Lecture 13:

Global lllumination &
Path Tracing

Computer Graphics and Imaging
UC Berkeley CS184/284A



Course Roadmap

Rasterization Pipeline

Core Concepts
e Sampling
e Antialiasing
 Transforms

Geometric Modeling

Core Concepts
e Splines, Bezier Curves
 Topological Mesh Representations
e Subdivision, Geometry Processing

Lighting & Materials

Core Concepts
e Measuring Light
e Unbiased Integral Estimation
e Light Transport & Materials

Cameras & Imaging

Rasterization

Transforms & Projection

Texture Mapping

Visibility, Shading, Overall Pipeline

Intro to Geometry
Curves and Surfaces
Geometry Processing

Ray-Tracing & Acceleration

Radiometry & Photometry

Monte Carlo Integration

Global lllumination & Path Tracing

Material Modeling
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Inter-Reflections = Global lllumination
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Visual Richness from Indirect Lighting




Visual Richness from Complex Lighting

Point Light Environment Map Lighting
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Visual Richness from Complex Materials

Credit: Bertrand Benoit. “Sweet Feast,” 2009. [Blender /VRay]



Cornell Box — Photograph vs Rendering

Photograph (CCD) vs. global illumination rendering



Ray Tracer Samples Radiance Along A Ray

~—O0— } I
/l\ :_\Q/_(. :_\0/1.
/l\ /l\
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/l\

Viewing
window

Pixel
Traced ray

Viewpoint

The light entering the pixel is the sum total of the light reflected
off the surface into the ray’s (reverse) direction
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Mini-Intro To Material Reflection




Reflection

Definition: reflection is the process by which light
incident on a surface interacts with the surface such
that it leaves on the incident (same) side without
change in frequency
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Categories of Reflection Functions

A
ldeal specular \/

® Perfect mirror reflection

ldeal diffuse K\

® Equal reflection in all
directions

A
Glossy specular \O
® Majority of light reflected |

near mirror direction

Retro-reflective x
® Light reflected back towards

light source

Diagrams illustrate how light from
incoming direction is reflected in
various outgoing directions.



Materials: Mirror




Materials: Diffuse




Materials: Gold




Materials: Plastic

SRR 5

- Sy



Materials: Red Semi-Gloss Paint




Materials: Ford Mystic Lacquer Paint




Reflection at a Point

dL (x,w )

Differential irradiance incoming: dF(w;) = L(w;) cos 0; dw;

Differential radiance exiting (due to dF'(w;)) dL,(w;)
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BRDF

Definition: The bidirectional reflectance distribution function

(BRDF) represents how much light is reflected into each
outgoing direction w, from each incoming direction

dL (x,m )

NB: w; points away
from surface rather
than into surface, by
convention.

l AL, (w,) AL, (w,) 1
fr (w@ - wr) N dEZ (wz) Lz (wz) COS (9@ dwi ST
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The Reflection Equation

L, (p7 w?“) — f?“ (p7 Wi —7 WT) L; (p7 wi) cos 0; dw;
H2
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Solving the Reflection Equation

L.(p,w,) = . fr(p,w; = wy) Li(p,w;) cosB; dw;
Monte Carlo estimate:
¢ Generate directions w; sampled from some distribution p(w)
® Choices for p(w)
® Uniformly sample hemisphere
® Importance sample BRDF (proportional to BRDF)
® Importance sample lights (sample position on lights)
® Compute the estimator
% ZN: fr(p,w; = wr) Li(p,w;) cos b,
j=1

p(w;) Ren Na
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Recall: Hemisphere vs Light Sampling

Sample hemisphere uniformly  Sample points on light
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Direct Lighting Pseudocode (Uniform Random Sampling)

DirectLightingSampleUniform(p, wo)
wi = hemisphere.sampleUniform(); // uniform random sampling
pdf = 1.0 / (2 * pi);

if (scene.shadowIntersection(p, wi)) // Shadow ray
return 0;

else
L = lights.radiance(intersect(p, wi), -wi);
return L * p.brdf(wi, wo) * costheta / pdf;
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Direct Lighting Pseudocode (Importance Sampling of BRDF)

