Lecture 1:

Introduction

Computer Graphics and Imaging
UC Berkeley CS184/284A
Welcome to CS184 / 284A!

Prof. Ren Ng

• Ph.D. 2006 on Digital Light Field Photography (evolving camera design using graphics technology)
• Founder of Lytro, a light field camera company
• Research interests: color, computational imaging systems, computer graphics, computer vision, human vision
• Fun fact: born Malaysian, became Australian, naturalized American. Had all three speaking accents!
Welcome to CS184 / 284A!

CS184/284A https://cs184.eecs.berkeley.edu/sp24/staff Ren Ng
Your Names: An Important Request

- We want to get to know you
- It starts with your names
- We want to remember, but there are many of us
- Please help us with this rule:
 - Every time you participate in class, section, office hours, please remind us your name.
 - Example: “Hi, this is Xu Yi. My question is about…”
- Thank you very much!
Why Study Computer Graphics?

Course Overview

Logistics
What is Computer Graphics?

computer graphics /kəmˈpyʊtər ˈɡrɑːfɪks/ n. The use of computers to synthesize and manipulate visual information.
Why Visual Information?
We Humans Are Visual Animals
Why Study Computer Graphics and Imaging?
Movies

Jurassic Park (1993)
Moments That Changed The Movies: Jurassic Park
https://www.youtube.com/watch?v=KWsbcbYqN8
Movies - 3D Geometry, Materials, Lighting

Toy Story (1995)
Movies - Image-Based Computer Graphics

The Matrix (1999)
Movies - Image-Based Computer Graphics

The Matrix (1999)
The Campanile

Debevec, Taylor and Malik SIGGRAPH 1996
https://www.pauldebevec.com/Campanile/
Motion Capture

Andy Serkis in The Two Towers
Avatar (2009)
Interstellar (2014)
Computational Imaging - Event-Horizon Telescope
Computational Imaging - Event-Horizon Telescope
Games

Super Mario World
Child of Light (2014)
Games

Unreal Engine 5 Demo Realtime in PS5 (2020)
Visual Simulation
Visual Simulation

Driving simulator
Toyota Higashifuji Technical Center

da Vinci surgical robot
Intuitive Surgical

Flight simulator, driving simulator, surgical simulator, …
Virtual Reality

HTC Vive headset and controllers
Augmented Reality

Microsoft Hololens augmented reality headset concept
Augmented Reality
Mixed Reality

Apple Vision Pro
Product Design and Visualization

Ikea - 75% of catalog is rendered imagery
Product Design and Visualization

Photograph

Simulation

Avametric 2016
Product Design and Visualization

Tesla Model X concept (2012)
Product Design and Visualization

Tesla Model X production
Computer-Aided Design

SolidWorks

SketchUp

For mechanical, architectural, electronic, optical, …
Architectural Design

Bilbao Guggenheim, Frank Gehry
Architectural Design

Heydar Aliyev Center, Zaha Hadid Architects
Visualization

Science, engineering, medicine, journalism, …
Typography

The Quick Brown Fox Jumps Over The Lazy Dog

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789

credit: Randall Branding

Baskerville
Graphical User Interfaces

Desktop metaphor
• Input: Keyboard, mouse
• Output: Cathode-ray tube

Ivan Sutherland, Sketchpad
Light pen, vector display

Doug Engelbart
Mouse
Graphical User Interfaces

2D drawing and animation are ubiquitous in computing. Typography, icons, images, transitions, transparency, …
Graphical User Interfaces

2D drawing and animation are ubiquitous in computing. Typography, icons, images, transitions, transparency, …
Graphical User Interfaces

https://www.youtube.com/watch?v=YndL315tQq8
Digital Illustration

Meike Hakkart

http://maquenda.deviantart.com/art/Lion-done-in-illustrator-327715059
Photography

NASA | Walter Iooss | Steve McCurry
Harold Edgerton | NASA | National Geographic
Digital and Computational Cameras

Panaromic stitching, HDR photos, light field cameras, ...
Ubiquitous Imaging

Cameras everywhere
Imaging in Mapping

Maps, satellite imagery, street-level imaging,...
Imaging in Mapping

Maps, satellite imagery, street-level imaging,...
Imaging for Computer Vision

ImageNet: 15M images, 22K categories
http://image-net.org
Imaging for Robotics

Google’s “Arm Farm”
Generative Visual AI

Photoshop GenFill
Generative Visual AI

Photoshop GenFill

CS184/284A

Ren Ng
Foundations of Graphics and Imaging

These applications require sophisticated theory and systems

Science and Mathematics

• Physics of light, color, optics, ...
• Math of curves, surfaces, geometry, perspective, ...

