Lecture 1: Introduction

Computer Graphics and Imaging UC Berkeley CS184/284A

Welcome to CS184 / 284A!

Prof. Ren Ng

- Ph.D. 2006 on Digital Light Field Photography (evolving camera design using graphics technology)
- Founder of Lytro, a light field camera company
- Research interests: color, computational imaging systems, computer graphics, computer vision, human vision
- Fun fact: born Malaysian, became Australian, naturalized American. Had all three speaking accents!

Welcome to CS184 / 284A!

Alfredo de Goyeneche Anjali Thakrar

Connor Dang

Jessica Lee

https://cs184.eecs.berkeley.edu/sp24/staff

Your Names: An Important Request

- We want to get to know you
- It starts with your names
- We want to remember, but there are many of us
- Please help us with this rule:
 - Every time you participate in class, section, office hours, please remind us your name.
 - Example: "Hi, this is Xu Yi. My question is about..."
- Thank you very much!

CS184/284A: Computer Graphics & Imaging

Why Study Computer Graphics? Course Overview Logistics

What is Computer Graphics?

com • put • er graph • ics /kəm'pyoodər 'grafiks/ n. The use of computers to synthesize and manipulate visual information.

Why Visual Information?

We Humans Are Visual Animals

Why Study Computer Graphics and Imaging?

Movies

Jurassic Park (1993)

Moments That Changed The Movies: Jurassic Park <u>https://www.youtube.com/watch?v=KWsbcBvYqN8</u>

Movies - 3D Geometry, Materials, Lighting

Toy Story (1995)

Movies - Image-Based Computer Graphics

The Matrix (1999)

Movies - Image-Based Computer Graphics

The Matrix (1999)

The Campanile

Debevec, Taylor and Malik SIGGRAPH 1996

https://www.pauldebevec.com/Campanile/

CS184/284A

Motion Capture

Andy Serkis in The Two Towers

CS184/284A

Ren Ng

Avatar (2009)

Interstellar (2014)

CS184/284A

Ren Ng

Computational Imaging - Event-Horizon Telescope

Computational Imaging - Event-Horizon Telescope

Games

Super Mario World

Child of Light (2014)

Child of Light (2014)

Ren Ng

Unreal Engine 5 Demo Realtime in PS5 (2020)

Visual Simulation

Visual Simulation

Driving simulator Toyota Higashifuji Technical Center da Vinci surgical robot Intuitive Surgical

Flight simulator, driving simulator, surgical simulator, ...

Virtual Reality

HTC Vive headset and controllers

Augmented Reality

Microsoft Hololens augmented reality headset concept

Augmented Reality

Mixed Reality

Apple Vision Pro

Ren Ng

Ikea - 75% of catalog is rendered imagery

Photograph

Simulation

CS184/284A

Avametric 2016

Tesla Model X concept (2012)

Tesla Model X production

Computer-Aided Design

SolidWorks

SketchUp

For mechanical, architectural, electronic, optical, ...

Architectural Design

Bilbao Guggenheim, Frank Gehry

Architectural Design

Heydar Aliyev Center, Zaha Hadid Architects

Visualization

Science, engineering, medicine, journalism, ...

Typography

The Quick Brown Fox Jumps Over The Lazy Dog

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 0123456789

Baskerville

Desktop metaphor

- Input: Keyboard, mouse
- Ouput: Cathode-ray tube

Ivan Sutherland, Sketchpad Light pen, vector display

Doug Engelbart Mouse

2D drawing and animation are ubiquitous in computing. Typography, icons, images, transitions, transparency, ...

2D drawing and animation are ubiquitous in computing. Typography, icons, images, transitions, transparency, ...

https://www.youtube.com/watch?v=YndL315tQq8

Digital Illustration

Meike Hakkart http://maquenda.deviantart.com/art/Lion-done-in-illustrator-327715059

Photography

NASA | Walter Iooss | Steve McCurry Harold Edgerton | NASA | National Geographic

Digital and Computational Cameras

Panaromic stitching, HDR photos, light field cameras, ...

Ubiquitous Imaging

Cameras everywhere

Imaging in Mapping

Maps, satellite imagery, street-level imaging,...

Imaging in Mapping

Maps, satellite imagery, street-level imaging,...

Imaging for Computer Vision

ImageNet: 15M images, 22K categories http://image-net.org

Imaging for Robotics

Google's "Arm Farm"

Neural Radiance Fields

CS184/284A

Ren Ng

Generative Visual AI

CS184/284A

Photoshop GenFill

Ren Ng

Generative Visual Al

CS184/284A

Photoshop GenFill

Ren Ng

Foundations of Graphics and Imaging

These applications require sophisticated theory and systems

Science and Mathematics

- Physics of light, color, optics, ...
- Math of curves, surfaces, geometry, perspective, ...