DirectLightingSampleBRDF(p, wo)

wi, pdf = p.brdf.sampleDirection(wo); // Imp. Sample BRDF

if (scene.shadowIntersection(p, wi)) // Shadow ray
return 0;

else

L = lights.radiance(intersect(p, wi), -wi);
return L * p.brdf(wi, wo) * costheta / pdf;
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Direct Lighting Pseudocode (Importance Sampling of Lights)

DirectLightingSampleLights(p, wo)
L, wi, pdf = lights.sampleDirection(p); // Imp. sampl lights

if (scene.shadowIntersection(p, wi)) // Shadow ray
return 0;

else
return L * p.brdf(wi, wo) *costheta / pdf;

// Note: only one random sample over all lights.
// Assignment 3-1 asks you to, alternatively, loop over
// multiple lights and take multiple samples
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Global lllumination:
Deriving the Rendering Equation




Again: Reflection Equation

L, (p7 w?“) — f?“ (p7 Wi — WT) L; (p7 wi) cos 0; dw;
H2
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Challenge: This is Actually A Recursive Equation

Reflected radiance depends on incoming radiance

v v

L?“ (p7 w?") — f?“ (p7 Wi —7 wfr‘) LZ (p7 wz) COS (97, dwz
H?2

But incoming radiance depends on reflected radiance
(at another point in the scene)
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Transport Function & Radiance Invariance

Definition: the Transport Function, tr(p, w), returns the first
surface intersection point in the scene along ray (p,w)

Radiance invariance along rays: L, (tr(p,w;), —w;) = L;(p, w;)

“Radiance arriving at p from direction W; is
equal to the radiance leaving p’ in direction —-w; "
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The Rendering Equation

Re-write the reflection equation:

LO(p7 wo) — Le(p7 WO) -+ f’r (p7 Wi — wo) Lz (p7 wi) COS 92 dwi
g2

Using the transport function: L;(p,w;) = L, (tr(p,w;), —w;)

The Rendering Equation

Lo(p7 wo) = L, (p7 wo) T f’r’ (p7 Wi — wo) Lo(tr(pa wi)a _wi) COS (97, dwi

H2

Note: recursion is now explicit

How to solve?
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Light Transport Operators



Operators Are Higher-Order Functions

Functions:

fi9:(z,w) =R

Operators are higher-order functions:
P:((z,w) > R) = ((x,w) > R)
P(f) =y

® Take a function and transform it into another function
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Linear Operators

® Linear operators act on functions like matrices act on vectors
hz) = (L(f))(x)
® They are linear in that:

L(af 4 bg) = aL(f) + bL(g)

® Examples of linear operators:

CS184/284A Ren Ng



Light Transport Functions & Operators

* Emitted radiar.\ce function | o L.(p,w)
(all surface points & outgoing directions)
(il surfoce pomts & miout directiong  L1(P12)s Lo(p.)
° Transp.ort funct.ion - r?turns the first tr(p, w)
scene intersection point along given ray
e Reflection operator:
R(g)(p,wo) = | fr(pswi = wo) g(p,wi) cosb; dw;
R(L) =L,
e Transport operator: T(f)(p,wo) = ftr(p,w), —w)
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Reflection Operator

B

B

Incoming radiance |, -y Outgoing radiance
(surface light field)

(surface light field)

f?”‘(pawi —7 Wo) g(pawi) cos 0; dw;

CS184/284A Ren Ng



Transport Operator

P | e

Outgoing radiance | Incoming radiance
(surface light field) (surface light field)

NN
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Rendering Equation in Operator Notation

La(pawa) — Le(pvwo) T f’r’(pawi — w()) Lo(tr(pvwi)a _wi) COS 9@ dwi
H?2

Lo=Le+ (RoT)(L,)

Define full one-bounce light transport operator: K = Ro T

Lo= L.+ K(L,)
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Solving the Rendering Equation



Solving the Rendering Equation

® Rendering equation:
| = Le | K(L) L is outgoing reflected
(I - K)(L) = Lk

® Solution desired:

L=(I-K)" (L)

® How to solve?
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Solution Intuition

For scalar functions, recall:

1

1l —=x

—1l4z+a*+2°+---
converges for — 1 <x <1

Similarly, for operators, it is true that

1
[ - K) ! =
( ) 7

converges for ||K|| < 1

=+ K+ K+ K°+ -

(Neumann series)

where ||K|| < 1 means that the “energy” of the radiance function
decreases after applying K. This is intuitively true for valid scene

models based on energy dissipation (though not trivial to prove,
see Veach & Guibas).
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Formal Solution

Neumann series:

(I —K) ' =

Check:
(I —K)o(I—-K)™*
— (I -K)o(I+K+K*+K>+--.)
=+ K+K* 4 )= (K+ K" +---)
— ]

Again, energy dissipation makes it possible to show that the series
converges.
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Rendering Equation Solution

L=(I-K) (L)
= (I+K+K*+K°+---)(L.)

= Le + K(Le) + K°(Le) + K°(Le) + - -
oo ! !

Emitted 1-bounce 2-bounce 3-bounce

Intuitive: Sum of successive bounces of light

This calculates the steady-state surface light field over the scene.
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Attendance Time

If you are seated in class, go to this form
and sign in:

® https://bit.ly/184attendance

Notes:

® Time-stamp will be taken when you
submit form.
Do it now, won't count later.

e Don’t tell friends outside class to fill it
out now, because we will audit at
some point in semester.

® Failing audit will have large negative
consequence. You don’t need to,
because you have an alternative!
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Light Paths



1-Bounce Path Connecting Ray to Light

Camera Light
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1-Bounce Paths Connecting Ray to Light

Camera Light
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2-Bounce Path Connecting Ray to Light

Camera Light
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2-Bounce Paths Connecting Ray to Light

Camera Light
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2-Bounce Paths Connecting Ray to Light

Camera Light
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3-Bounce Paths Connecting Ray to Light

CS184/284A Ren Ng



3-Bounce Path Connecting Ray to Light

Camera Light
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3-Bounce Path Connecting Ray to Light

Camera Light
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3-Bounce Path Connecting Ray to Light

Camera Light
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3-Bounce Path Connecting Ray to Light

Camera Light
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3-Bounce Path Connecting Ray to Light

Camera Light
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3-Bounce Path Connecting Ray to Light

Camera Light
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Global lllumination Rendering

Sum over all paths of all lengths
Challenges:

® How to generate all possible paths?

® How to sample space of paths efficiently?
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Sum Over Paths



Try 1: Monte Carlo Sum over Paths

EstRadianceIn(x, w)
p = intersectScene(x, w);
L = p.emittedLight(-w);
wi, pdf = p.brdf.sampleDirection(-w);
L += EstRadianceIn(p, wi) * p.brdf(wi, -w) * costheta / pdf;
return L;

® Note:
® I[mportance sampling BRDF
® |nfinite recursion!
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Problem: Infinite Bounces of Light

How to integrate over infinite dimensions?

® Note: if energy dissipates, contributions from
higher bounces decrease exponentially

ldea: just use N bounces

® Problem: biased! No matter how many Monte
Carlo samples, never see light taking N+1 to
infinity bounces
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Russian Roulette



Russian Roulette - Unbiased Random Termination

ldea: probabilistic termination of recursion

® At every recursive step (every bounce of light),
probabilistically choose to stop the recursion

® Specifically, continue with probability Prr

® This goes from an infinite recursion, to a finite
number of recursive function calls (how many?)

® But won't this bias our Monte Carlo integral
estimate of the infinite bounces of light?

® Surprisingly, nol We can adjust the Monte Carlo
estimator so that it remains unbiased (next slide)
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Russian Roulette: Unbiased Random Termination

New estimator: evaluate original estimator with probability
Prr, reweighted. Otherwise ignore.

{ 2 with probability p,;

pI'I'

Let X,, = .
0, otherwise

Same expected value as original estimator:

E[Xp] = pu E pf (1 - pu) E[0] = E[X]

Want to choose P:r considering Monte Carlo efficiency
® Terminate if expensive and/or we expect low contribution

® |n path tracing, expensive to recursively trace path. Increase
termination probability if brdf is low in next bounce direction
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An unbiased, finite estimator for
an infinite dimensional integral!