Technology and Systems

• Input devices, GPUs, displays, ...
• Cameras, lenses, sensors, ...

Art and Psychology

• Perception: color, stereo, motion, image quality, ...
• Art and design: composition, form, lighting, ...
Course Goals

Overview of core ideas in graphics and imaging
- Modeling the world, image synthesis
- 3D graphics: geometry, rendering, animation
- Image capture, manipulation and display

Acquire core concepts and skills
- Representations (geometry, images, transforms, …)
- Algorithms (sampling, subdivision, ray-tracing, …)
- Technology (GPUs, displays, cameras, …)
Course Topics
Drawing Digital Images (Rasterization)
Filtering and Sampling

No Jaggies
Modeling Geometry

[Stanislav Orekhov]
Kaldor 2008

ocfish/blogspot
Platonic noid
Modeling Material Properties
Modeling Lighting

Monster’s Inc., 2001
Modeling Lighting

Monster’s U., 2013
Light Transport and Image Synthesis

Photograph (CCD) vs. computer rendering
How Do Cameras Work?

Glenn Derene, Popular Mechanics
Animation and Physical Simulation
Virtual Reality
Hands-On Learning
Course Assignments

1. Digital Drawing (2 weeks)
2. Geometry (2 weeks)
3. Ray-Tracing (2 weeks)
4. Animation (2 weeks)
Final Project

Project Competition

• 4 weeks, let your creativity take flight! (we will have suggested projects)

• Proposal; checkpoint; presentation, video, report
Final Project - Examples

Nguyen, Lipsitz

Yao, Situ

Ding, Qiang, Zhang

Bhadra, Tsai, Ngan
Final Project - Examples

Zhang, Sreelal, Comins

Ni, Wu, Yu, Zhou

Tu, Gibbes, Jacobs

Doriwala, Kamat, Lim, Ferguson
Final Project - Examples

Austin, Armand, Hubach

Fong, Lei, Manohar

Cai, Gao, Yu, Zhou

Khanna, Turin, Zhuravleva, Lien
Course Logistics
Prerequisites

Math

• Vectors, matrices, basic linear algebra
• Helpful: exposure to statistics, signal processing, Fourier transform

Programming

• Data structures (CS61B)
• Fluency with development environment, debugging, etc.
• Fluency with C and C++
Enrollment

• Past years, high turnover from wait list

• Questions about enrollment:
 • Undergraduate students (CS184): ask scheduler (Cindy Conners) cs-scheduling@berkeley.edu
 • Graduate students (CS284A): contact instructors on Ed
 • Concurrent enrollment: in process; consult your CE coordinator, and check course Ed for updates
Course Schedule

cs184.eecs.berkeley.edu

Full schedule for class will be on website soon

Note class calendar at bottom for office hours, homework, parties, etc.
Course Schedule - Important Dates

See course website for dates and more info.

Exams

- Monday March 18th 7:00 - 9:00 pm
- Monday April 22nd 7:00 - 9:00pm

Final Project Presentations

- Tentatively scheduled for Thu May 2 / Fri May 3

Please check calendars and save these dates now!

- Send a private Ed message to staff if you have an exceptional circumstance
Lecture Slides

cs184.eecs.berkeley.edu

Lecture slides and instructor/TA/student discussions on the web are the primary course reference materials

Slide comments and discussion

CS184/284A
Ed
edstem.org
You should be added already (if not, please sign up)!
For logistics and general communication / discussion
 • Please use Ed instead of email
 • But intellectual discussions about content should primarily go on website as slide comments
Webcasting

Lecture will be recorded this semester

- Screen capture and audio only
- Videos will be linked from the course website
Sections start next week, and TAs will give a primer on C++ and building class projects
Resources

Lectures will be primary source

Textbook reference material (optional):

• Physically Based Rendering, Third Edition: From Theory to Implementation by Pharr, Jakob and Humphreys

Other optional reading resources on class website

CS184/284A
Learning, Grading, Collaboration & Culture

Goals:

• Enable you to increase focus on learning rather than assessment
• Encourage your learning through collaboration
• Entrust you with maintaining academic integrity

Main Ideas (details on course website — please review):

• The class is not graded on a curve.
• Collaboration in pairs encouraged on homework assignments.
• Final project in teams of four.
• Two in-person exams.