Technology and Systems

- Input devices, GPUs, displays, ...
- Cameras, lenses, sensors, ...

Art and Psychology

- Perception: color, stereo, motion, image quality, ...
- Art and design: composition, form, lighting, ...

Course Goals

Overview of core ideas in graphics and imaging

- Modeling the world, image synthesis
- 3D graphics: geometry, rendering, animation
- Image capture, manipulation and display

Acquire core concepts and skills

- Representations (geometry, images, transforms, ...)
- Algorithms (sampling, subdivision, ray-tracing, ...)
- Technology (GPUs, displays, cameras, ...)

Course Topics

Drawing Digital Images (Rasterization)

CS184/284A

Filtering and Sampling

No Jaggies

Modeling Geometry

Modeling Material Properties

Modeling Lighting

Monster's Inc., 2001

Modeling Lighting

Monster's U., 2013

Light Transport and Image Synthesis

Photograph (CCD) vs. computer rendering

How Do Cameras Work?

Glenn Derene, Popular Mechanics

Animation and Physical Simulation

Position Based Fluids, Macklin and Müller

Virtual Reality

Hands-On Learning

Course Assignments

1. Digital Drawing (2 weeks) 2. Geometry (2 weeks)

3. Ray-Tracing (2 weeks)

4. Animation (2 weeks)

Final Project

Project Competition

- 4 weeks, let your creativity take flight! (we will have suggested projects)
- Proposal; checkpoint; presentation, video, report

Credit: Pixar, Up

Final Project - Examples

Ding, Qiang, Zhang

Bhadra, Tsai, Ngan

Credit: Pixar, U

Final Project - Examples

Final Project - Examples

Course Logistics

Prerequisites

Math

- Vectors, matrices, basic linear algebra
- Helpful: exposure to statistics, signal processing, Fourier transform

Programming

- Data structures (CS61B)
- Fluency with development environment, debugging, etc.
- Fluency with C and C++

Enrollment

- Past years, high turnover from wait list
- Questions about enrollment:
 - Undergraduate students (CS184): ask scheduler (Cindy Conners) cs-scheduling@berkeley.edu
 - Graduate students (CS284A): contact instructors on Ed
 - Concurrent enrollment: in process; consult your CE coordinator, and check course Ed for updates

Course Schedule

cs184.eecs.berkeley.edu

Full schedule for class will be on website soon

Note class calendar at bottom for office hours, homework, parties, etc.

<u>cs184/284a</u>	policies staff readings resources	\$	🕻 🕞 🕙 yirenng	
			Berkeley cs184/284a	
		Computer Graphics	Computer Graphics and Imaging	
date	lecture	discussion	events	
Guio	View last semester's website for a preview of what's to come	Add cs184/284A on Piazza		
Tue Jan 22	1. Introduction			
Thu Jan 24	2. Drawing Triangles			
Tue Jan 29	3. Sampling and Aliasing	Disc 1: C++/Images as Data/Convolution	Assignment 1 released	
Thu Jan 31	4. Transforms 🔳			
Tue Feb 5	5. Texture Mapping	Disc 2: Sampling, Transforms, and Textures		
Thu Feb 7	6. The Rasterization Pipeline			
Tue Feb 12	7. Intro to Geometry, Splines & Bezier Curves	Disc 3: Splines & Curves	Assignment 1 due Assignment 2 released	
Thu Feb 14	8. Mesh Representations and Geometry Processing			
Tue Feb 19	9. Ray Tracing	Disc 4: Halfedges & Ray Intersections		

Course Schedule - Important Dates

See course website for dates and more info.

Exams

- Monday March 18th 7:00 9:00 pm
- Monday April 22nd 7:00 9:00pm

Final Project Presentations

• Tentatively scheduled for Thu May 2 / Fri May 3

Please check calendars and save these dates now!

 Send a private Ed message to staff if you have an exceptional circumstance

Lecture Slides

cs184.eecs.berkeley.edu

Lecture slides and instructor/TA/ student discussions on the web are the primary course reference materials

Slide comments and discussion

edstem.org

You should be added already (if not, please sign up)!