Try 2: Russian Roulette Monte Carlo over Paths

EstRadianceIn(x, w)
p = intersectScene(x, w);
L = p.emittedLight(-w);
wi, pdf = p.brdf.sampleDirection(-w);

cpdf = continuationProbability(p.brdf, wi);
if (random@l() < cpdf)

L += EstRadianceIn(p, wi)

// Russian Roulette

// Recursion
* p.brdf(wi, -w) * costheta / pdf / cpdf;
return L;

// Unbiased, computation terminates, but still extremely noisy!
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Recall: Importance Sampling

Solid angle sampling Light area sampling
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Path Tracing



Path Tracing Overview

Terminate paths randomly with Russian Roulette

Partition the recursive radiance evaluation. At each point
on light path

® Direct lighting — non-recursive, importance sample lights

® |ndirect lighting — recursive, importance sample BRDF
Monte Carlo estimate for each partition separately

® Possible to take just one sample for each

® Assume: 100s - 1000s of paths sampled per pixel
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Partitioning the Rendering Equation
AN ! /
— Q

= EstRadianceOut(p, -w)

EstRadianceIn(x, w)
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Partitioning the Rendering Equation
@)
— P l &

Need to sum paths going through

p representing 0, 1, 2, 3, ...
bounces of light

S

P
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Partitioning the Rendering Equation
@)
— P l &

0-bounce: emitted at p toward —w

S

P

At p, consider light contributions from paths of varying bounce-length
e 0-bounce: light emitted from p (p is on a light source)
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Partitioning the Rendering Equation

Q)
/l\

~

1-bounce: from light to p to —w
("direct lighting”)

At p, consider light contributions from paths of varying bounce-length
e 0-bounce: light emitted from p (p is on a light source)
e 1-bounce: from light to p to x (“direct illumination”)
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Partitioning the Rendering Equation
@
— /) l &

>1-bounce: from light to p’ to p to —w
(“indirect lighting”)

< ¢

P

At p, consider light contributions from paths of varying bounce-length
e 0-bounce: light emitted from p (p is on a light source)
e 1-bounce: from light to p to x (“direct illumination”)
e >1-bounce: from light to at least one other point to p to x (“indirect illumination”)
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Consider Evaluation of >1 Bounce of Light

>1-bounce at p to —w \o//

equals = 1-bounce
toward p from all
other points

(e.g. p’ and p”)

i v

P

At p, consider light contributions from paths of varying bounce-length
e 0-bounce: light emitted from p (p is on a light source)
e 1-bounce: from light to p to x (“direct illumination”)
e >1-bounce: from light to at least one other point to p to x (“indirect illumination”)
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Path Tracing Pseudocode

EstRadianceIn(x, w) // incoming at x from dir w
p = intersectScene(x, w);

return ZeroBounceRadiance(p, -w)
+ AtLeastOneBounceRadiance(p, -w);

ZeroBounceRadiance(p, wo) // outgoing at p in dir wo
return p.emittedLight(wo);

CS184/284A Ren Ng



Path Tracing Pseudocode

AtLeastOneBounceRadiance(p, wo) // out at p, dir wo
L = OneBounceRadiance(p, wo); // direct illum
wi, pdf = p.brdf.sampleDirection(wo); // Imp. sampling
p’ = intersectScene(p, wi);
cpdf = continuationProbability(p.brdf, wi, wo);
if (random@l() < cpdf) // Russ. Roulette

L += AtLeastOneBounceRadiance(p’, -wi) // Recursive est. of

* p.brdf(wi, wo) * costheta / pdf / cpdf;// indirect illum
return L;

OneBounceRadiance(p, wo) // out at p, dir wo
return DirectLightingSampleLights(p, wo); // direct illum
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Direct Lighting Pseudocode (Lights)

DirectLightingSamplingLights(p, wo)
L, wi, pdf = lights.sampleDirection(p); // Imp. sampling

if (scene.shadowIntersection(p, wi)) // Shadow ray
return 0;

else
return L * p.brdf(wi, wo) * costheta / pdf;

// Note: only one random sample over all lights.
// Assignment 3-1 asks you to, alternatively, loop over
// multiple lights and take multiple samples (later slide)

CS184/284A Ren Ng



Direct Lighting (0 and 1 Bounce Only)
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Path Tracing (All Bounces of Light)
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Summary of Intuition on Global
lllumination & Path Tracing



Summary of Intuition on G.l. & P.T.