Details

• Please read the Policies page on the course website; ask questions on Ed.
Course Deliverables and Assessment

CS184: your course grade is out of 100 total points

• Four homework assignments, 12.5 points each
 • Pair projects encouraged. Programming and written reports.

• Two in-person, closed-book exams, 10 points each
 • Check dates on website schedule. No exam during Finals Week.

• Final project, 25 points
 • In teams of four, with final presentation, video, report.

• Participation, 5 points
 • Attend lectures/discussion

CS284A students: Project is 40% of grade, remainder normalized.
Late Days Policy

You have 8 late days for the semester

- Extend a homework assignment deadline (not the final project) by 24 hours using one late day.
- No more than 4 late days on last homework (#4)
- If you do not have remaining late days, 1 point penalty per day.
- Late days are meant to be used for personal schedule conflicts, illness, submission issues and other unforeseen circumstances.
- For exceptional circumstances, contact staff or see website for extension request form.
Participation Policy

Every week, starting week 2, you are eligible for up to 2 participation credits.

• 1 credit for attending lecture
• 0.75 credits for attending discussion, and
• 0.5 credit for making one well thought-out comment on lecture slides on the website

Note that you must earn participation credits week-to-week and cannot “make up” participation at the end of the semester
Policy on Use of Generative-AI Tools

You are welcome to use AI tools for coding and writing reports. But a few rules / comments:

• Must describe use and what you learned

• Exams are in-person, closed-book. Likely will have coding questions

• Current AI tools are not perfect, so supervise your tools closely if you use them

• Low or minimal-effort use of AI tools may result in low or no partial credit

• We encourage you to explore AI tools in a way that augments rather than reduces your learning in class
What We Are Looking For In Slide Comments

Try to explain the slide (as if teaching your classmate to study for an exam)
• “Ren said this, but if you think about it this way it is much clearer”

Explain what is confusing you
• “What I was totally confused about here was…”

Challenge classmates with a question
• For example, make up a question you think might be on an exam

Provide a link to an alternative explanation
• “This site has a really good animation of pre-filtering to avoid aliasing”

Mention real-world examples
• For example, describe what default interpolation functions are used in iOS.

Constructively respond to another student’s question
• “@nojaggies, are you sure that is correct? I thought that Ren said…”

It is OK, and even encouraged, to address the same topic (or repeat someone else’s summary, explanation or idea) in your own words
• “@cornellbox’s point is that subdivision is also used to…”
Class Philosophy

We want to build an active, engaged class community. Come to class, participate in lecture, discussion, office hour parties, homework parties. Practice cooperative, supportive learning. Contribute on the website. Uphold academic honor individually and collectively.
Inclusive Classroom

We are committed to creating a learning environment welcoming and supportive of all students. Towards this goal, we call on our class community to:

- Respect, welcome and learn from each other as individuals with unique backgrounds, perspectives and identities.

- Collaboration and team learning are encouraged, and will be supported through class staff and resources.

- Homework assignments and final project are a great way to meet new people and make friends; work on building trust and leveraging each other’s unique strengths.

- If you feel that your learning is negatively affected by your experiences outside of class (e.g. family matters, current events), please don’t hesitate to come and talk with the instructor and/or staff. We want to support you.
Course Roadmap

Rasterization Pipeline
Core Concepts
• Sampling
• Antialiasing
• Transforms

Geometric Modeling
Core Concepts
• Splines, Bezier Curves
• Topological Mesh Representations
• Subdivision, Geometry Processing

Lighting & Materials
Core Concepts
• Measuring Light
• Unbiased Integral Estimation
• Light Transport & Materials

Cameras & Imaging

Rasterization
Transforms & Projection
Texture Mapping
Visibility, Shading, Overall Pipeline

Intro to Geometry
Curves and Surfaces
Geometry Processing
Ray-Tracing & Acceleration
Radiometry & Photometry
Monte Carlo Integration
Global Illumination & Path Tracing
Material Modeling
Questions?
Acknowledgments

Thanks to Angjoo Kanazawa, Pat Hanrahan, Kayvon Fatahalian, Keenan Crane, Mark Pauly and James O’Brien for presentation resources.