For logistics and general communication / discussion

- Please use Ed instead of email
- But intellectual discussions about content should primarily go on website as slide comments

Webcasting

Lecture will be recorded this semester

- Screen capture and audio only
- Videos will be linked from the course website

Sections start next week, and TAs will give a primer on C++ and building class projects

Resources

Lectures will be primary source

Textbook reference material (optional):

- Fundamentals of Computer Graphics by P. Shirley, S. Marschner, et al.
- Computer Graphics: Principles and Practice (3rd Edition)
 by Hughes, van Dam, et al.
- Physically Based Rendering, Third Edition: From Theory to Implementation by Pharr, Jakob and Humphreys

Other optional reading resources on class website

CS184/284A

Learning, Grading, Collaboration & Culture

Goals:

- Enable you to increase focus on learning rather than assessment
- Encourage your learning through collaboration
- Entrust you with maintaining academic integrity

Main Ideas (details on course website — please review):

- The class is not graded on a curve.
- Collaboration in pairs encouraged on homework assignments.
- Final project in teams of four.
- Two in-person exams.

Details

• Please read the Policies page on the course website; ask questions on Ed.

Course Deliverables and Assessment

CS184: your course grade is out of 100 total points

- Four homework assignments, 12.5 points each
 - Pair projects encouraged. Programming and written reports.
- Two in-person, closed-book exams, 10 points each
 - Check dates on website schedule. No exam during Finals Week.
- Final project, 25 points
 - In teams of four, with final presentation, video, report.
- Participation, 5 points
 - Attend lectures/discussion

CS284A students: Project is 40% of grade, remainder normalized.

Late Days Policy

You have 8 late days for the semester

- Extend a homework assignment deadline (not the final project) by 24 hours using one late day.
- No more than 4 late days on last homework (#4)
- If you do not have remaining late days, 1 point penalty per day.
- Late days are meant to be used for personal schedule conflicts, illness, submission issues and other unforeseen circumstances.
- For exceptional circumstances, contact staff or see website for extension request form.

Participation Policy

Every week, starting week 2, you are eligible for up to 2 participation credits.

- 1 credit for attending lecture
- 0.75 credits for attending discussion, and
- 0.5 credit for making one well thought-out comment on lecture slides on the website

Note that you must earn participation credits week-toweek and cannot "make up" participation at the end of the semester

Policy on Use of Generative-AI Tools

You are welcome to use AI tools for coding and writing reports. But a few rules / comments:

- Must describe use and what you learned
- Exams are in-person, closed-book. Likely will have coding questions
- Current AI tools are not perfect, so supervise your tools closely if you use them
- Low or minimal-effort use of AI tools may result in low or no partial credit
- We encourage you to explore AI tools in a way that augments rather than reduces your learning in class

What We Are Looking For In Slide Comments

Try to explain the slide (as if teaching your classmate to study for an exam)

• "Ren said this, but if you think about it this way it is much clearer"

Explain what is confusing you

• "What I was totally confused about here was..."

Challenge classmates with a question

• For example, make up a question you think might be on an exam

Provide a link to an alternative explanation

• "This site has a really good animation of pre-filtering to avoid aliasing"

Mention real-world examples

• For example, describe what default interpolation functions are used in iOS.

Constructively respond to another student's question

• "@nojaggies, are you sure that is correct? I thought that Ren said..."

It is OK, and even encouraged, to address the same topic (or repeat someone else's summary, explanation or idea) in your own words

• "@cornellbox's point is that subdivision is also used to..."

CS184/284A

Class Philosophy

We want to build an active, engaged class community.

Come to class, participate in lecture, discussion, office hour parties, homework parties.

Practice cooperative, supportive learning.

Contribute on the website.

Uphold academic honor individually and collectively.

Inclusive Classroom

We are committed to creating a learning environment welcoming and supportive of all students. Towards this goal, we call on our class community to:

- Respect, welcome and learn from each other as individuals with unique backgrounds, perspectives and identities.
- Collaboration and team learning are encouraged, and will be supported through class staff and resources.
- Homework assignments and final project are a great way to meet new people and make friends; work on building trust and leveraging each other's unique strengths.
- If you feel that your learning is negatively affected by your experiences outside of class (e.g. family matters, current events), please don't hesitate to come and talk with the instructor and/or staff. We want to support you.

Course Roadmap

Rasterization Pipeline

Core Concepts

- Sampling
- Antialiasing
- Transforms

Geometric Modeling

Core Concepts

- Splines, Bezier Curves
- Topological Mesh Representations
- Subdivision, Geometry Processing

Lighting & Materials

Core Concepts

- Measuring Light
- Unbiased Integral Estimation
- Light Transport & Materials

Cameras & Imaging

Rasterization Transforms & Projection Texture Mapping Visibility, Shading, Overall Pipeline Intro to Geometry **Curves and Surfaces Geometry Processing Ray-Tracing & Acceleration Radiometry & Photometry** Monte Carlo Integration **Global Illumination & Path Tracing Material Modeling**

Questions?

Acknowledgments

Thanks to Angjoo Kanazawa, Pat Hanrahan, Kayvon Fatahalian, Keenan Crane, Mark Pauly and James O'Brien for presentation resources.