® Operator notation leads to insight that solution is
adding successive bounces of light

® Trace N paths through a pixel, sample radiance

® Build paths by recursively tracing to next surface
point and choosing a random reflection direction. At
each surface, sum emitted light and reflected light

® How to terminate paths? We use Russian Roulette to
probabilistically stop the recursion

® How to reduce noise? Use importance sampling in
choosing random direction. Two ways: importance
sample the lights, and importance sample the BRDF.
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Implementation Notes



Multiple Light Sources

Consider multiple lights in direct lighting estimate
One strategy:

® Loop over all N lights, sum Monte-Carlo estimates
for each light

® For each light: compute Monte Carlo estimate with
M samples taken with importance sampling

Needs N * M samples

This is what the assignment asks you to implement.
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Multiple Light Sources (Single Sample)

Consider random sampling of multiple lights with a single
sample

® Randomly choose light i, with probability pi

® Randomly sample over that light’s directions, with
probability pL

® Probability of choosing sample is (pi * pL)

® Weight the lighting calculation by 1/(pi * pL)

® |s this estimator unbiased? Yes!

® How would you importance sample intelligently?

Can of course average N such samples
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Point Lights / Ideal Specular Materials - Issues

Sampling problems

® When sampling directions randomly, we have zero
probability of matching exact direction of a point light
or mirror reflection / specular refraction

Remedy

® |n direct lighting, importance sample point lights by
generating a single sample pointing directly at the
light (only one sample needed)

® |n indirect lighting, importance sample specular
BRDFs by generating a single sample point directly
along the specular refraction / transmission direction
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Numerical Precision Issues

€=(1930.420,1973.505), R=1 ()

Consider calculating
ray-intersection with
a distant sphere

(0,0)



Numerical Precision Issues

C=(1930.420,1973.505) R=1

True Intersection: (1929.7203..., 1972.7897...)
Computed Intersection: (1930.4196..., 1973.5054...)



Noisy Shadows

%

Surface . '

\‘ t/ Shadow ray falsely intersects
Computed surface intersection same surface




. Noisy shadows bei:ause of
floating point precision problems



Floating-Point Precision Remedies

1. double (fp6é4) rather than float (fp32)
® 53-bits of precision instead of 24-bits
® |[ncrease memory footprint
2. Ilgnore re-intersection with the last object hit
® Only works for flat objects (e.g. triangles)
® No help if model has coincident triangles
3. Offset origin along ray to ignore close intersections

® Hard to choose offset that isn‘t too small or too big
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Remedy: Project Intersection Point to Surface

~ Project intersection point to the
g closest point on the surface




Good Scenes for Path Tracing (Diffuse, Sky Lighting)

ARNOLD - GLOBAL ILLUMINATION RENDERER -

KikeOhiva@hotmail.com

M. Fajardo, Arnold Path Tracer
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Good Scenes for Path Tracing (Diffuse, Sky Lighting)

M. Fajardo, Arnold Path Tracer
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Good Scenes for Path Tracing (Diffuse, Sky Lighting)

M. Fajardo, Arnold Path Tracer

CS184/284A Ren Ng



Good Scenes for Path Tracing (Diffuse, Sky Lighting)

Street scene 1
1536x654, 16 paths/pixel, 2 bounces, 250,000 faces, 18 min., dual PIII-800

M. Fajardo, Arnold Path Tracer
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A Challenging Scene for Path Tracing — Why?

I
()
=
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=
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T
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-

1000 paths / pixel
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Things to Remember

Global illumination challenge: recursive light transport
Reflection & rendering equations, operator notation
Neumann solution of rendering equation

® Sum successive bounces of light, infinite series

Path tracing

® Russian Roulette for unbiased finite estimate of
infinite series (infinite dimensional integral)

® Partition into direct and indirect illumination
® Importance sampling of lighting and BRDF
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