Lecture 17: Introduction to **Physical Simulation**

Computer Graphics and Imaging UC Berkeley CS184/284A

The majority of these slides courtesy of James O'Brien and Keenan Crane.

Newton's Law

CS184/284A

Mass Acceleration

Physically Based Animation

Generate motion of objects using numerical simulation

CS184/284A

Example: Cloth Simulation

Example: Fluids

Macklin and Müller, Position Based Fluids TOG 2013

Particle Systems

Single particles are very simple

Large groups can produce interesting effects

Supplement basic ballistic rules

- Gravity
- Friction, drag
- Collisions
- Force fields
- Springs
- Interactions
- Others...

CS184/284A

Karl Sims, SIGGRAPH 1990

Mass + Spring Systems: Example of Modeling a Dynamical System

Example: Mass Spring Rope

Credit: Elizabeth Labelle, <u>https://youtu.be/Co8enp8CH34</u>

Example: Hair

Example: Mass Spring Mesh

Huamin Wang, Ravi Ramamoorthi, and James F. O'Brien. "Data-Driven Elastic Models for Cloth: Modeling and Measurement". ACM Transactions on Graphics, 30(4):71:1–11, July 2011. Proceedings of ACM SIGGRAPH 2011, Vancouver, BC Canada.

A Simple Spring

Idealized spring

•
$$\mathbf{f}_{a \to b}$$

Force pulls points together

Strength proportional to displacement (Hooke's Law)

k_s is a spring coefficient: stiffness

Problem: this spring wants to have zero length

CS184/284A

$f_{a \to b} = k_{s}(b - a)$ $f_{b \to a} = -f_{a \to b}$

Non-Zero Length Spring

Spring with non-zero rest length

$$\boldsymbol{f}_{a \rightarrow b} = k_{s} \frac{\boldsymbol{b} - \boldsymbol{a}}{||\boldsymbol{b} - \boldsymbol{a}||} (||\boldsymbol{b}|)$$

Problem: oscillates forever

CS184/284A

b - a || - l)Rest length

Dot Notation for Derivatives

If x is a vector for the position of a point of interest, we will use dot notation for velocity and acceleration:

> $\boldsymbol{\mathcal{X}}$ $\dot{x} = v$

 $\ddot{x} = a$

CS184/284A

Simple Motion Damping

Simple motion damping

Behaves like viscous drag on motion

 \underline{f} \underline{b} $f = -k_d \mathbf{b}$

- Slows down motion in the direction of motion
- k_d is a damping coefficient

Problem: slows down all motion

 Want a rusty spring's oscillations to slow down, but should it also fall to the ground more slowly?

CS184/284A

Internal Damping for Spring

Damp only the internal, spring-driven motion

Viscous drag only on change in spring length

 Won't slow group motion for the spring system (e.g. global translation or rotation of the group)

Spring Constants

Consider two "resolutions" to model a single spring

Problem: constant k_s produces different force on bottom spring for these two different discretizations

CS184/284A

Spring Constants

Problem: constant k_s gives inconsistent results with different discretizations of our spring/mass structures

- E.g. 10x10 vs 20x20 mesh for cloth simulation would give different results, and we want them to be the same, just higher level of detail
- Solution:
 - Change in length is not what we want to measure
 - We want to consider the strain = change in length as fraction of original length $\epsilon = \frac{-}{l_0}$
 - Implementation 1: divide spring force by spring length

• Implementation 2: normalize k_s by spring length **CS184/284A**

Sheets

Blocks

Others

CS184/284A

Behavior is determined by structure linkages

This structure will not resist shearing

This structure will not resist out-of-plane

Behavior is determined by structure linkages

but has anisotropic bias

bending either...

This structure will resist shearing

This structure will not resist out-of-plane

Behavior is determined by structure linkages

Less directional bias.

bending either...

This structure will resist shearing.

This structure will not resist out-of-plane

They behave like what they are (obviously!)

