicit surface: p: f(p) = 0

Substitute ray equation:  $f(\mathbf{o} + t \mathbf{d}) = 0$ Solve for real, positive roots





CS184/284A

# Accelerating Ray-Surface Intersection

### Ray Tracing – Performance Challenges

#### Simple ray-scene intersection

Exhaustively test ray-intersection with every object

#### Problem:

- Exhaustive algorithm = #pixels  $\times$  #objects
- Very slow!

### Ray Tracing – Performance Challenges



San Miguel Scene, 10.7M triangles

### Ray Tracing – Performance Challenges



Plant Ecosystem, 20M triangles

#### Discussion: Accelerating Ray-Scene Intersection

~1 million pixels, ~20 million triangles



In pairs, brainstorm accelerations, small or big ideas.

Write down 3-4 ideas.

#### Discussion: Accelerating Ray-Scene Intersection

Brainstorm 3 or 4 accelerations, small or big ideas.



# Bounding Volumes

### Bounding Volumes

Quick way to avoid intersections: bound complex object with a simple volume

- Object is fully contained in the volume
- If it doesn't hit the volume, it doesn't hit the object
- So test bvol first, then test object if it hits



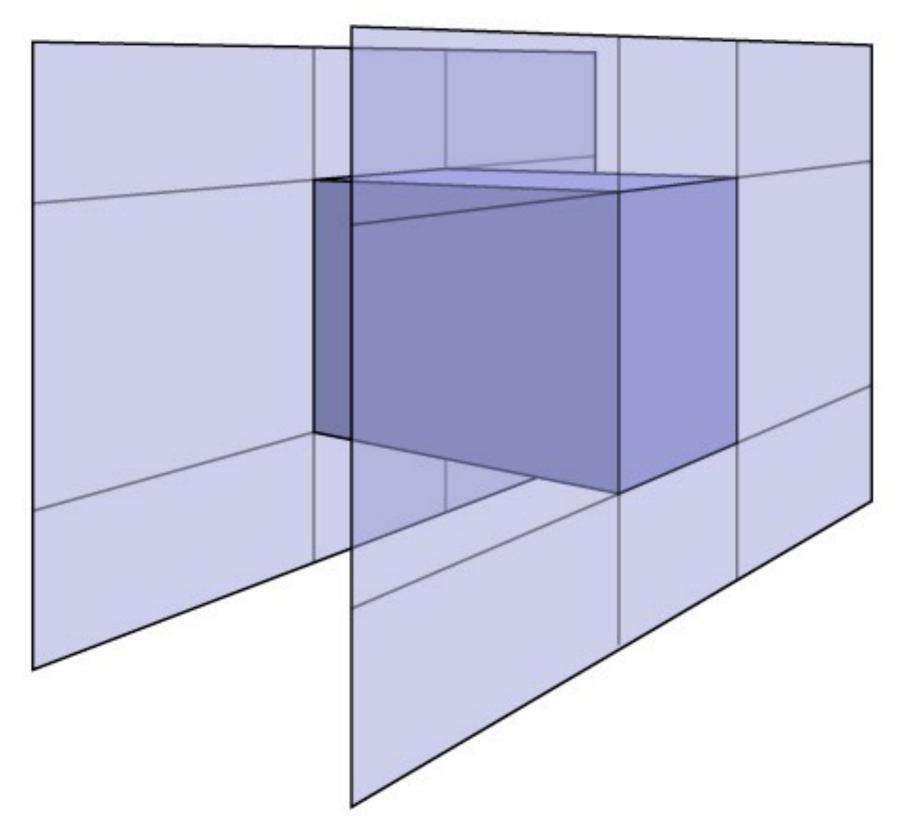




### Ray-Intersection With Box

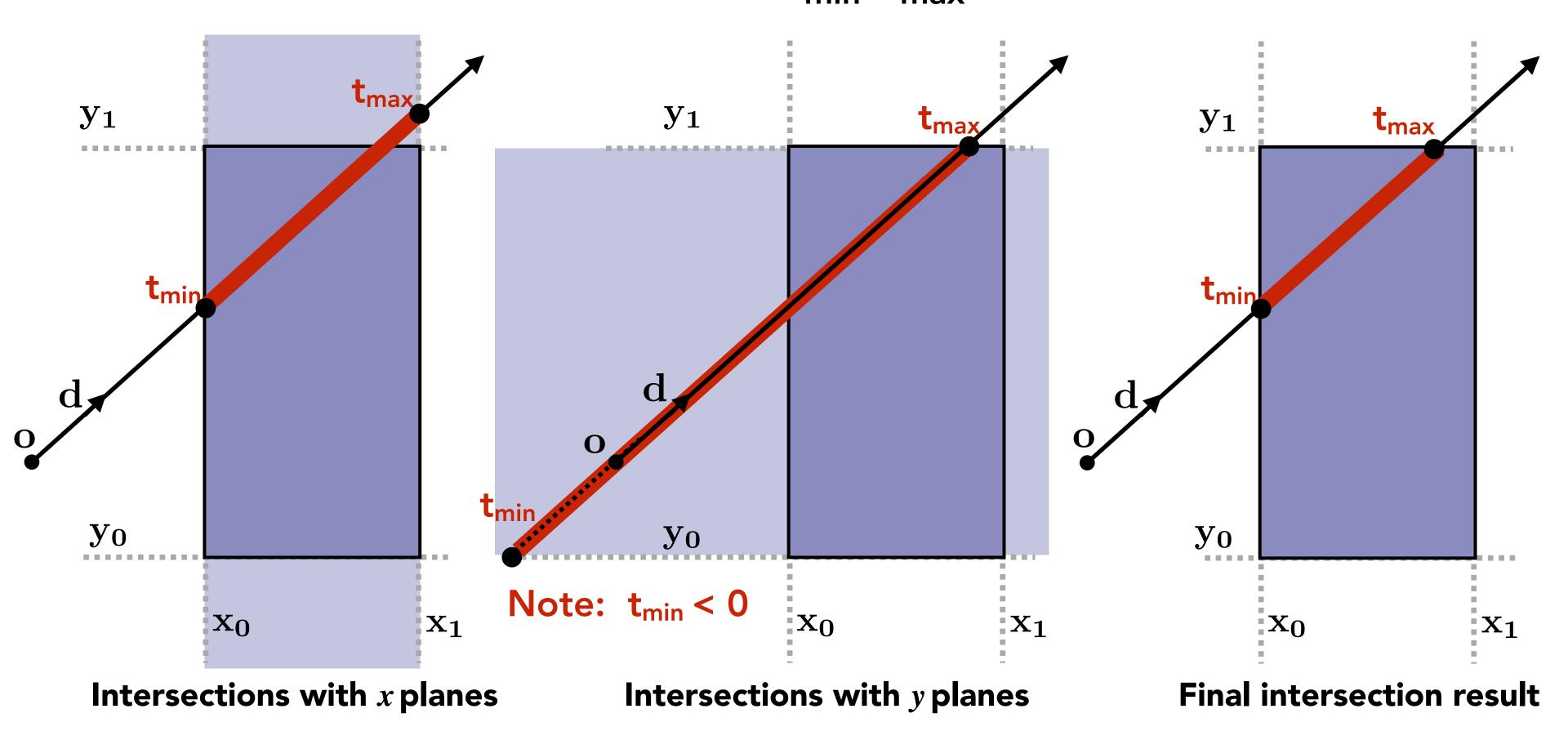
Could intersect with 6 faces individually

Better way: box is the intersection of 3 slabs



### Ray Intersection with Axis-Aligned Box

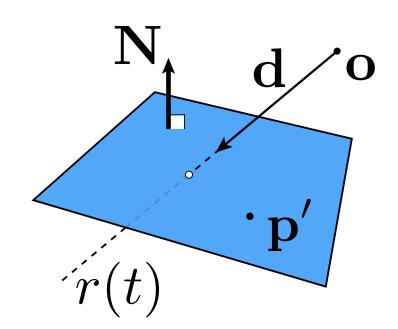
2D example; 3D is the same! Compute intersections with slabs and take intersection of  $t_{min}/t_{max}$  intervals



How do we know when the ray misses the box?

#### Optimize Ray-Plane Intersection For Axis-Aligned Planes?

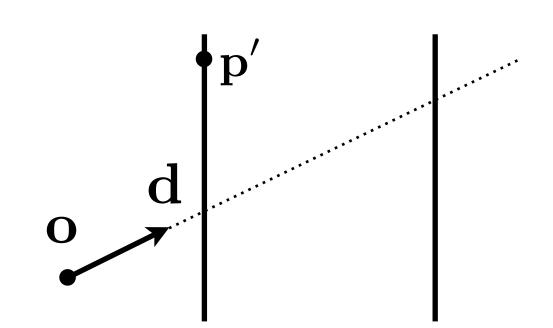
General



$$t = \frac{(\mathbf{p}' - \mathbf{o}) \cdot \mathbf{N}}{\mathbf{d} \cdot \mathbf{N}}$$

3 subtractions, 6 multiplies, 1 division

Perpendicular to x-axis

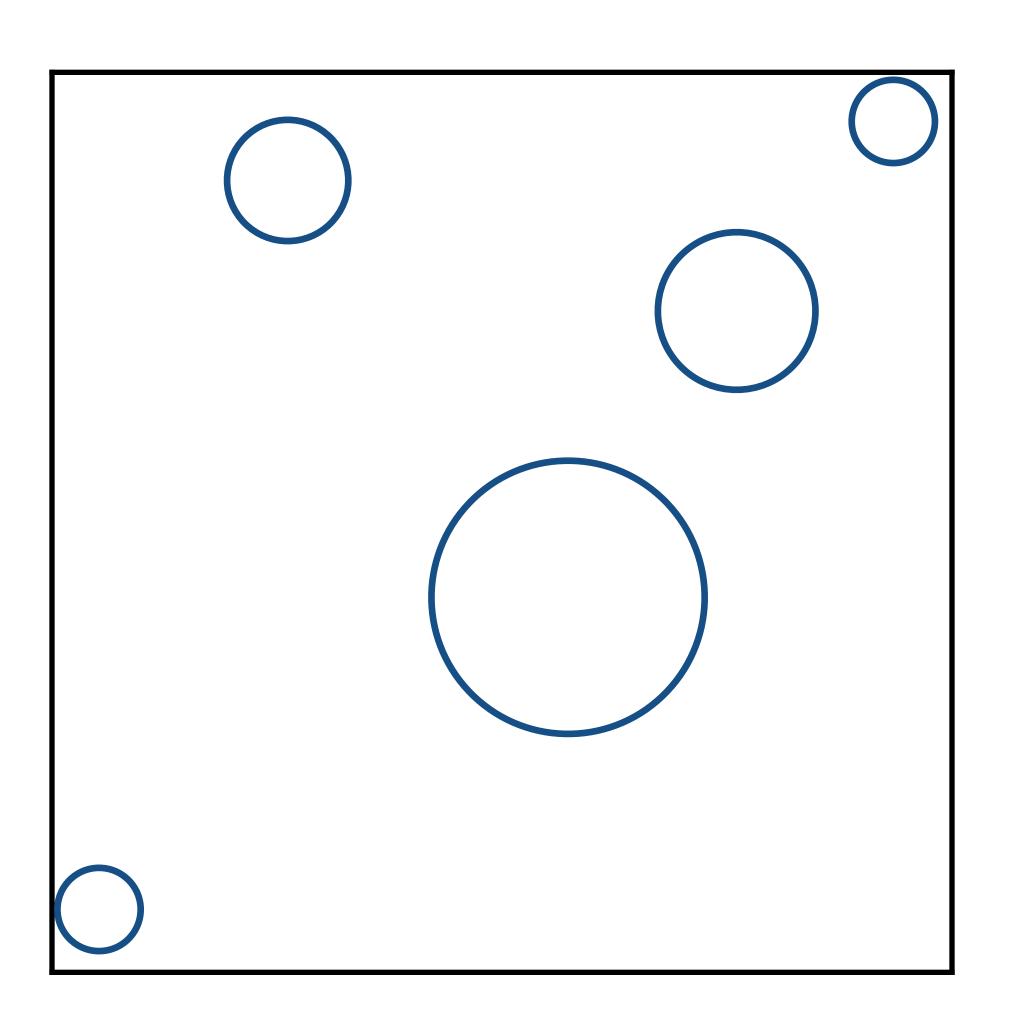


$$t = \frac{\mathbf{p'}_x - \mathbf{o}_x}{\mathbf{d}_x}$$

1 subtraction, 1 division

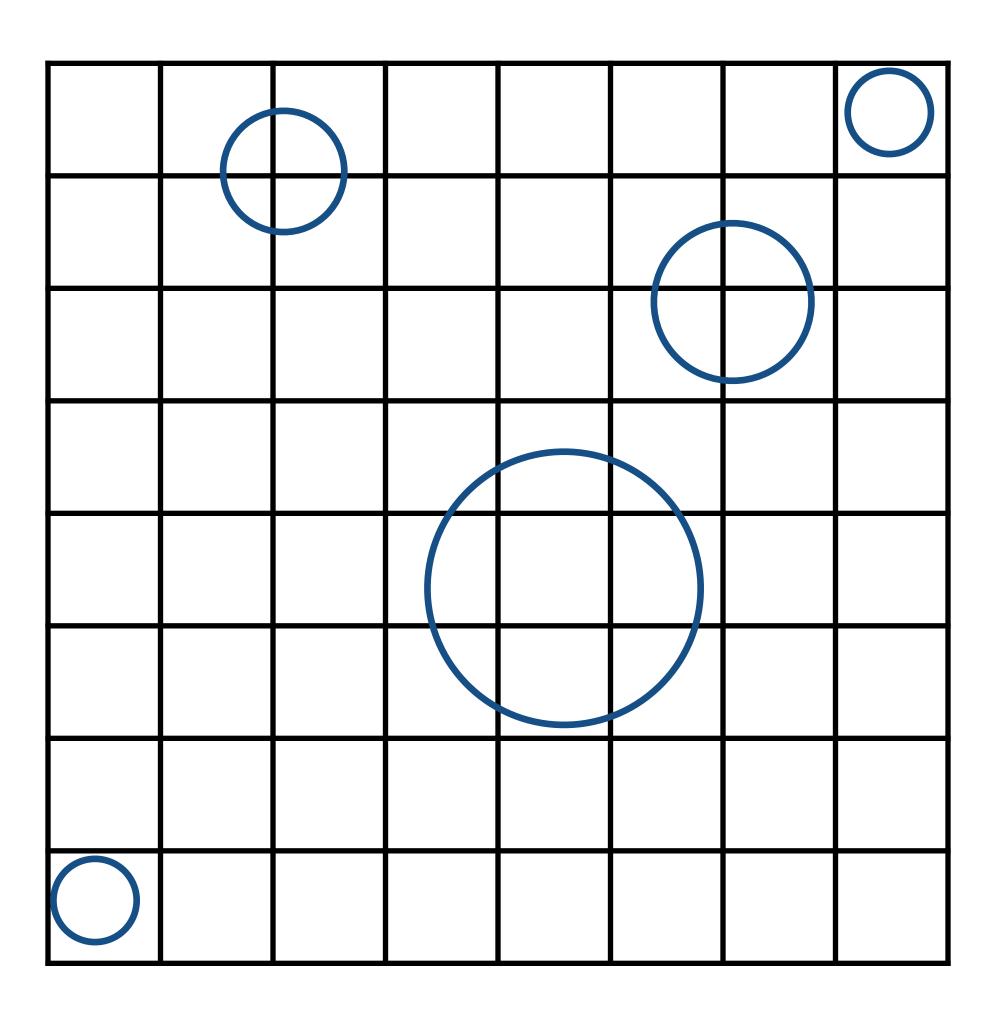
## Uniform Spatial Partitions (Grids)

#### Preprocess - Build Acceleration Grid



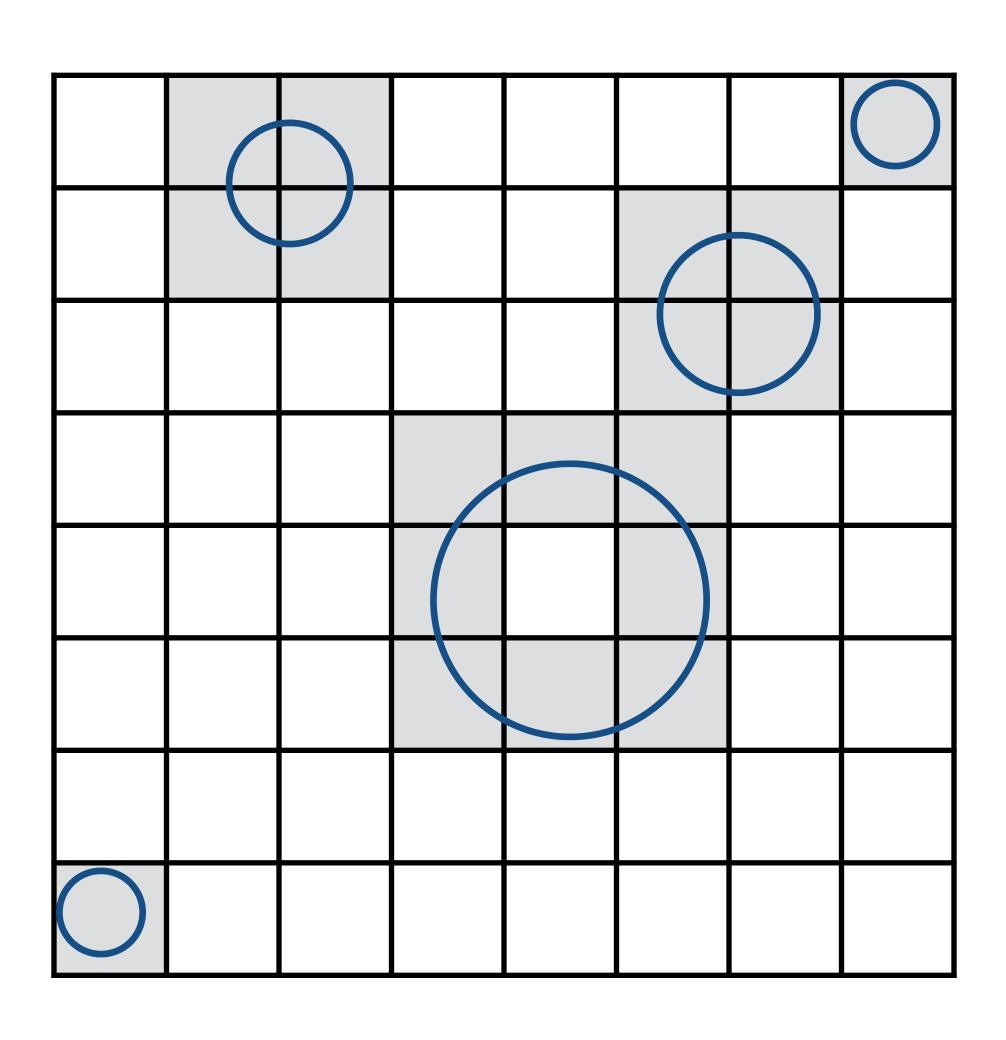
1. Find bounding box

#### Preprocess – Build Acceleration Grid



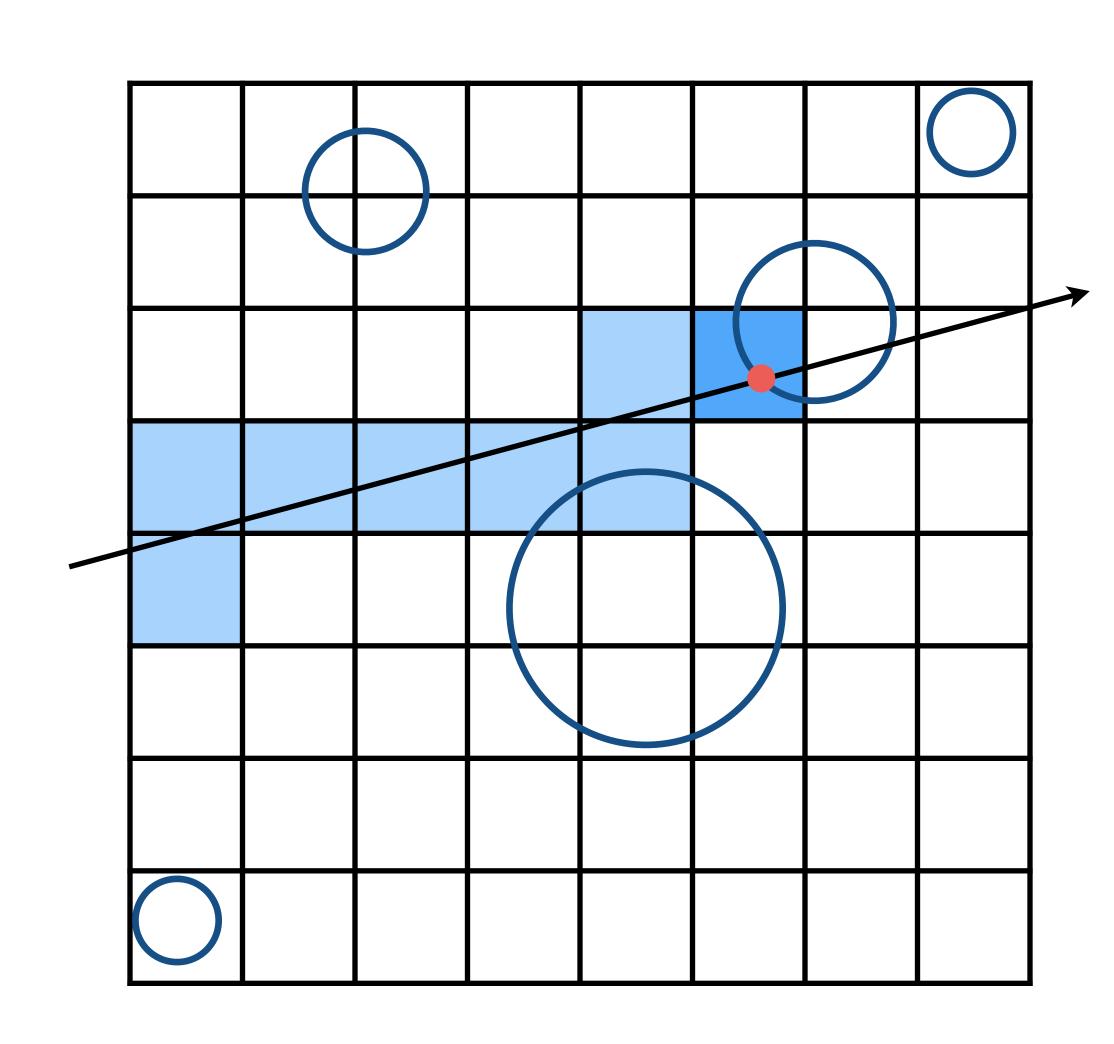
- 1. Find bounding box
- 2. Create grid

#### Preprocess – Build Acceleration Grid



- 1. Find bounding box
- 2. Create grid
- 3. Store each object in overlapping cells

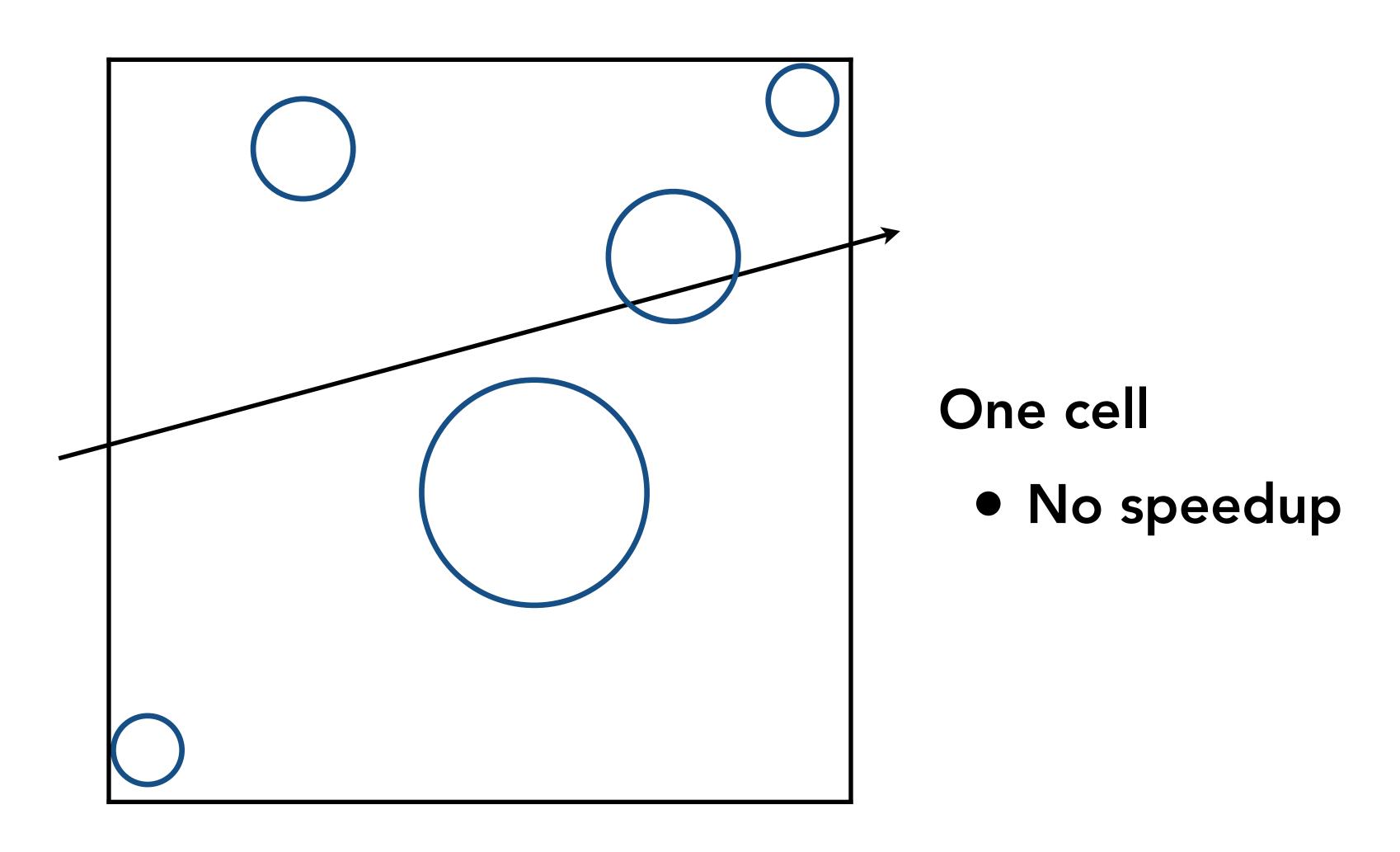
#### Ray-Scene Intersection



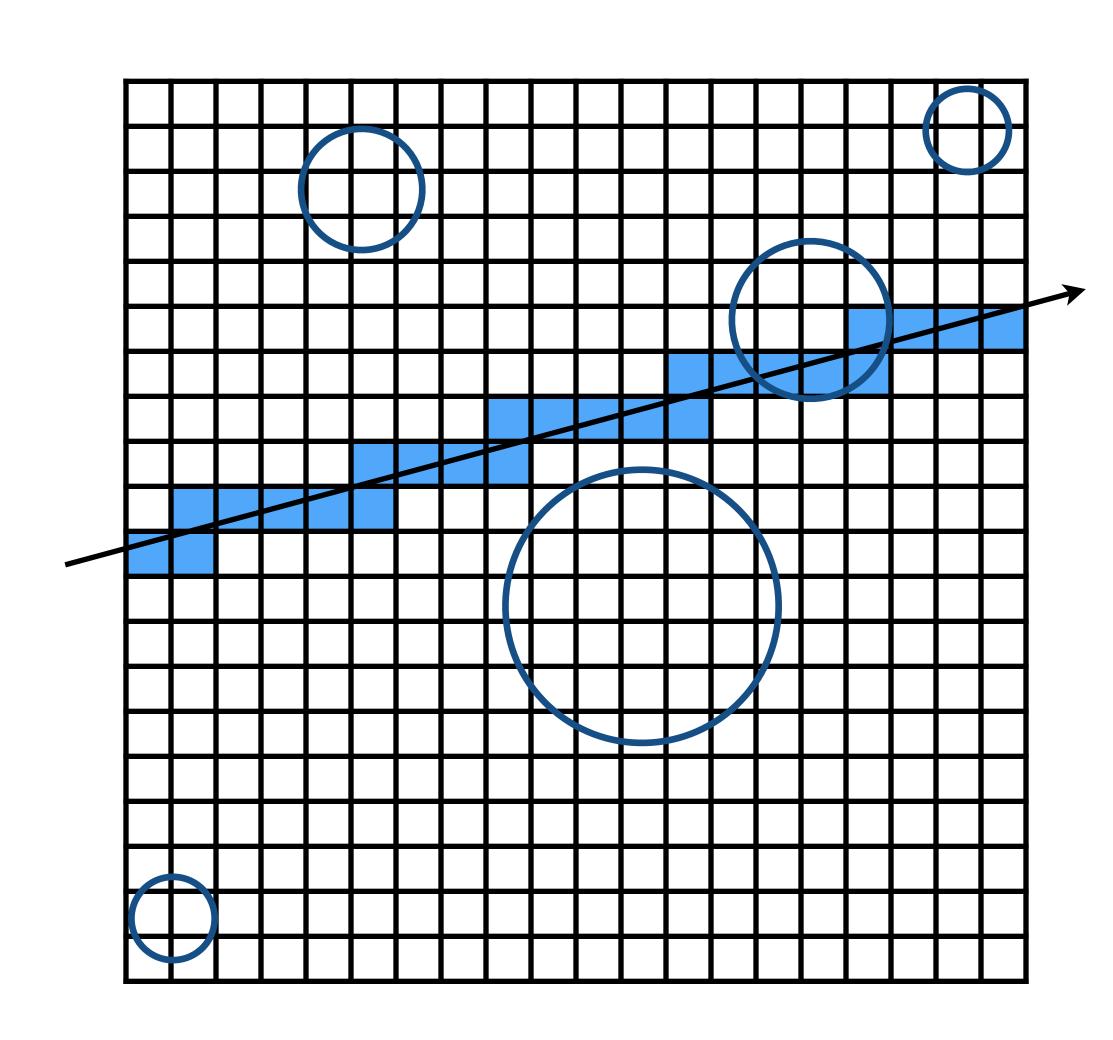
Step through grid in ray traversal order (3D line - 3D DDA)

For each grid cell
Test intersection
with all objects
stored at that cell

#### **Grid Resolution?**



#### **Grid Resolution?**

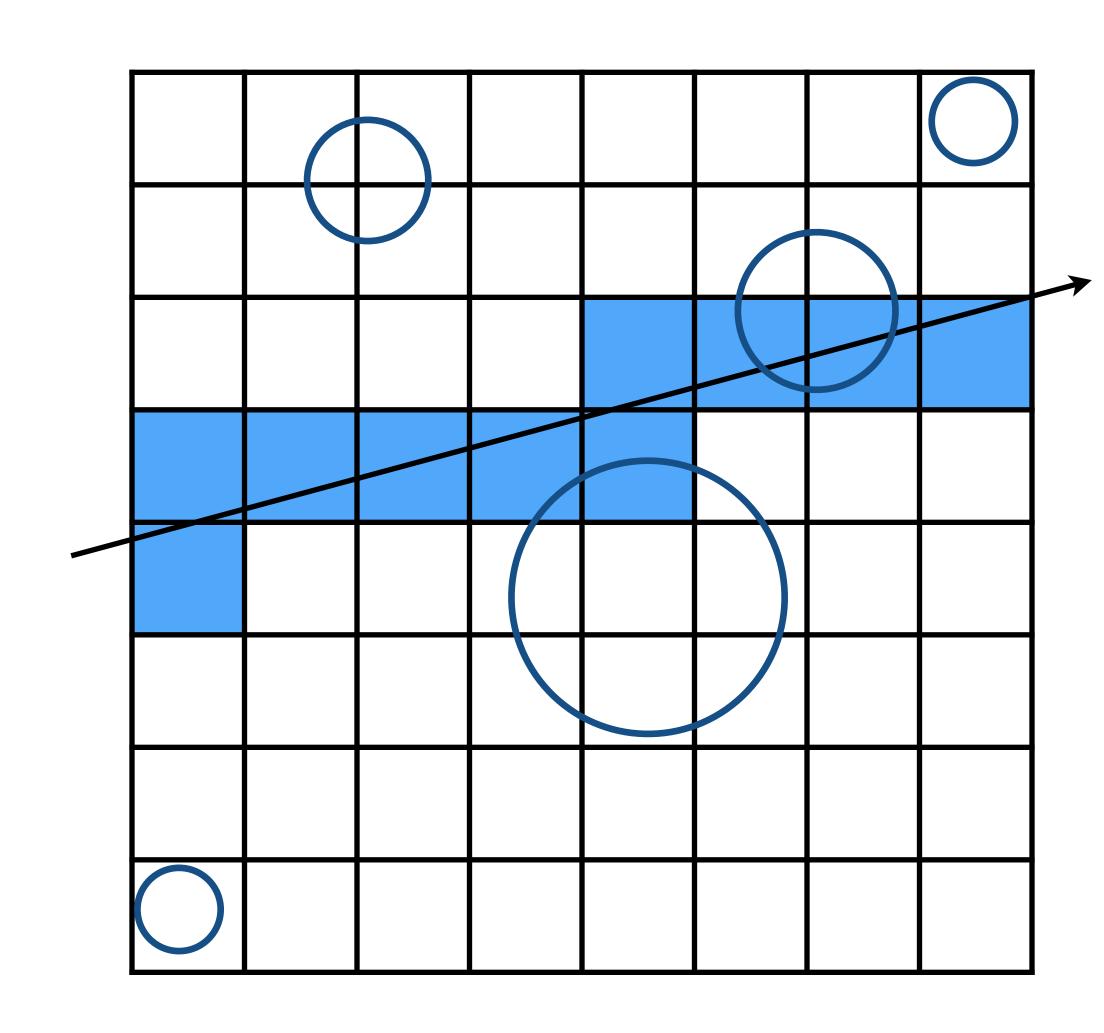


#### Too many cells

 Inefficiency due to extraneous grid traversal

CS184/284A

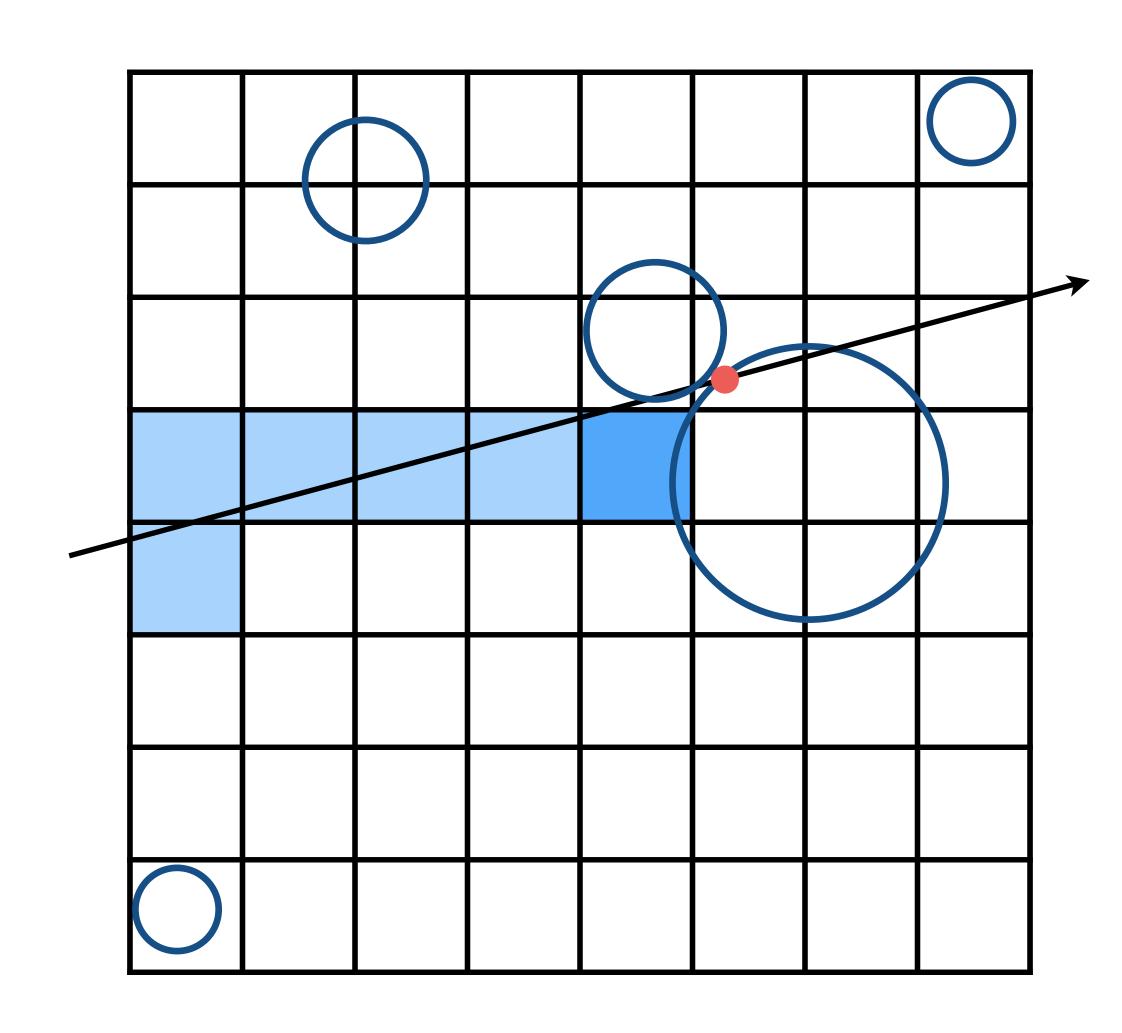
#### **Grid Resolution?**



#### Heuristic:

- #cells = C \* #objs
- C ≈ 27 in 3D

#### Careful! Objects Overlapping Multiple Cells



#### What goes wrong here?

 First intersection found (red) is not the nearest!

#### Solution?

 Check intersection point is inside cell

#### **Optimize**

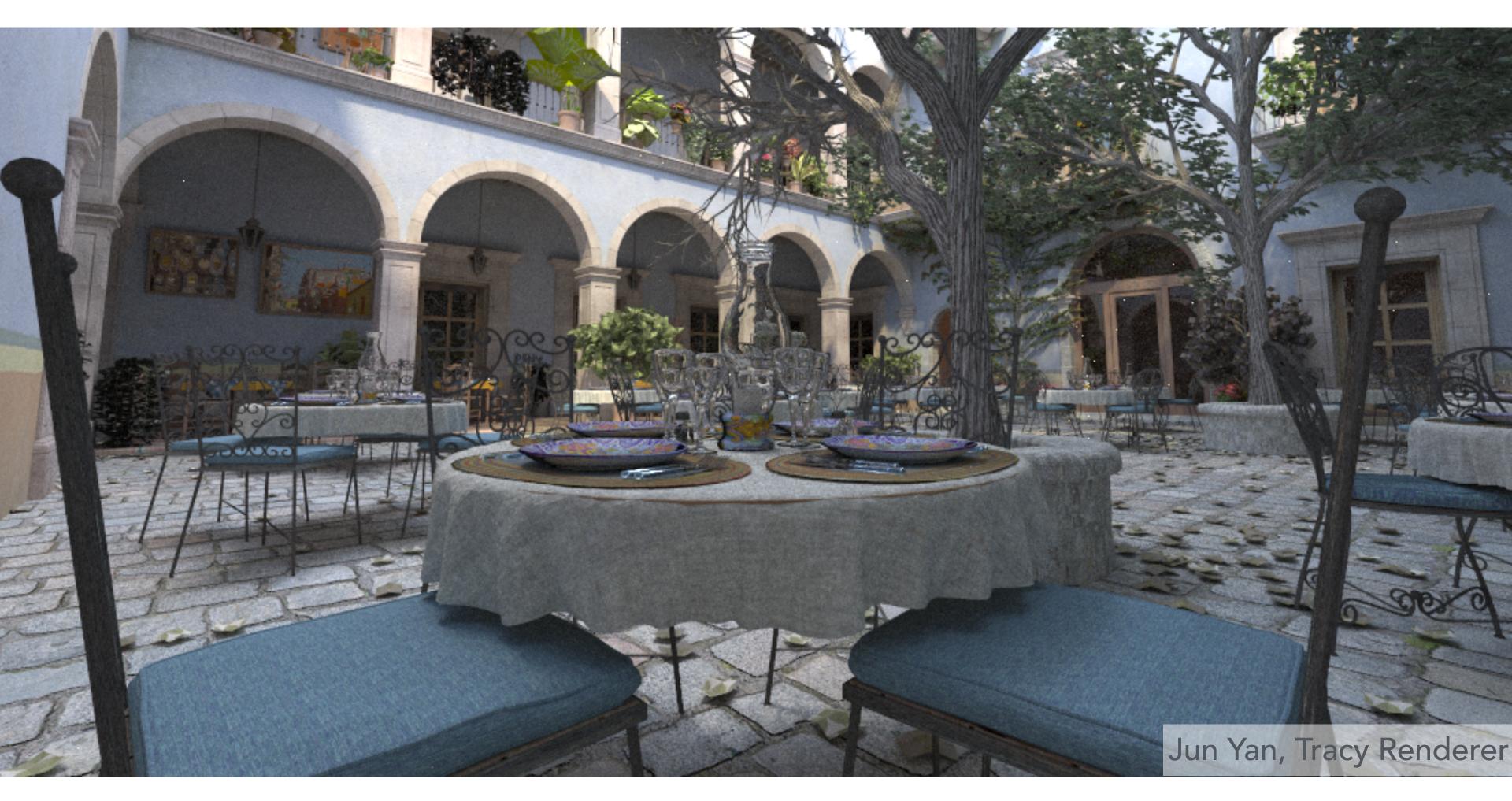
 Cache intersection to avoid re-testing (mailboxing)

## Uniform Grids – When They Work Well



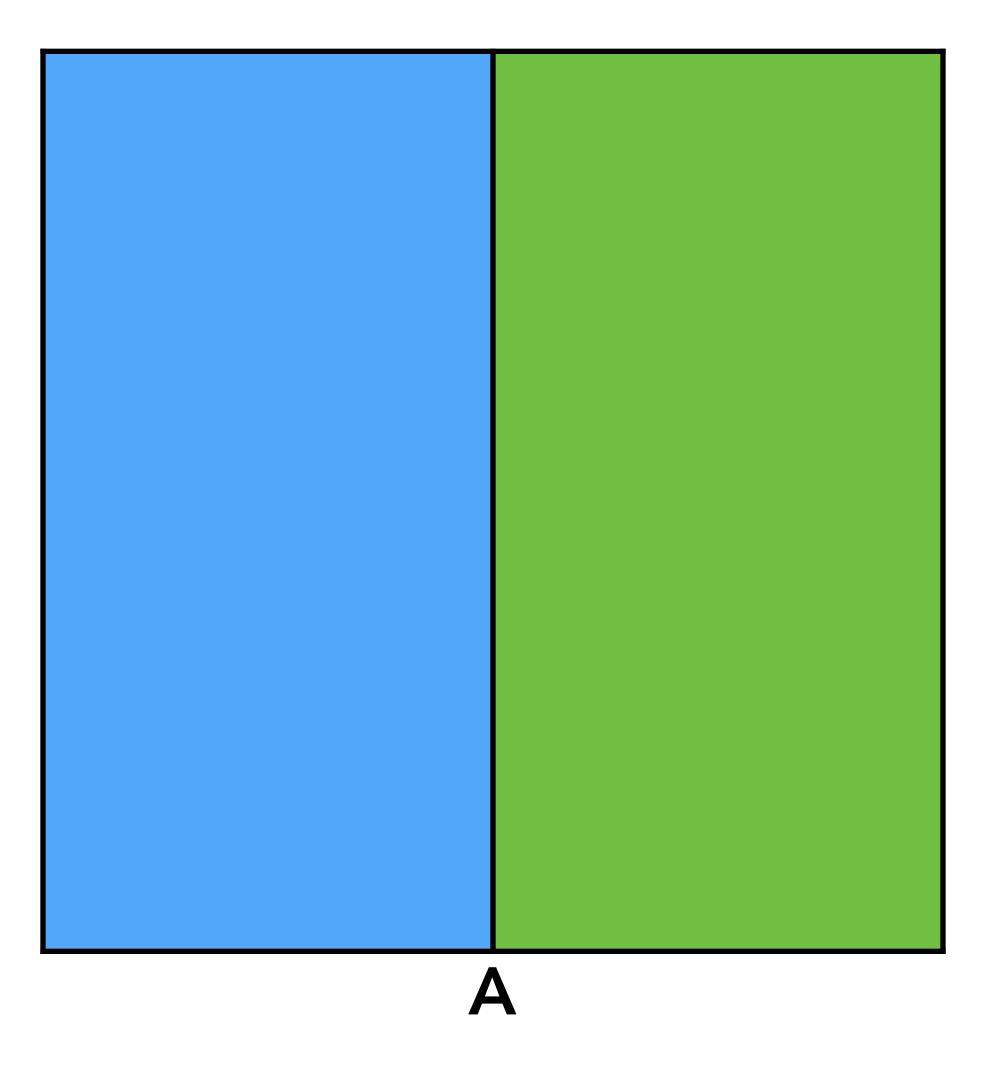
Grids work well on large collections of objects that are distributed evenly in size and space

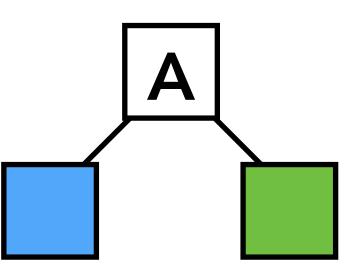
## Uniform Grids – When They Fail

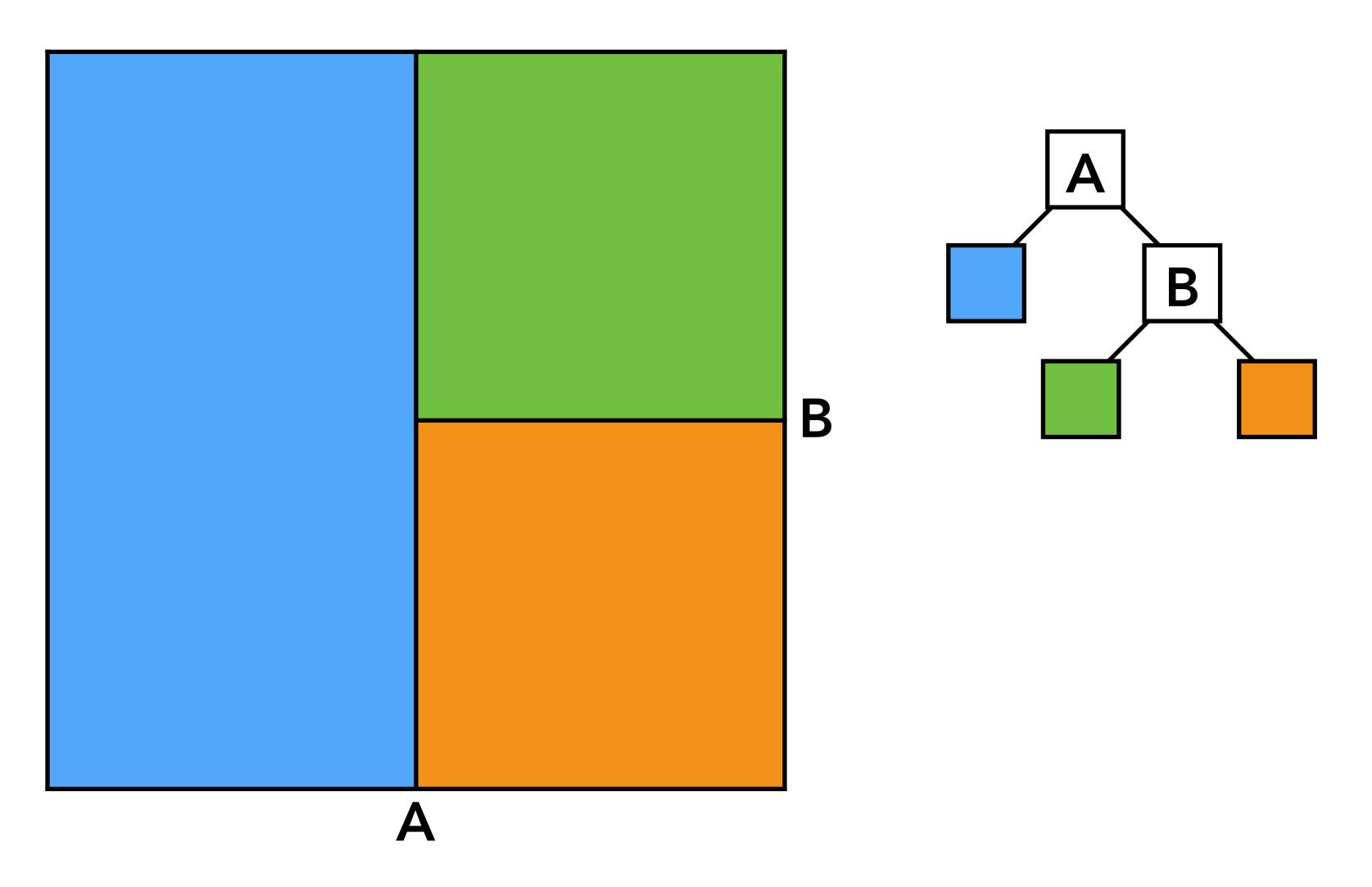


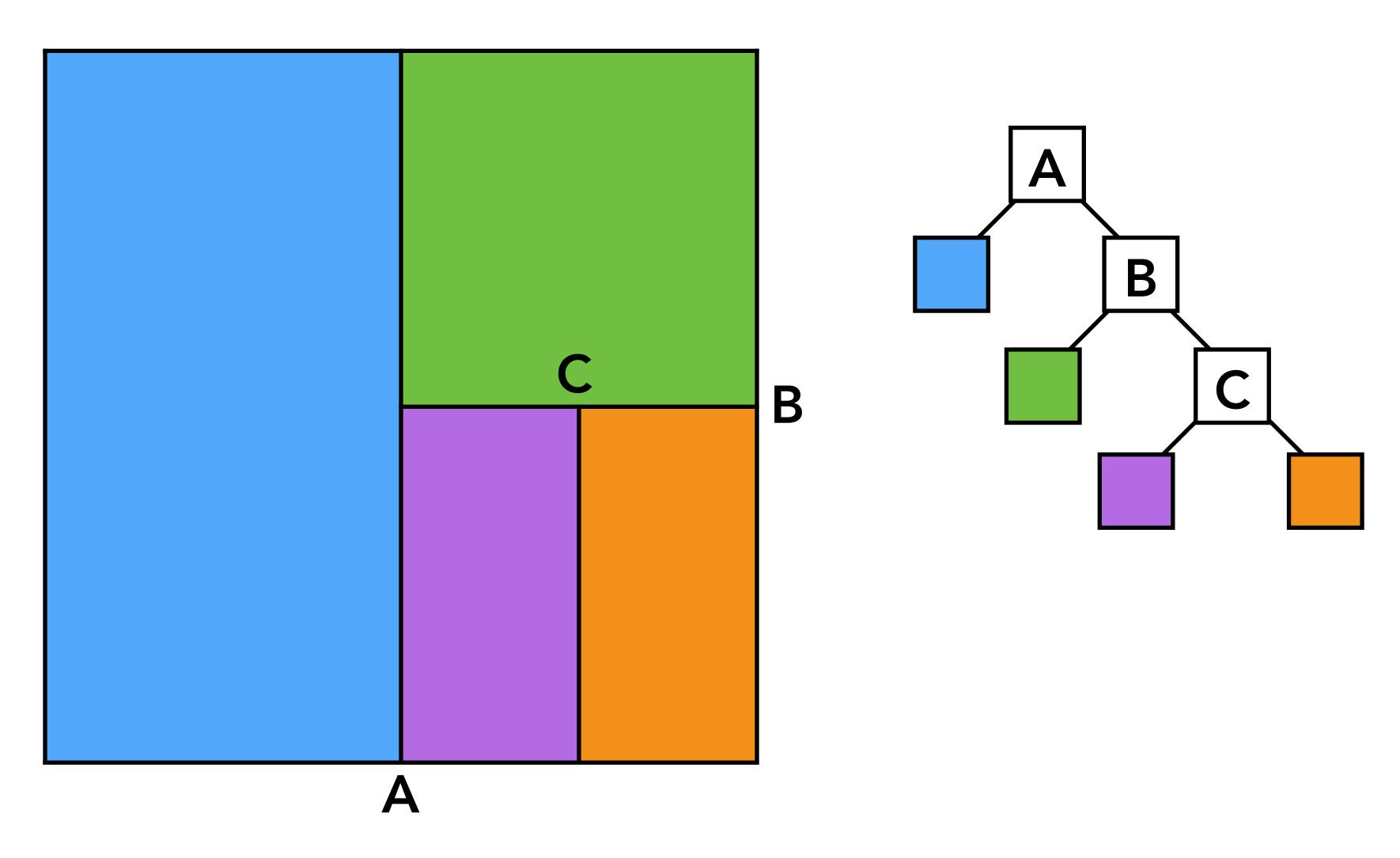
"Teapot in a stadium" problem

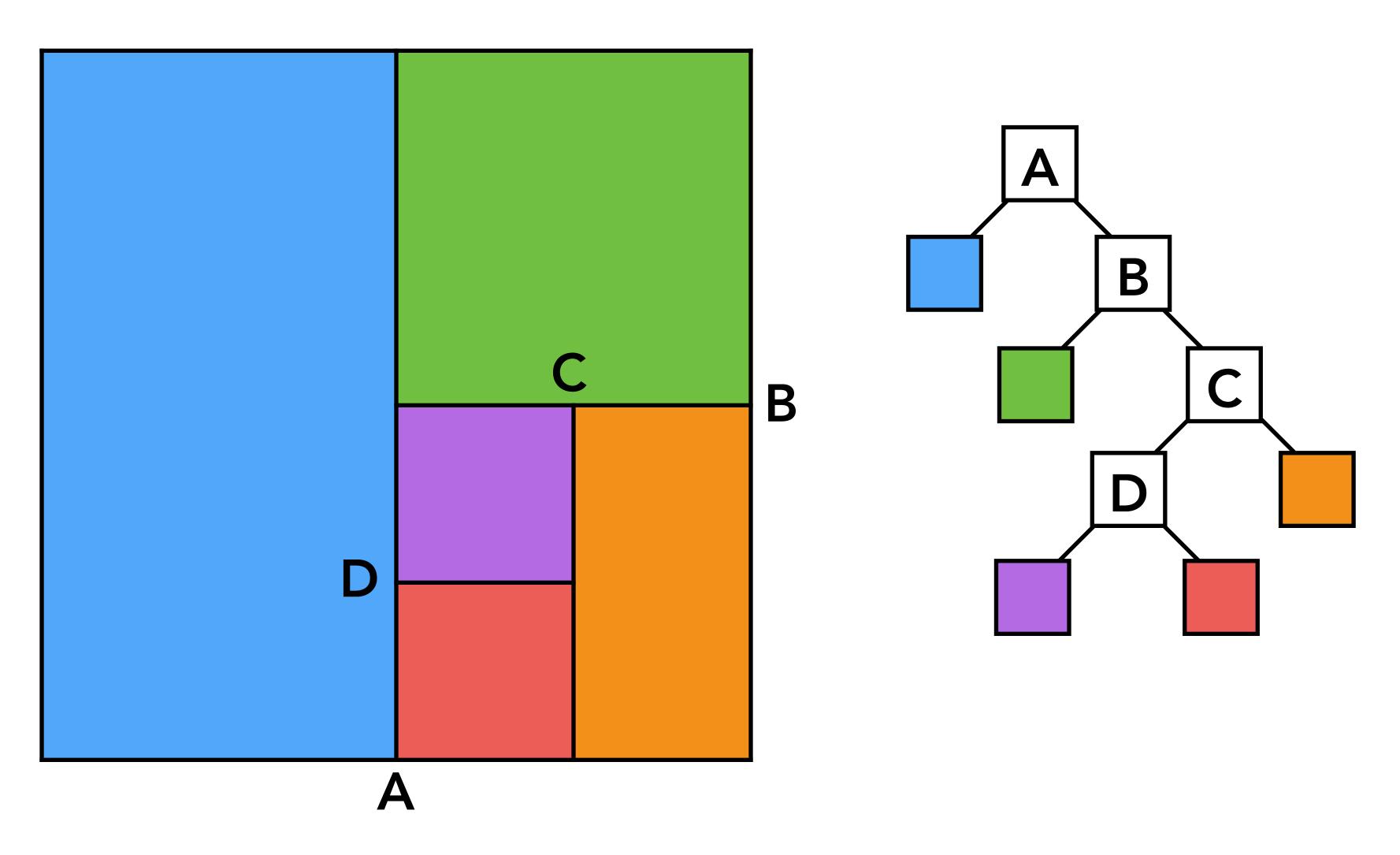
## Non-Uniform Spatial Partitions: Spatial Hierarchies

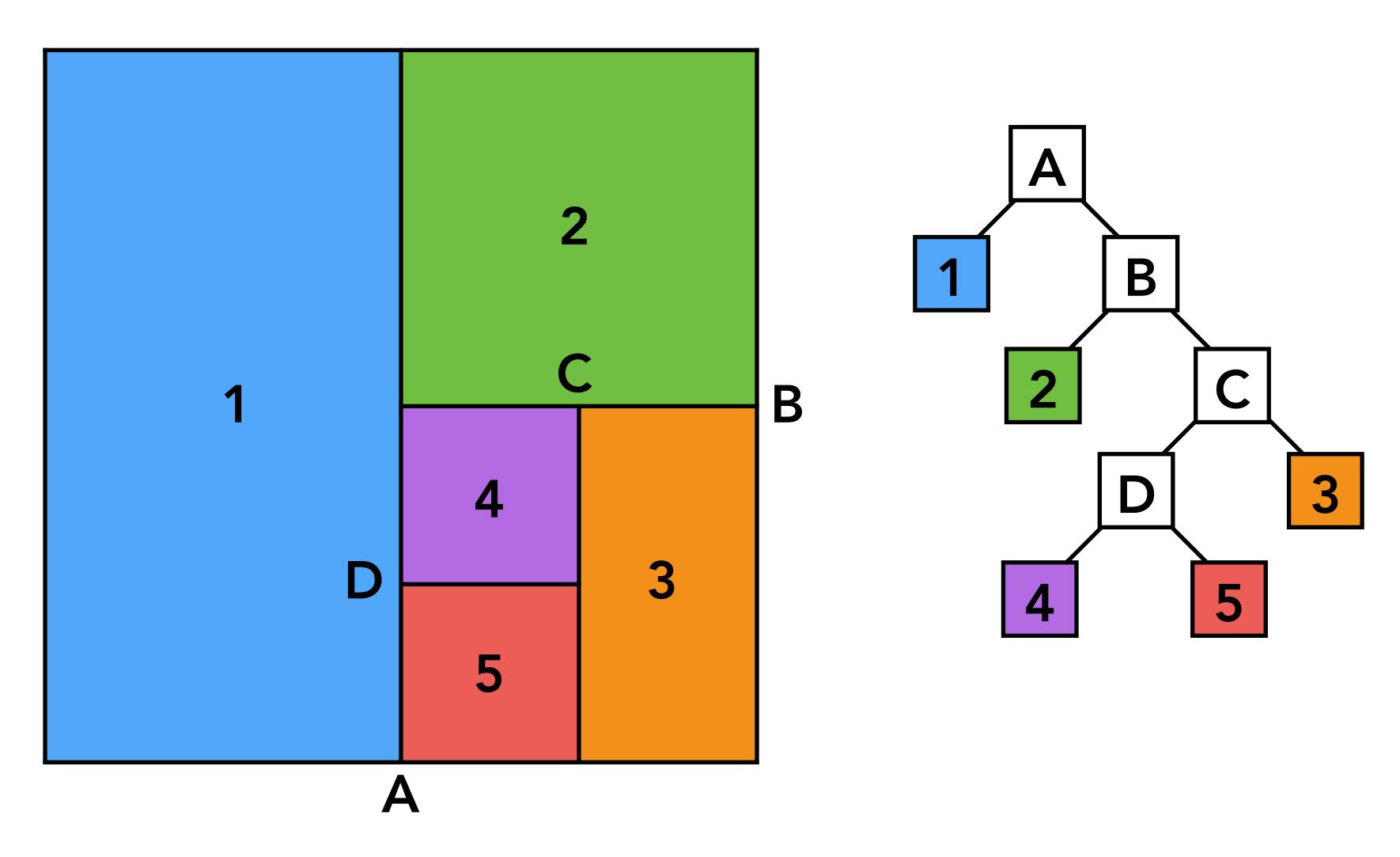




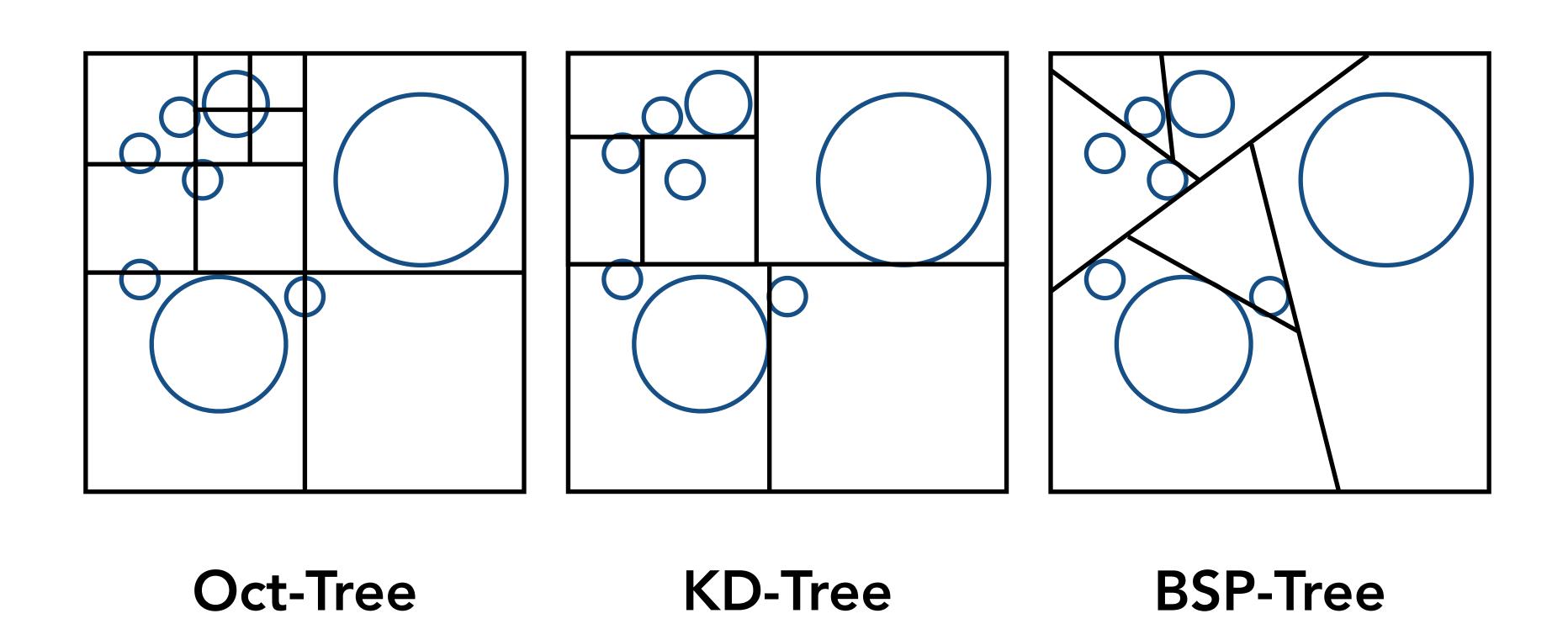








## Spatial Partitioning Variants



Note: you could have these in both 2D and 3D. In lecture we will illustrate principles in 2D, but for assignment you will implement 3D versions.

#### **KD-Trees**

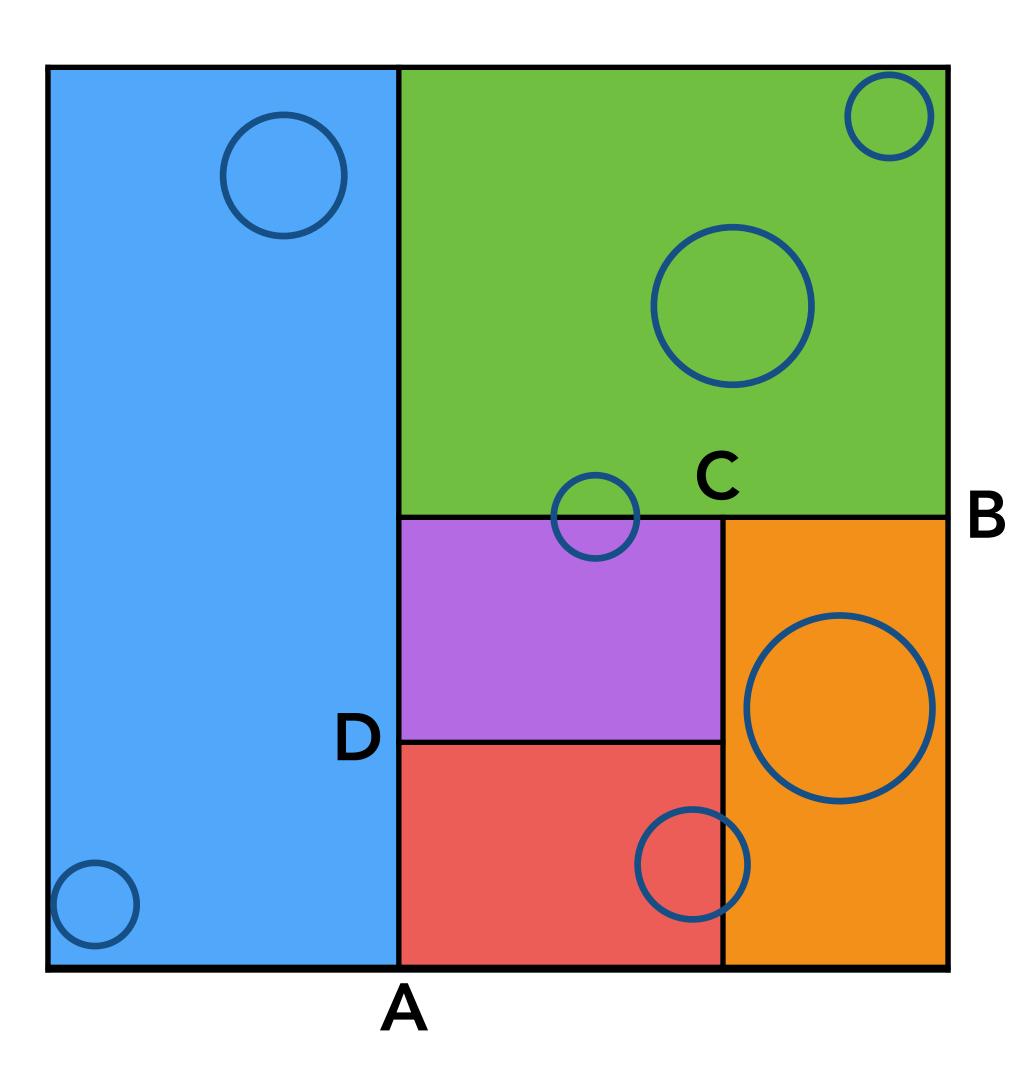
#### Internal nodes store

- split axis: x-, y-, or z-axis
- split position: coordinate of split plane along axis
- children: reference to child nodes

#### Leaf nodes store

- list of objects
- mailbox information

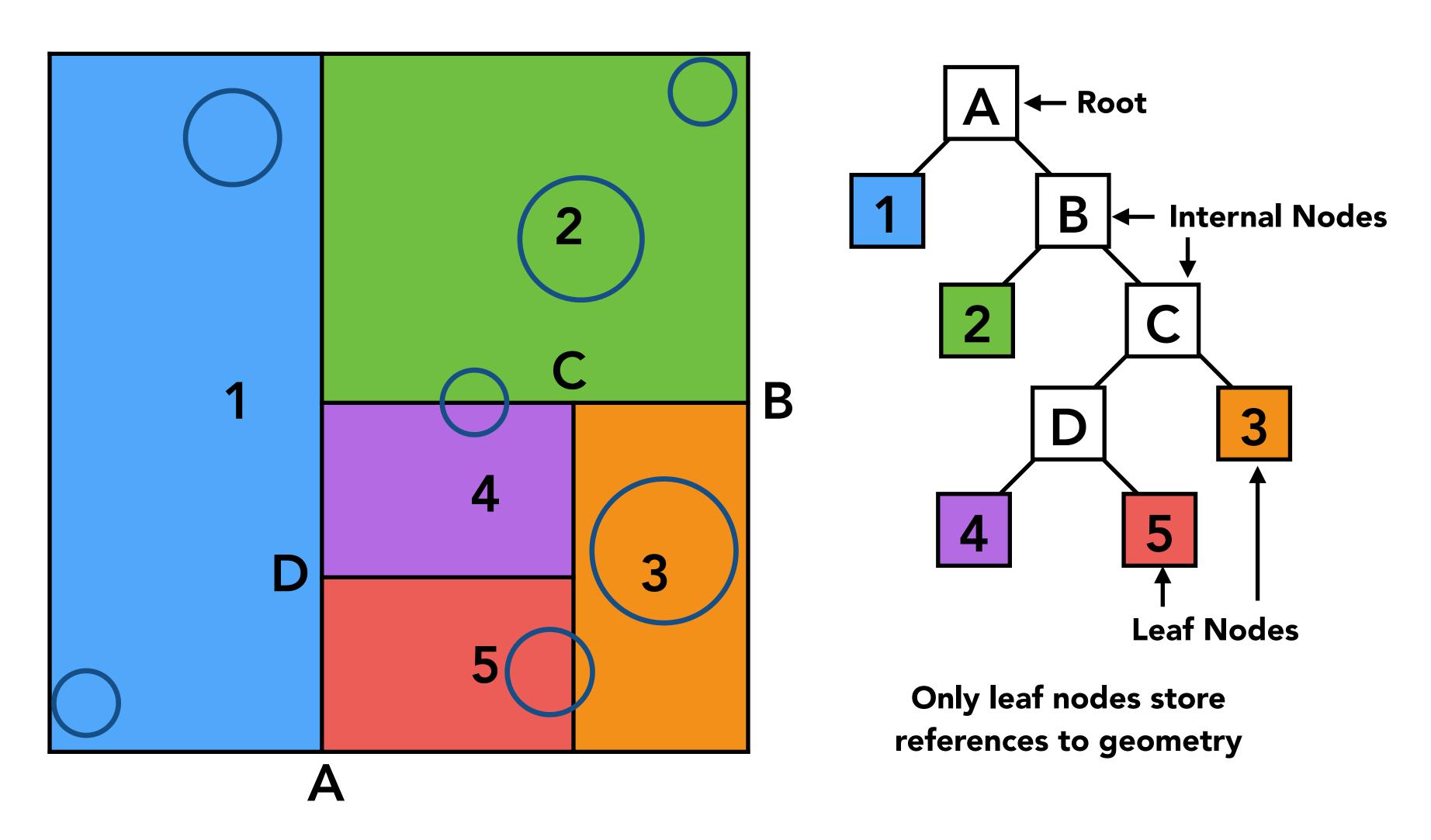
#### KD-Tree Pre-Processing



- Find bounding box
- Recursively split cells, axis-aligned planes
- Until termination criteria met (e.g. max #splits or min #objs)
- Store obj references with each leaf node

CS184/284A

## KD-Tree Pre-Processing



CS184/284A

Ng & O'Brien

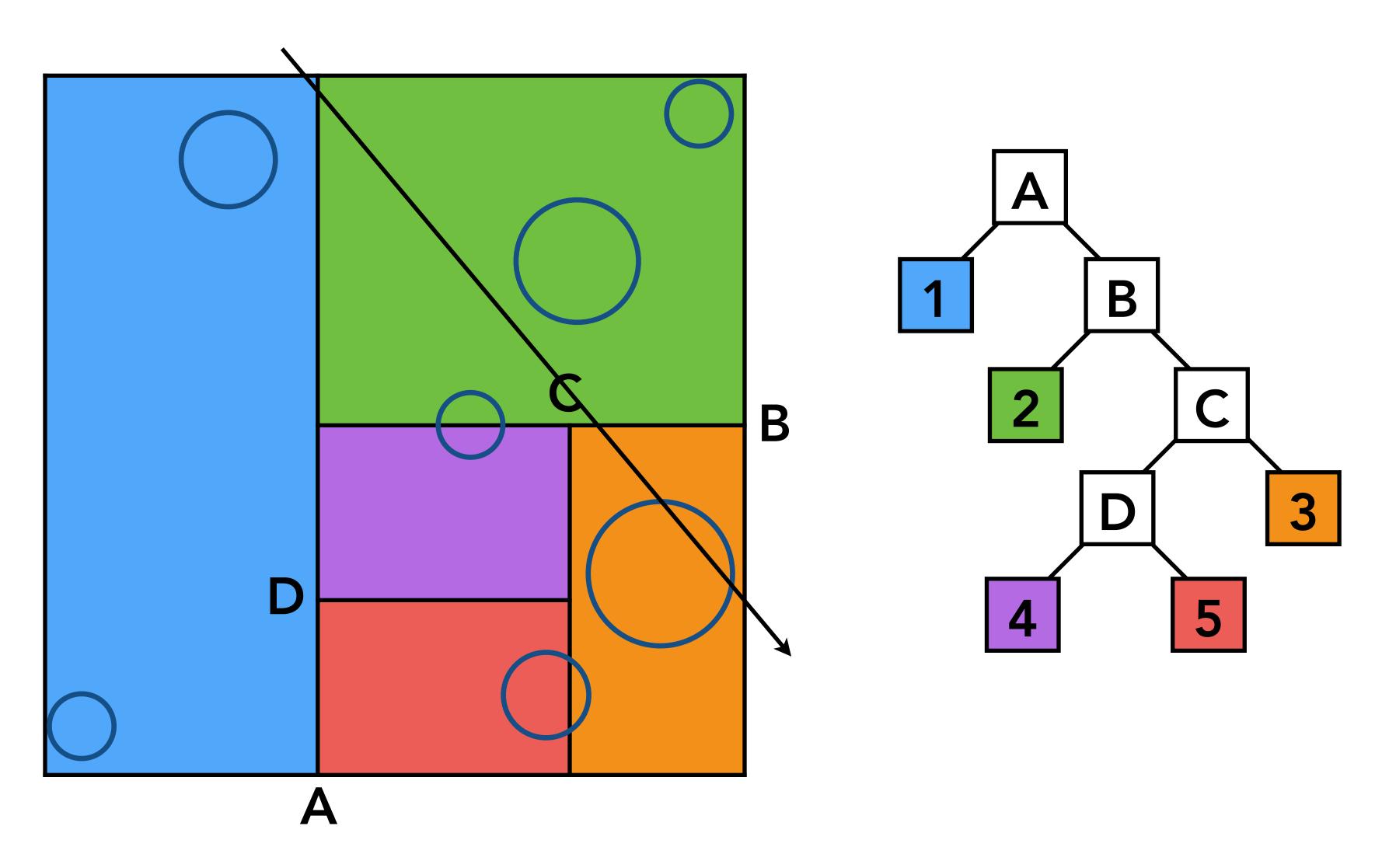
#### KD-Tree Pre-Processing

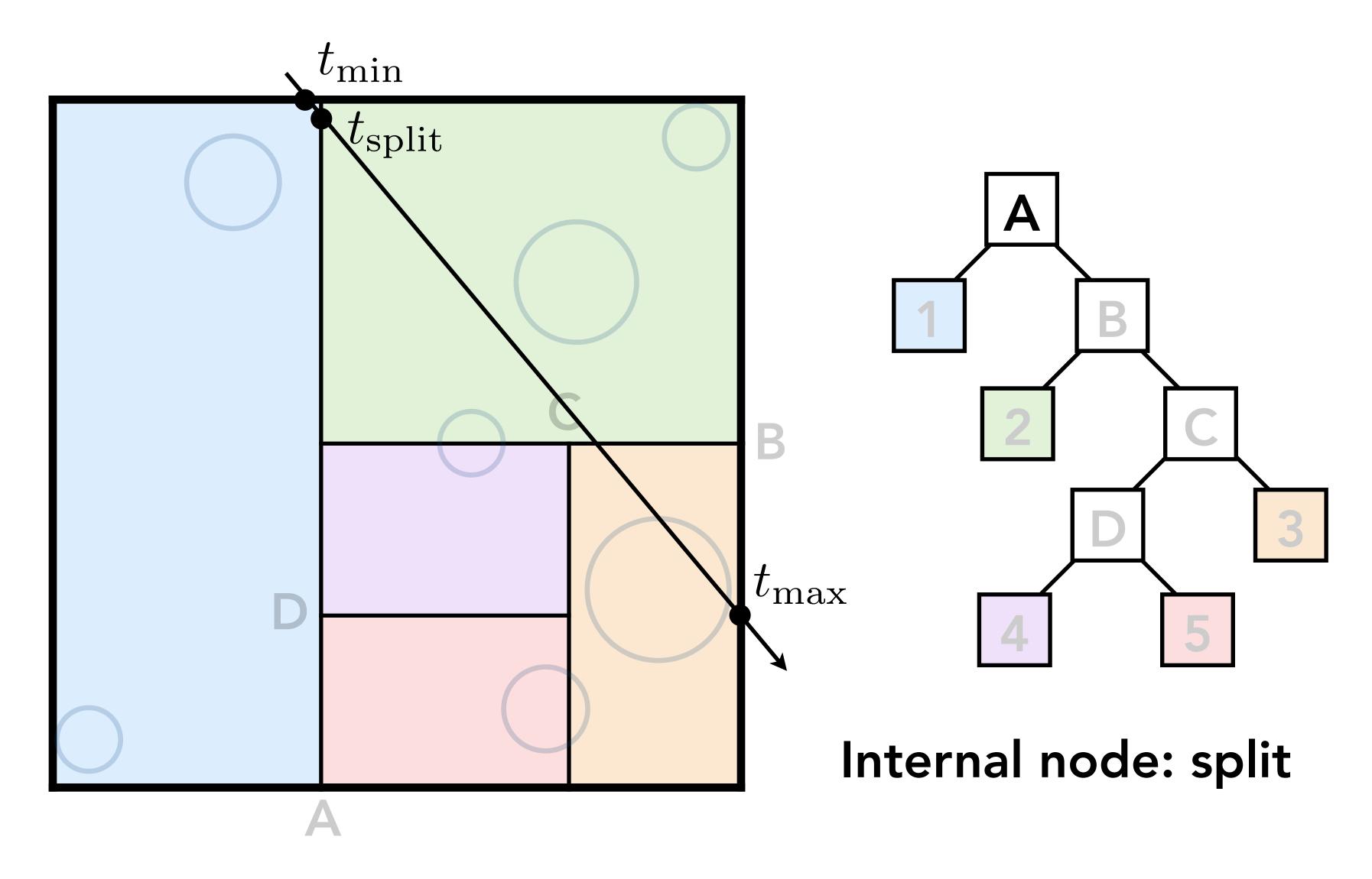
#### Choosing the split plane

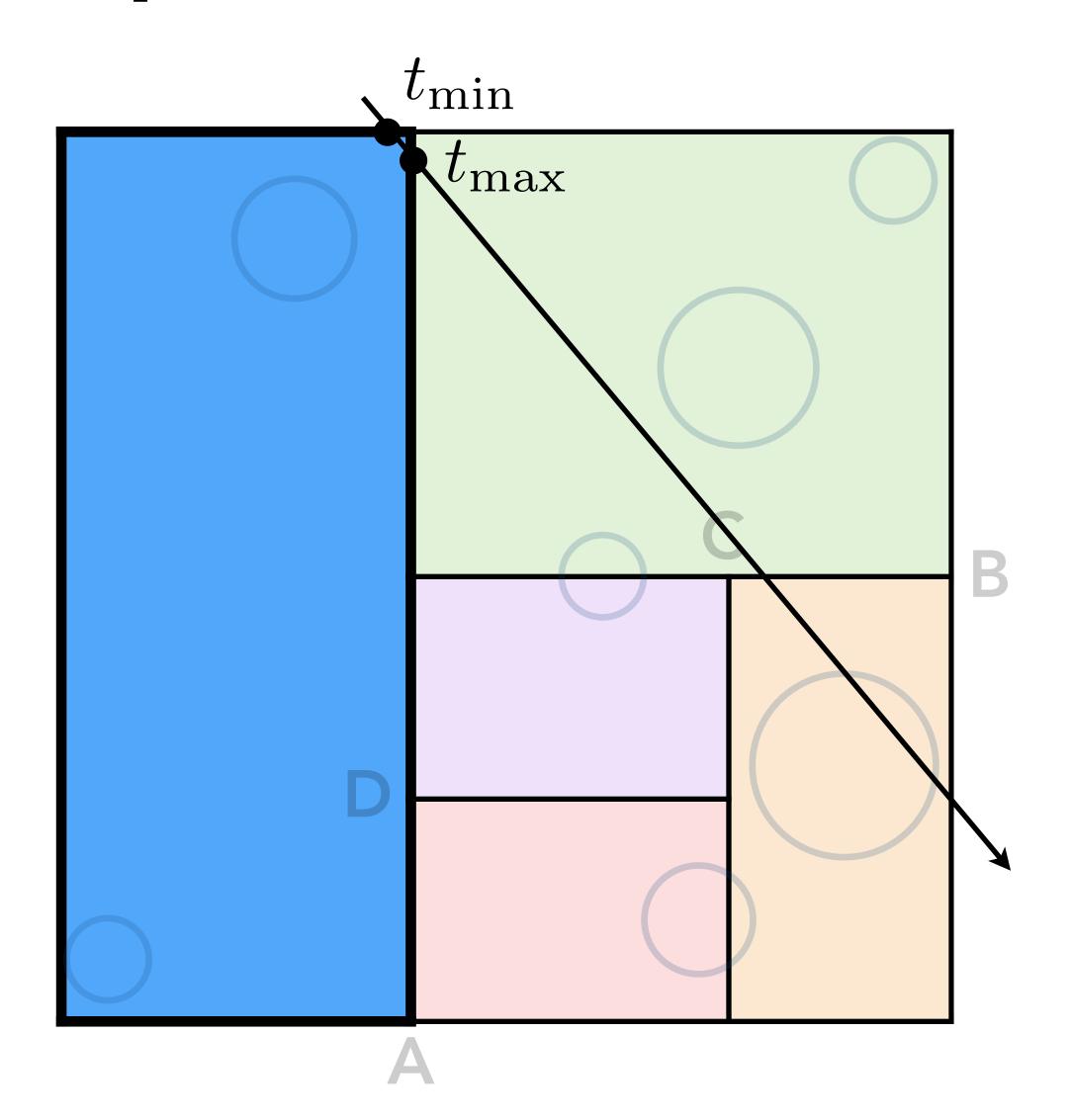
- Simple: midpoint, median split
- Ideal: split to minimize expected cost of ray intersection

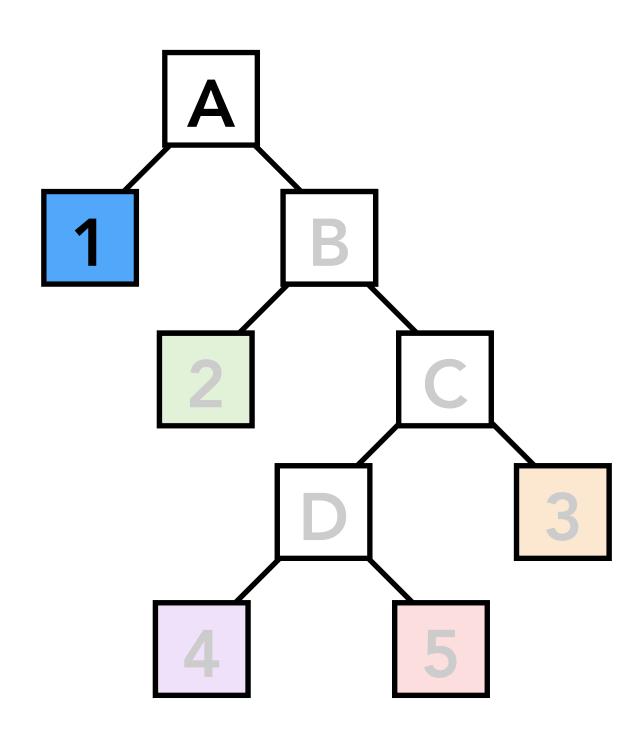
#### Termination criteria?

- Simple: common to prescribe maximum tree depth (empirical  $8 + 1.3 \log N$ , N = #objs) [PBRT]
- Ideal: stop when splitting does not reduce expected cost of ray intersection



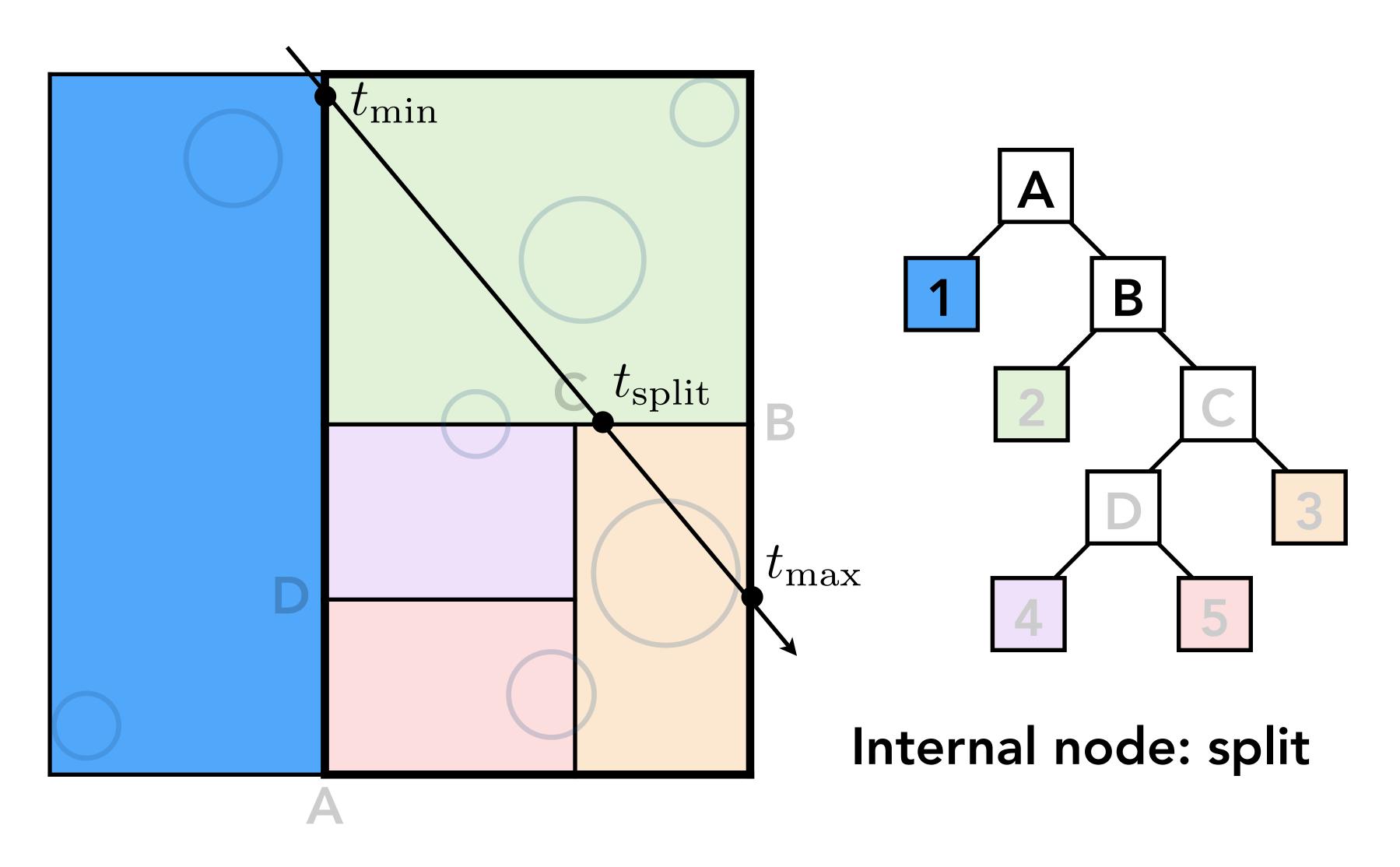


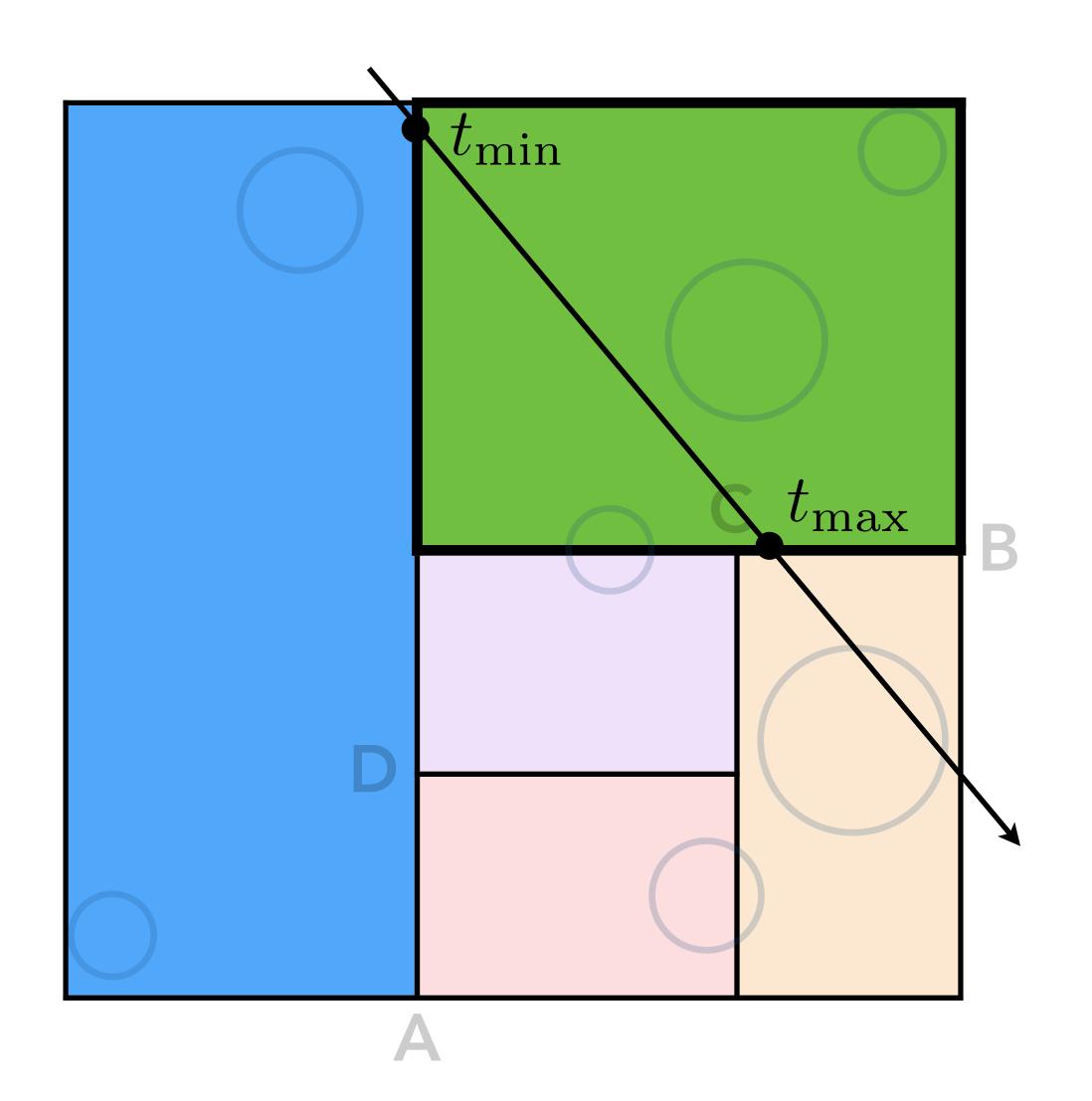


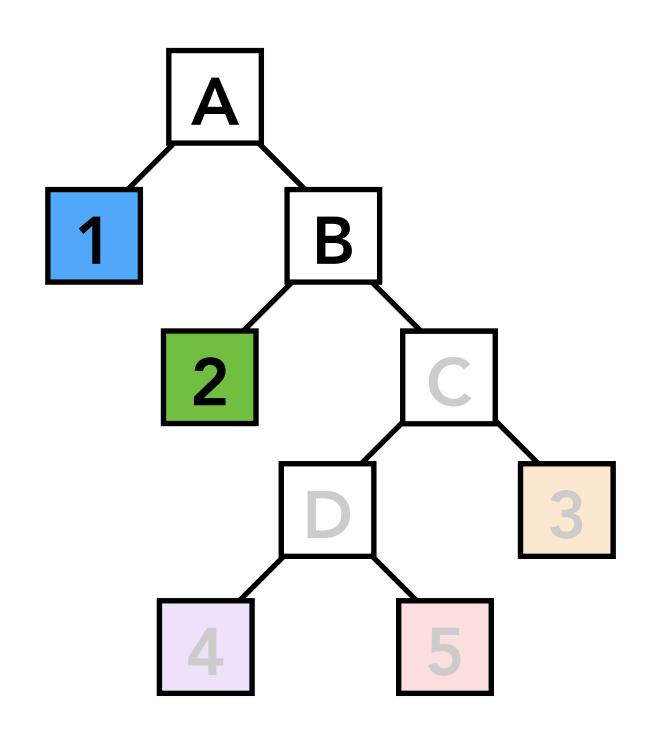


Leaf node: intersect all objects

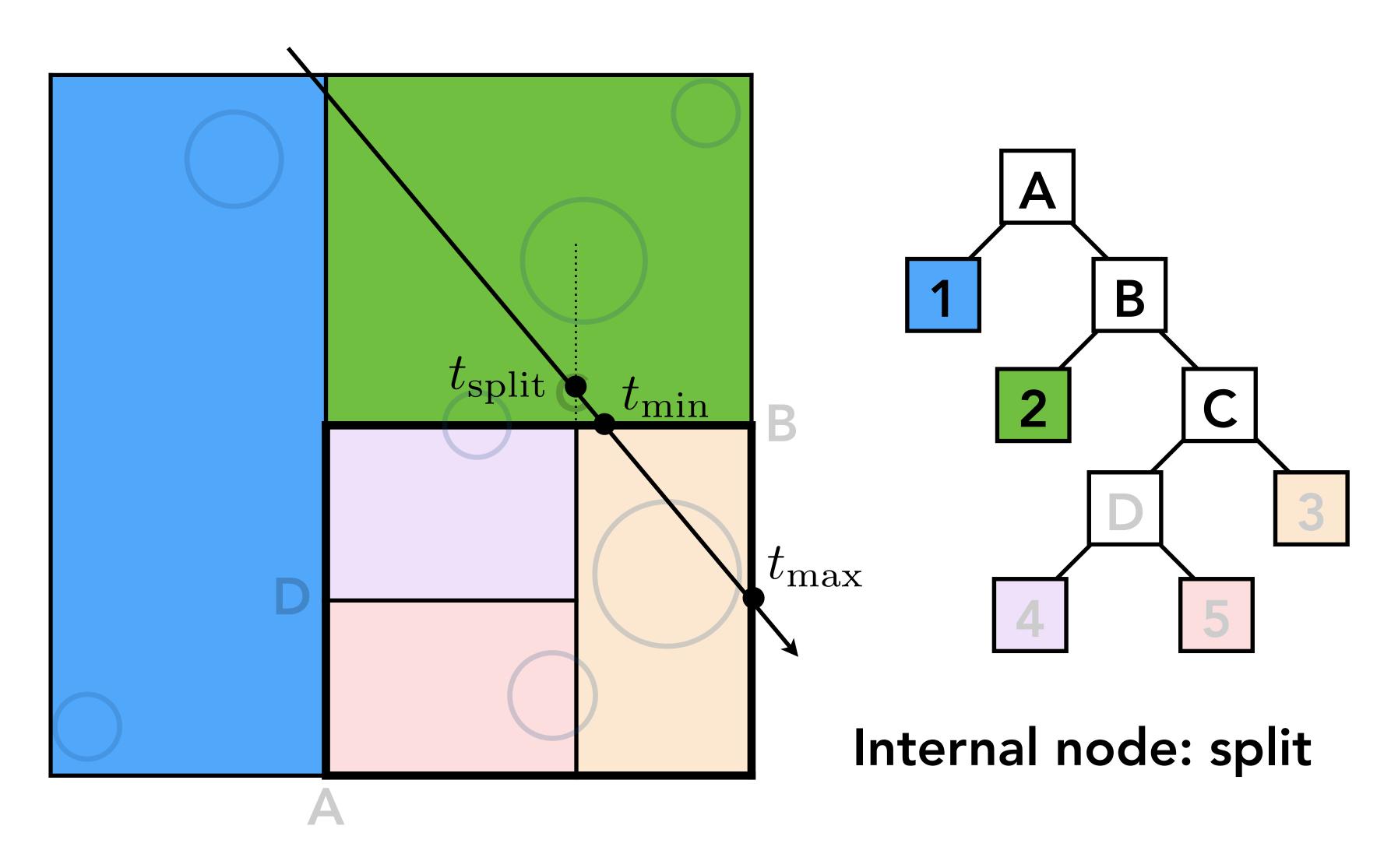
CS184/284A

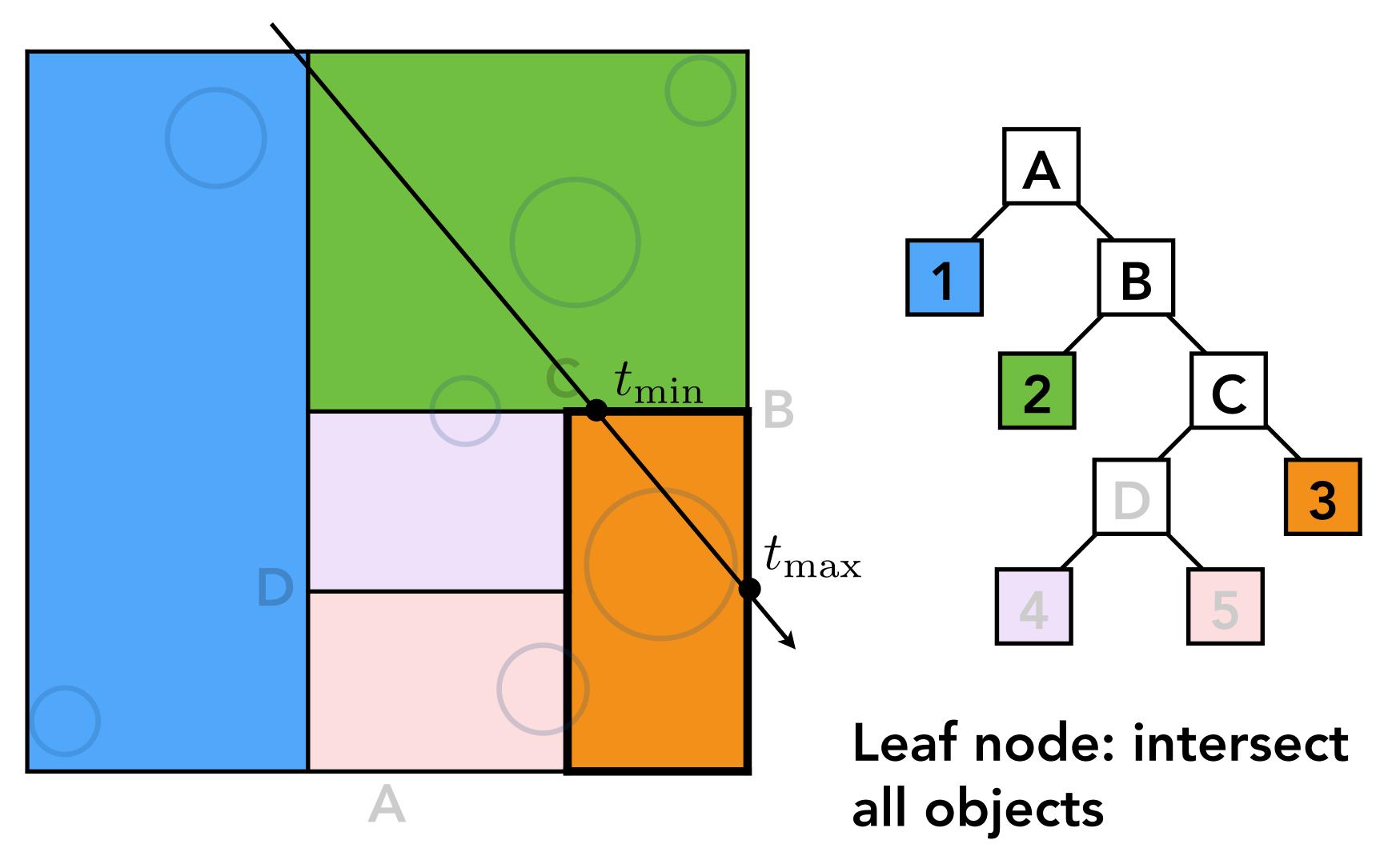






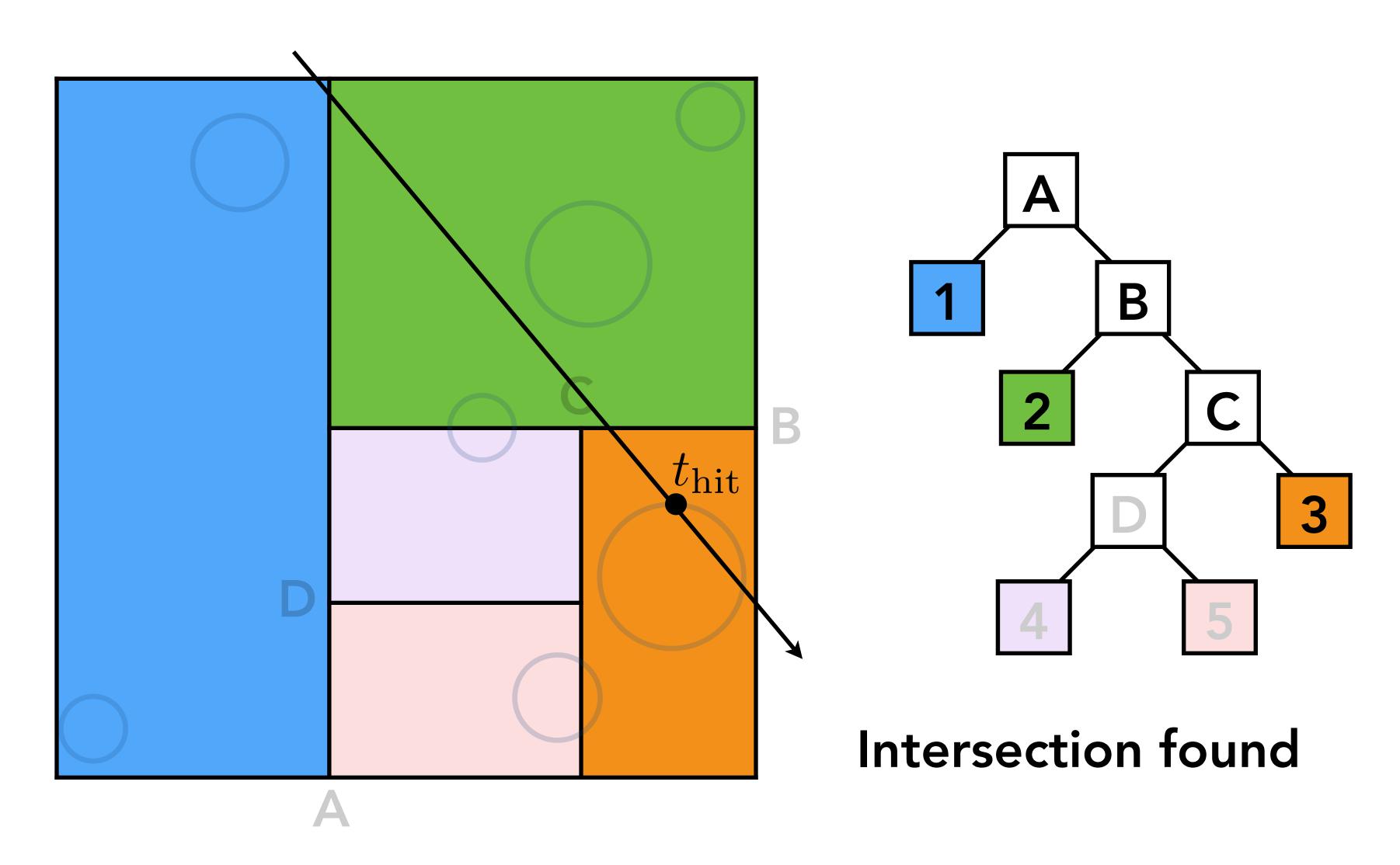
Leaf node: intersect all objects





CS184/284A

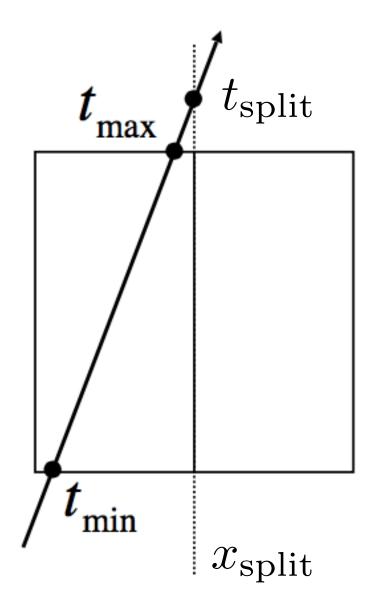
Ng & O'Brien

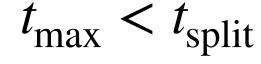


#### KD-Trees Traversal – Recursive Step

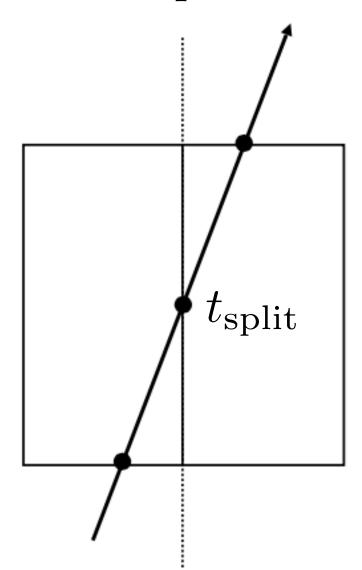
#### W.L.O.G. consider x-axis split with ray moving right

$$t_{\text{split}} = (x_{\text{split}} - \mathbf{o}_x)/\mathbf{d}_x$$



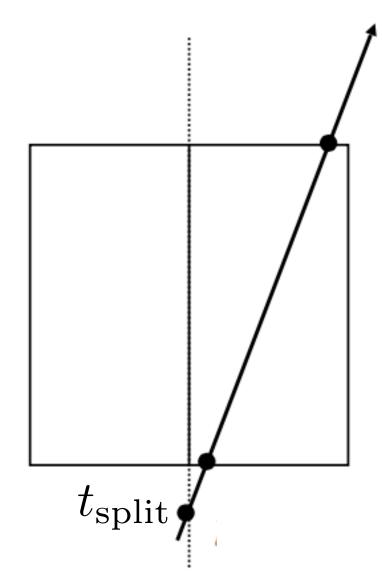


Intersect(L,tmin,tmax)



$$t_{\min} < t_{\text{split}} < t_{\max}$$

Intersect(L,tmin,tsplit)
Intersect(R,tsplit,tmax)



$$t_{\rm split} < t_{\rm min}$$

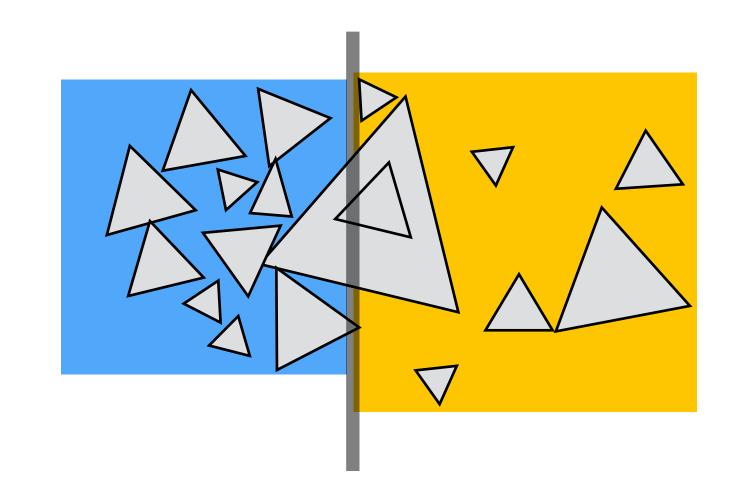
Intersect(R,tmin,tmax)

# Object Partitions & Bounding Volume Hierarchy (BVH)

#### Spatial vs Object Partitions

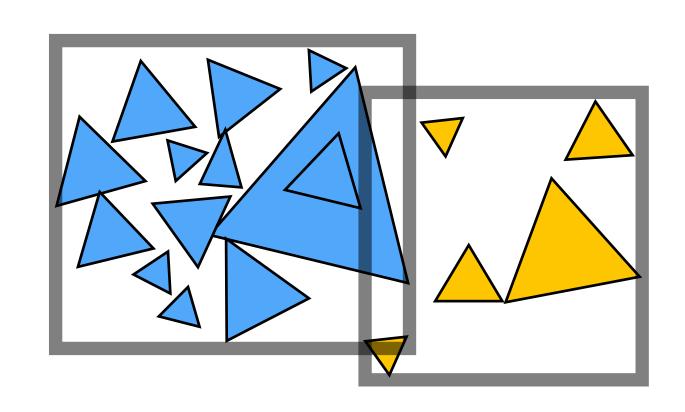
#### Spatial partition (e.g.KD-tree)

- Partition space into nonoverlapping regions
- Objects can be contained in multiple regions

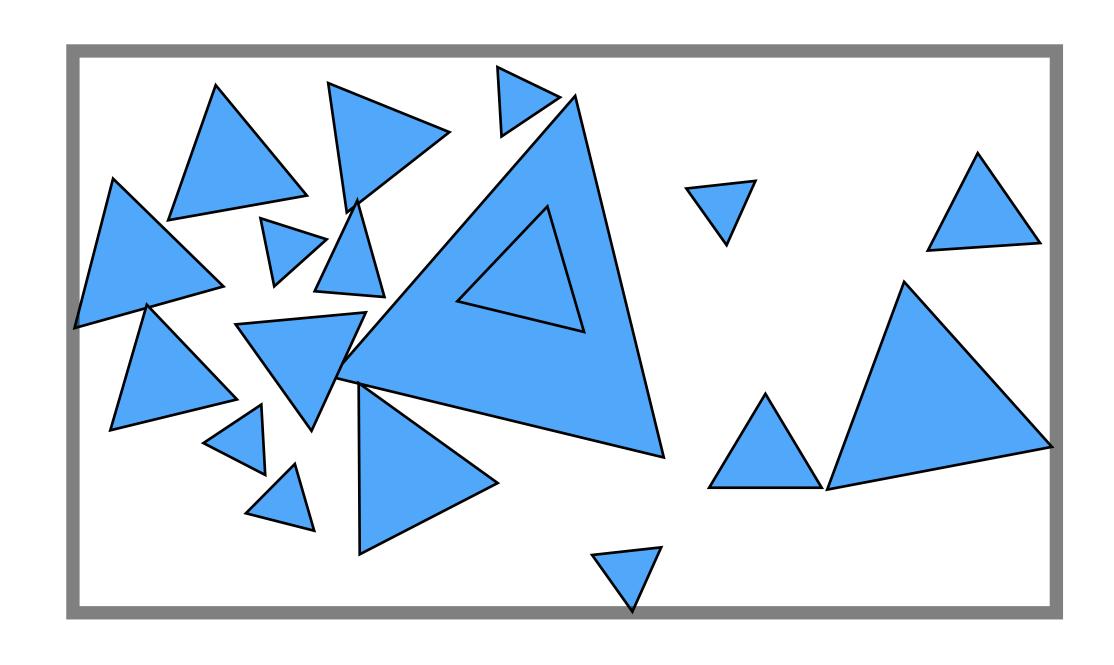


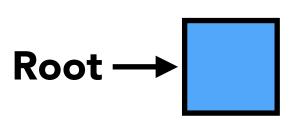
#### Object partition (e.g. BVH)

- Partition set of objects into disjoint subsets
- Bounding boxes for each set may overlap in space

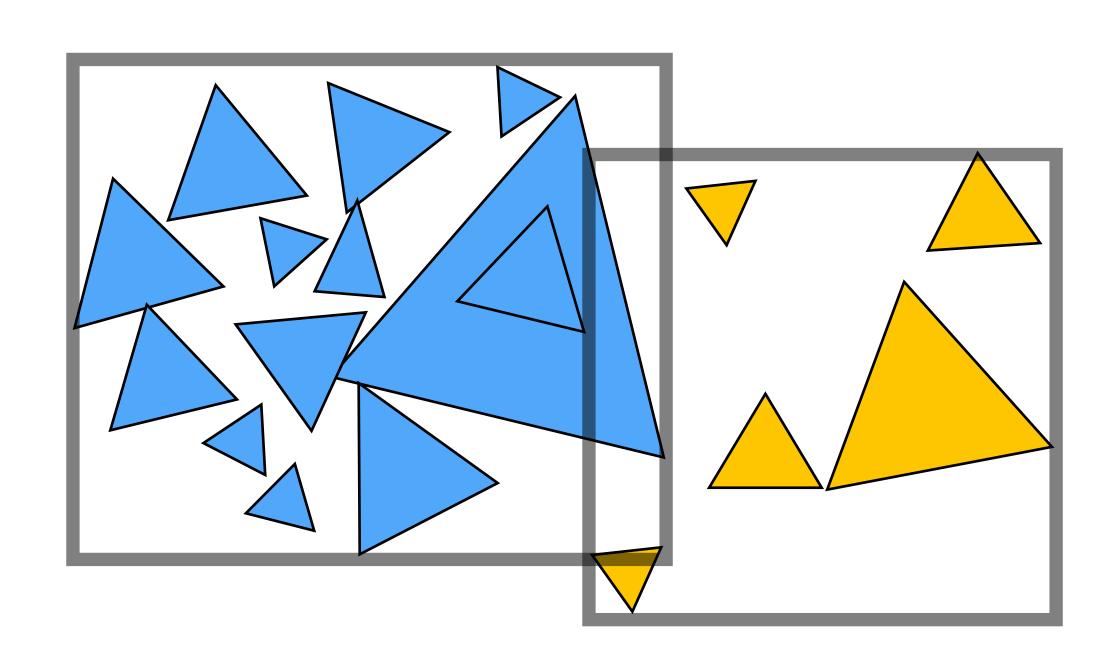


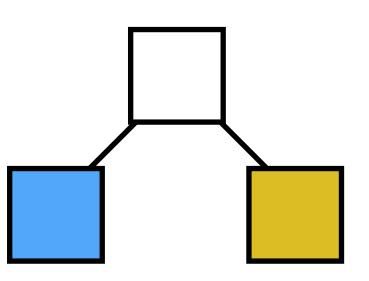
## Bounding Volume Hierarchy (BVH)



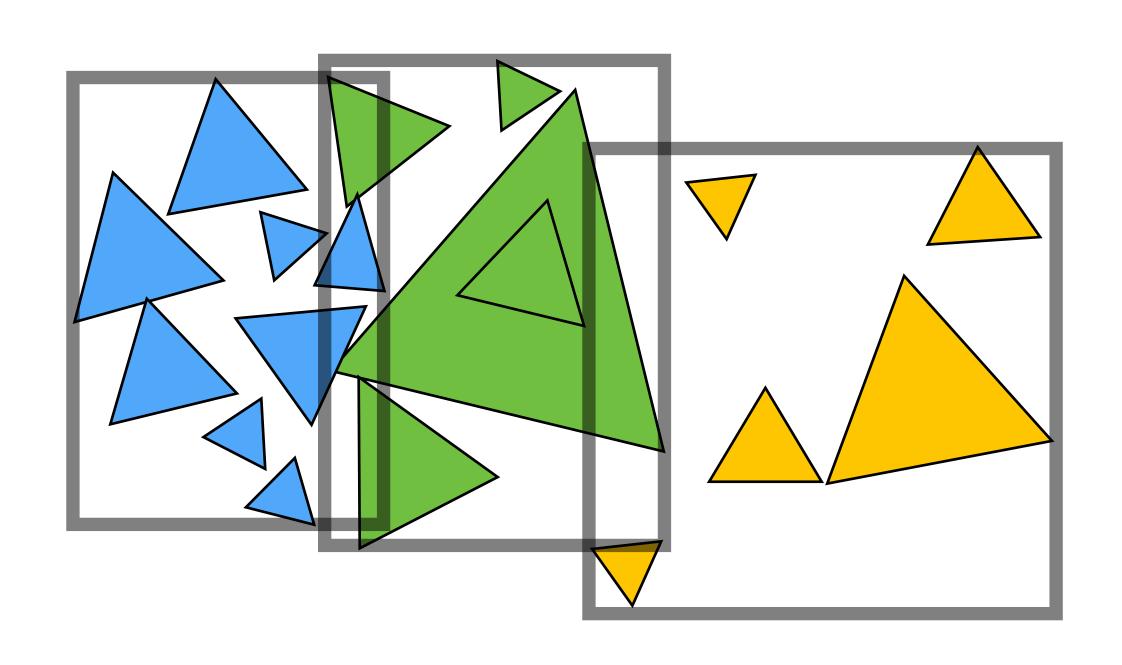


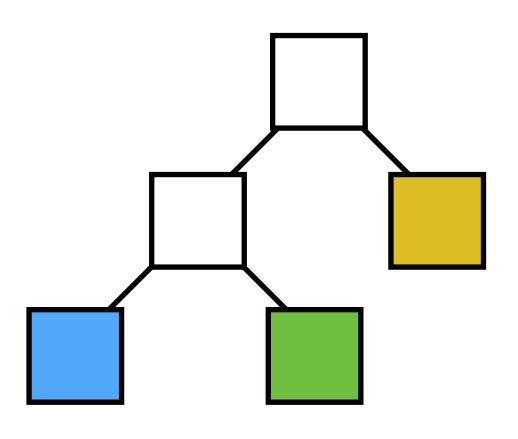
## Bounding Volume Hierarchy (BVH)



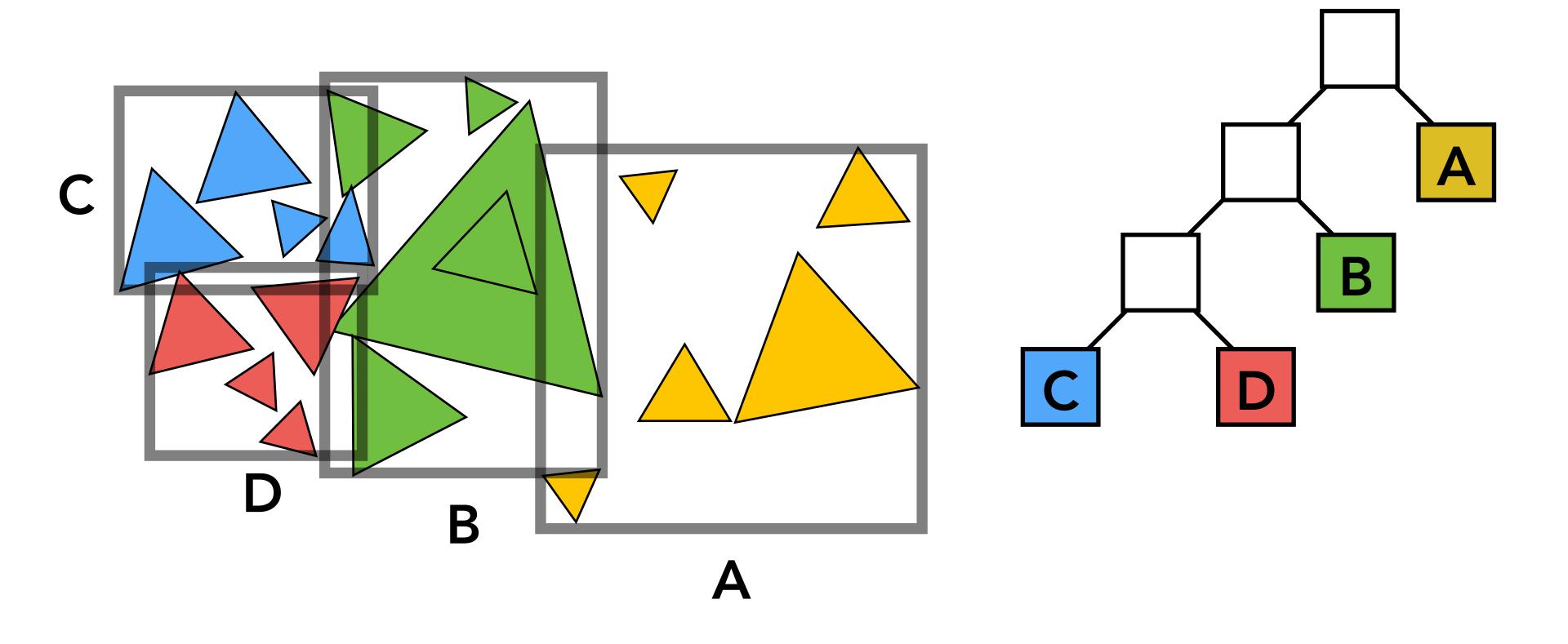


## Bounding Volume Hierarchy (BVH)





### Bounding Volume Hierarchy (BVH)



# Bounding Volume Hierarchy (BVH)

#### Internal nodes store

- Bounding box
- Children: reference to child nodes

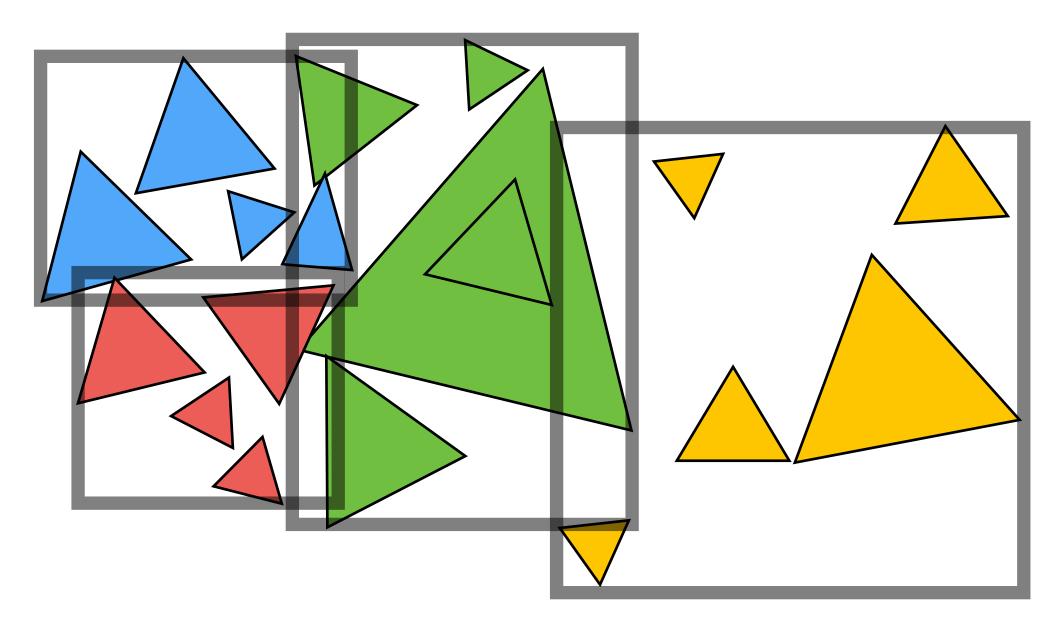
#### Leaf nodes store

- Bounding box
- List of objects

Nodes represent subset of primitives in scene

All objects in subtree

# **BVH Pre-Processing**



- Find bounding box
- Recursively split set of objects in two subsets
- Stop when there are just a few objects in each set
- Store obj reference(s) in each leaf node

**CS184/284A Ng & O'Brien** 

#### **BVH Pre-Processing**

#### Choosing the set partition

- Choose a spatial dimension to partition over (e.g. x,y,z)
- Simple #1: Split objects around spatial midpoint
- Simple #2: Split at location of median object
- Ideal: split to minimize expected cost of ray intersection

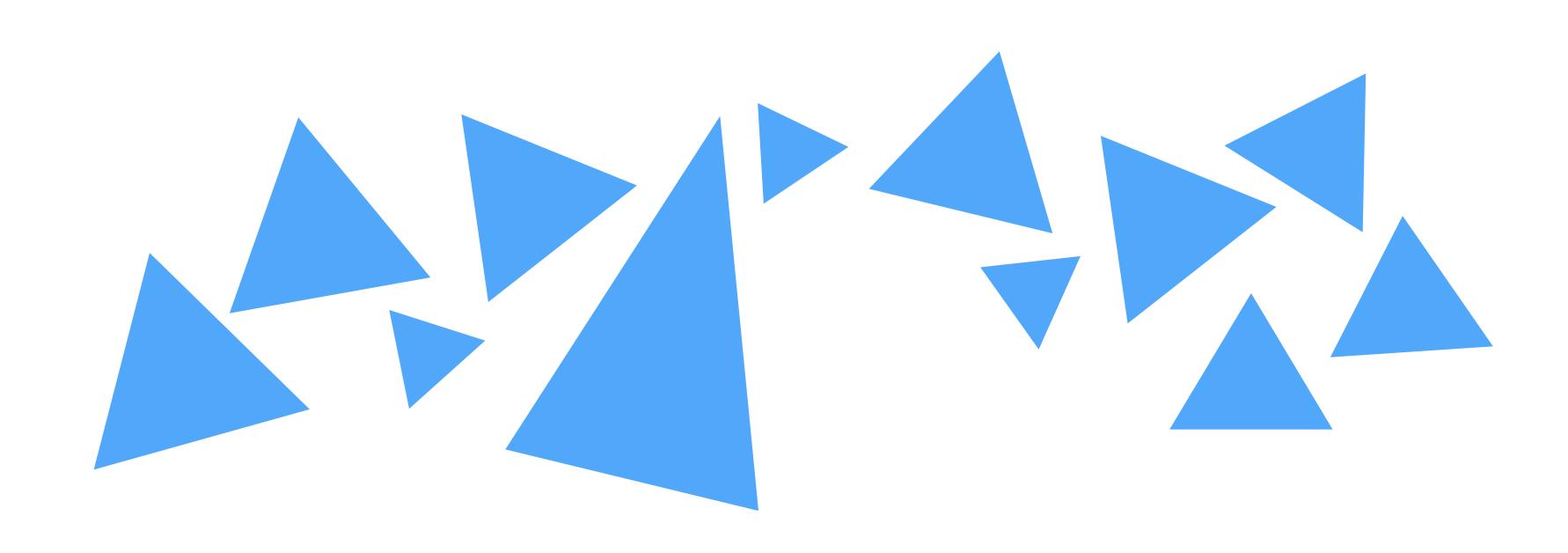
#### Termination criteria?

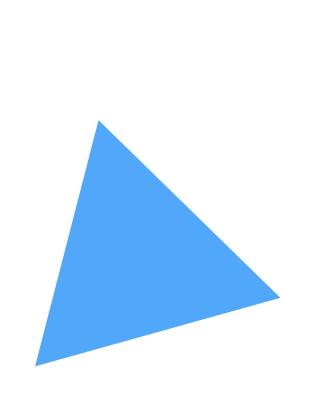
- Simple: stop when node contains few elements (e.g. 5)
- Ideal: stop when splitting does not reduce expected cost of ray intersection

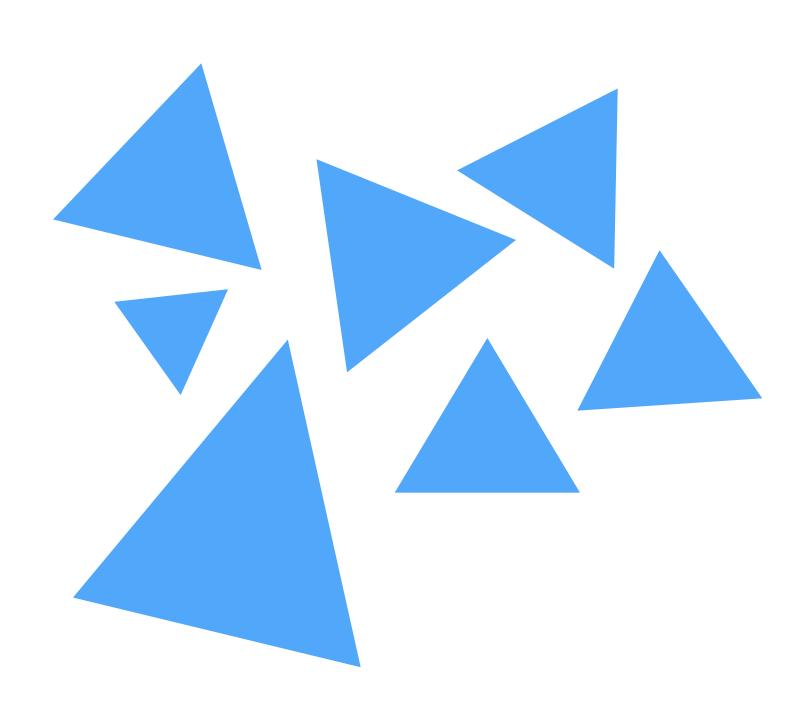
#### **BVH Recursive Traversal**

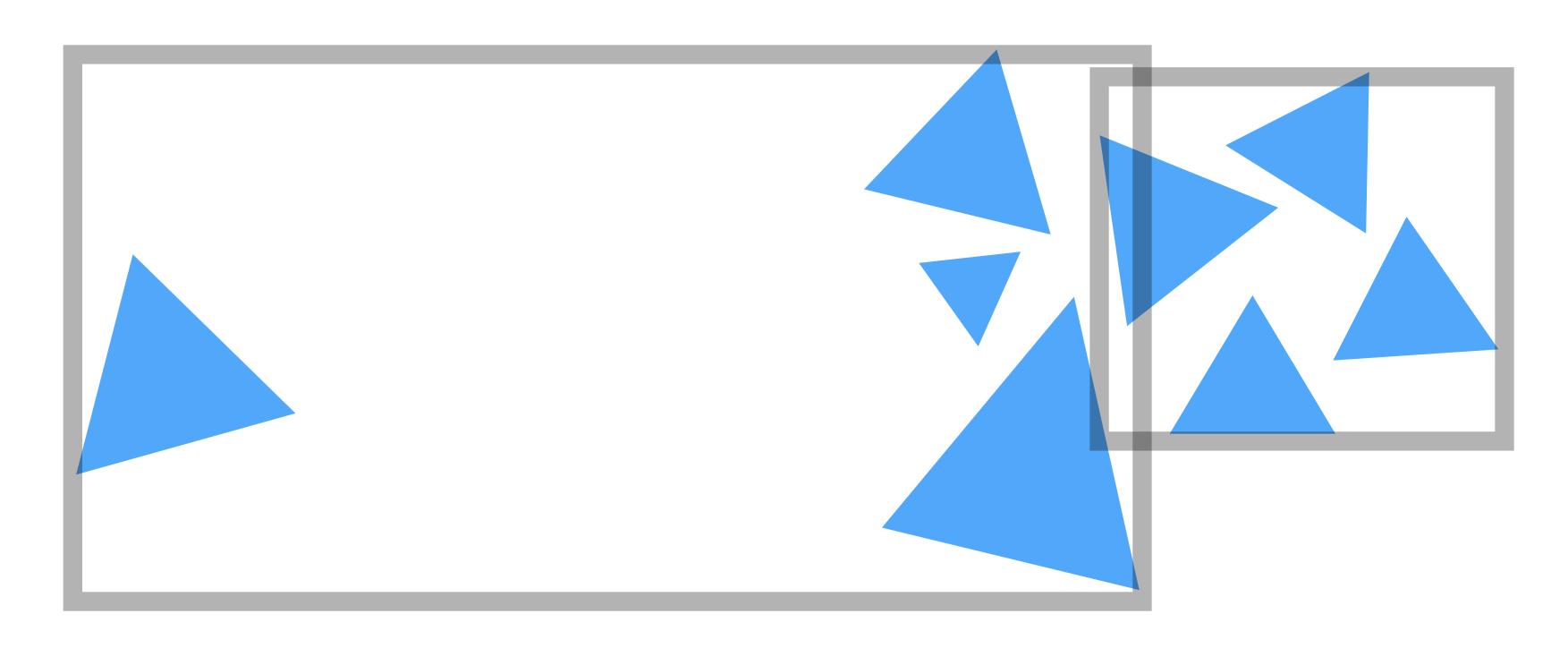
```
Intersect (Ray ray, BVH node)
  if (ray misses node.bbox) return;
  if (node is a leaf node)
    test intersection with all objs;
    return closest intersection;
  hit1 = Intersect (ray, node.child1);
  hit2 = Intersect (ray, node.child2);
  return closer of hit1, hit2;
    child1 child2
```

# Optimizing Hierarchical Partitions (How to Split?)

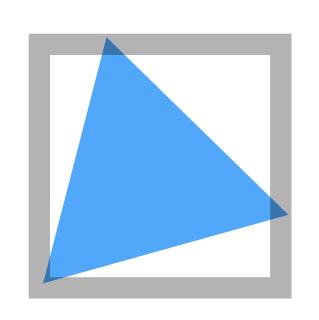


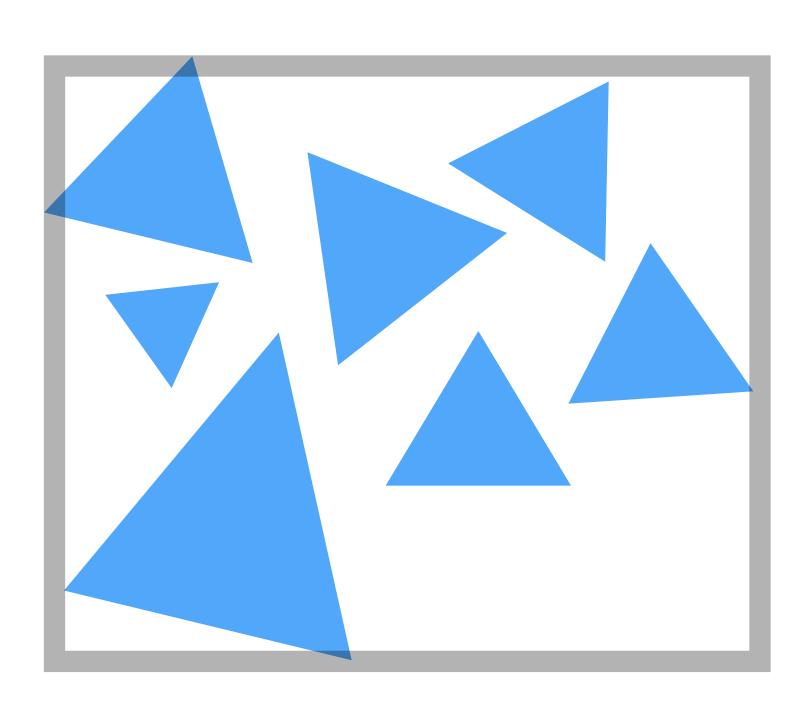






Split at median element?
Child nodes have equal numbers of elements





A better split?

Smaller bounding boxes, avoid overlap and empty space

# Which Hierarchy Is Fastest?

Key insight: a good partition minimizes the average cost of tracing a ray

**CS184/284A Ng & O'Brien** 

# Which Hierarchy Is Fastest?

What is the average cost of tracing a ray?

#### For leaf node:

CS184/284A

# Which Hierarchy Is Fastest?

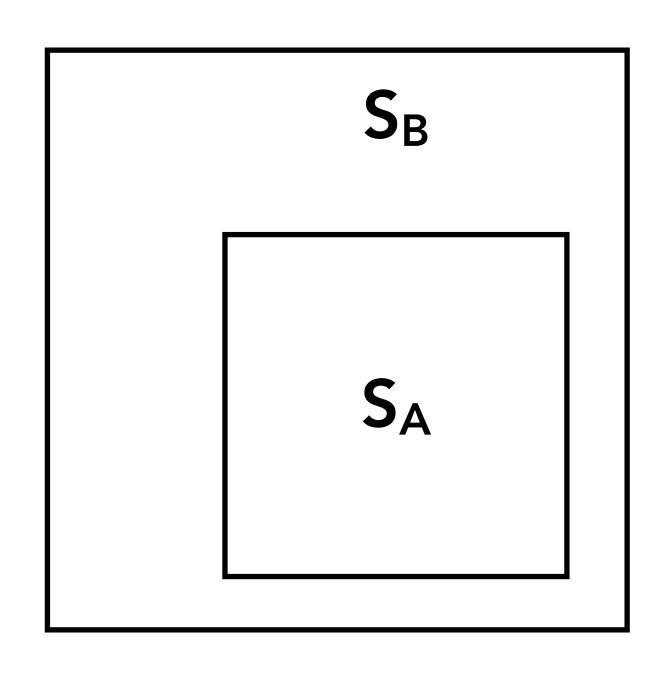
What is the average cost of tracing a ray?

#### For internal node:

# Optimizing Hierarchical Partitions Example: Surface Area Heuristic Algorithm

# Ray Intersection Probability

The probability of a random ray hitting a convex shape A enclosed by another convex shape B is the ratio of their surface areas,  $S_A / S_B$ .



$$P(\text{hit}A|\text{hit}B) = \frac{S_A}{S_B}$$

#### Estimating Cost with Surface Area Heuristic (SAH)

Probabilities of ray intersecting a node

• If assume uniform ray distribution, no occlusions, then probability is proportional to node's surface area

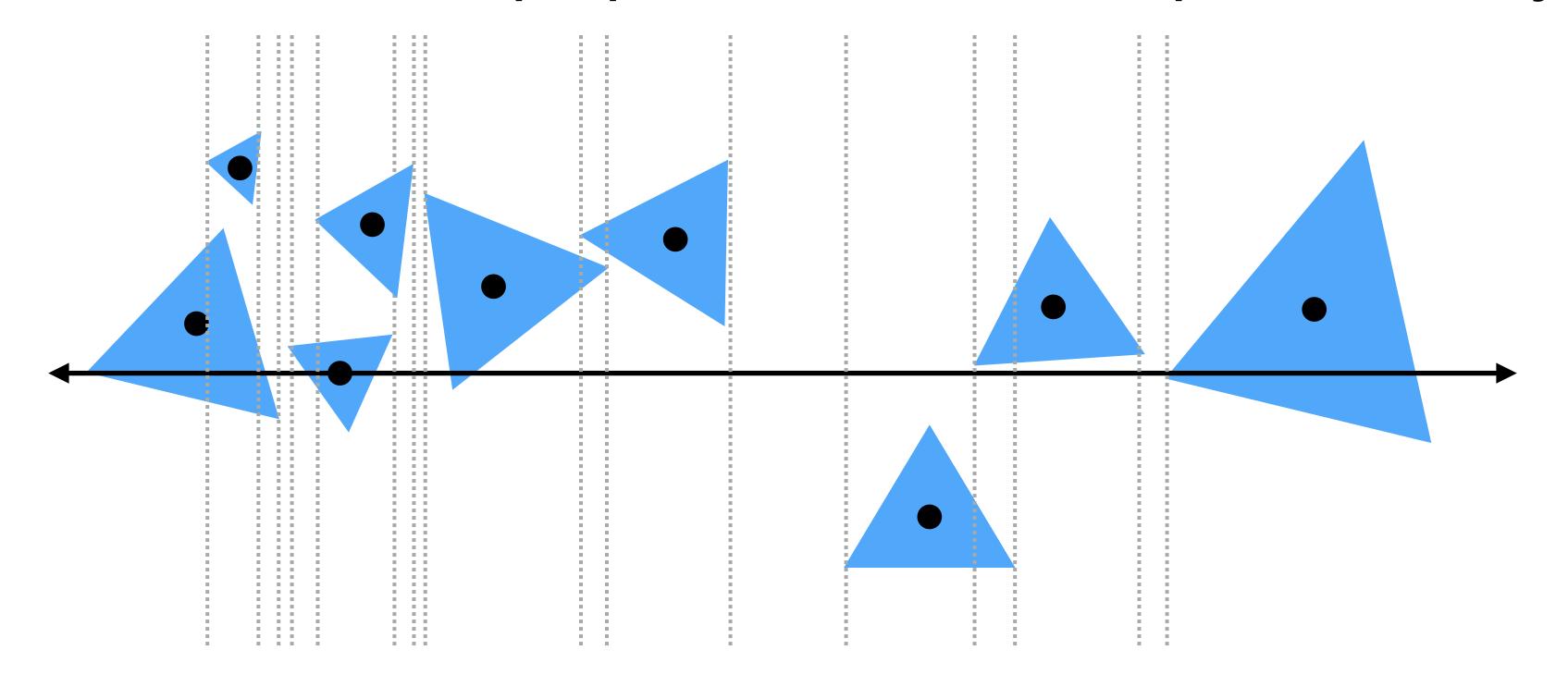
Cost of processing a node

• Common approximation is #triangles in node's subtree

#### Partition Implementation

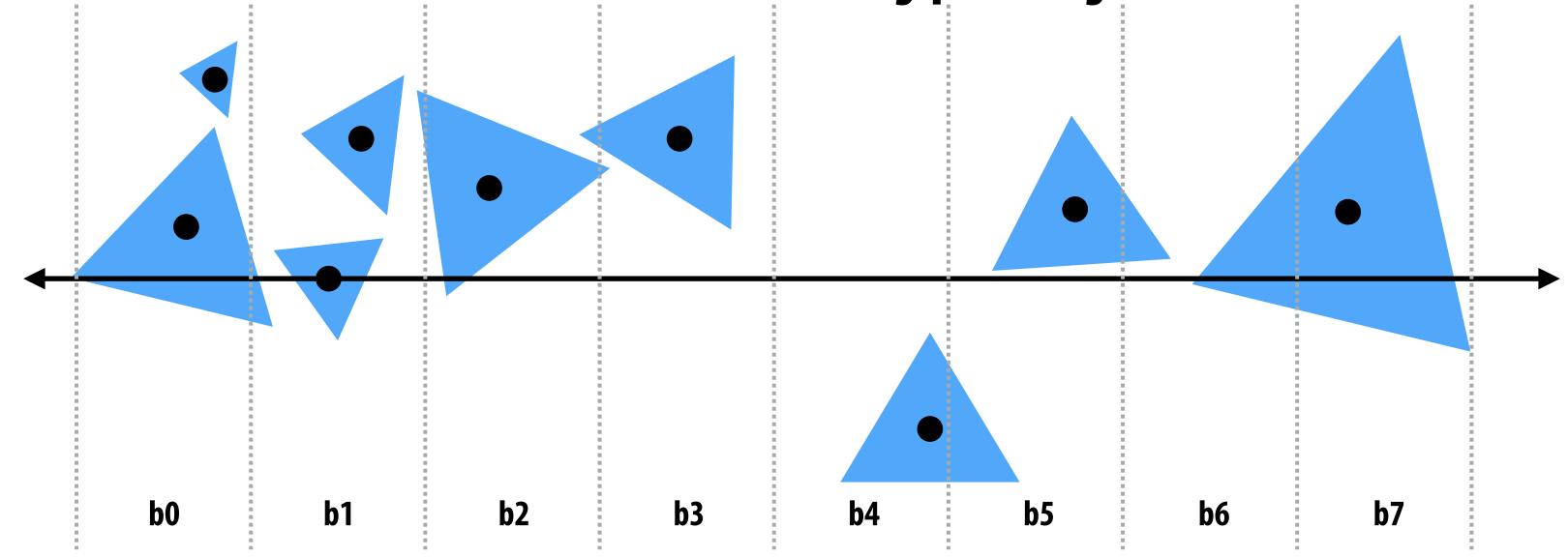
Constrain search to axis-aligned spatial partitions

- Choose an axis
- Choose a split plane on that axis
- Partition objects into two halves by centroid
- 2N-2 candidate split planes for node with N primitives. (Why?)



#### Partition Implementation (Efficient)

Efficient modern approximation: split spatial extent of primitives into B buckets (B is typically small: B < 32)



```
For each axis: x,y,z:
    initialize buckets
    For each object p in node:
        b = compute_bucket(p.centroid)
        b.bbox.union(p.bbox);
        b.prim_count++;
    For each of the B-1 possible partitioning planes evaluate SAH
Execute lowest cost partitioning found (or make node a leaf)
```

#### Cost-Optimization Applies to Spatial Partitions Too

- Discussed optimization of BVH construction
- But principles are general and apply to spatial partitions as well
- E.g. to optimize KD-Tree construction
  - Goal is to minimize average cost of intersecting ray with tree
  - Can still apply Surface Area Heuristic
  - Note that surface areas and number of nodes in children differ from BVH

### Things to Remember

Ray-geometry intersection as solution of ray-equation substituted into implicit geometry function

Linear vs logarithmic ray-intersection techniques

Many techniques for accelerating ray-intersection

- Spatial partitions: Grids and KD-Trees
- Object partitions: Bounding Volume Hierarchies

Optimize hierarchy construction based on minimizing cost of intersecting ray against hierarchy

Leads to Surface Area Heuristic for best partition

# Acknowledgments

Thanks to Pat Hanrahan, Kayvon Fatahalian, Mark Pauly and Steve Marschner for lecture resources.