Less directional bias.

bending

This structure will resist shearing.

This structure will resist out-of-plane

Red springs should be much weaker

Example: Mass Spring Dress + Character

Particle Simulation

Euler's Method

Euler's Method (a.k.a. Forward Euler, Explicit)

- Simple iterative method
- Commonly used
- Very inaccurate
- Most often goes unstable

$$oldsymbol{x}^{t+\Delta t} = oldsymbol{x}^t + \Delta$$
 $oldsymbol{\dot{x}}^{t+\Delta t} = oldsymbol{\dot{x}}^t + \Delta$

 $t \dot{x}^t$

t \ddot{r}^t

Euler's Method - Errors

With numerical integration, errors accumulate Euler integration is particularly bad

X

Witkin and Baraff

Ren Ng

Errors and Instability

Solving by numerical integration with finite differences leads to two problems

Errors

- Errors at each time step accumulate. Accuracy decreases as simulation proceeds
- Accuracy may not be critical in graphics applications

Instability

- Errors can compound, causing the simulation to diverge even when the underlying system does not
- Lack of stability is a fundamental problem in simulation, and cannot be ignored

CS184/284A

Instability of Forward Euler Method

Forward Euler (explicit)

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \Delta t \, \boldsymbol{v}(\boldsymbol{x}, t)$$

Two key problems:

- Inaccuracies increase as time step Δt increases
- Instability is a common, serious problem that can cause simulation to diverge

Witkin and Bar aff

Instability Example (Spring)

 $f_{a \to b} = k_s (b - a)$

When mass is moving inward:

- Force is decreasing
- Each time-step overestimates the velocity change (increases energy)

When mass gets to origin

Has velocity that is too high, now traveling outward

When mass is moving outward

- Force is increasing

 Each time-step underestimates the velocity change (increases energy) At each motion cycle, mass gains energy exponentially

CS184/284A

Combating Instability

Some Methods to Combat Instability

Modified Euler

Average velocities at start and endpoint

Adaptive step size

- Compare one step and two half-steps, recursively, until error is acceptable
- Implicit methods
 - Use the velocity at the next time step (hard)

Position-based / Verlet integration

 Constrain positions and velocities of particles after time step

CS184/284A

Modified Euler

Modified Euler

- Average velocity at start and end of step
- OK if system is not very stiff (k_s small enough)
- But, still unstable

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \frac{\Delta t}{2} \left(\dot{\boldsymbol{x}}^t + \dot{\boldsymbol{x}}^t \right)$$
$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \ \dot{\boldsymbol{x}}^t$$

Adaptive Step Size

Adaptive step size

- Technique for choosing step size based on error estimate
- Highly recommended technique
- But may need very small steps!

Repeat until error is below threshold:

- Compute x_T an Euler step, size T
- Compute x_{T/2} two Euler steps, size T/2
- Compute error $\| \mathbf{x}_T \mathbf{x}_{T/2} \|$
- If (error > threshold) reduce step size and try again

Slide credit: Funkhouser

Implicit Euler Method

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step

$$oldsymbol{x}^{t+\Delta t} = oldsymbol{x}^t + \Delta t \, \dot{oldsymbol{x}}^{t+\Delta t}$$

 $\dot{oldsymbol{x}}^{t+\Delta t} = \dot{oldsymbol{x}}^t + \Delta t \, \ddot{oldsymbol{x}}^{t+\Delta t}$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t})$$

 $\ddot{\boldsymbol{x}}^{t+\Delta t} = \mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t})$

nods r the current step

Δt

Δt

$^{+\Delta t}, t + \Delta t)$ $^{+\Delta t}, t + \Delta t)$

Implicit Euler Method

Implicit methods

- Informally called backward methods
- Use derivatives in the future, for the current step

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \Delta t \ \mathsf{V}(\boldsymbol{x}^{t+\Delta t},$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \; \mathsf{A}(\boldsymbol{x}^{t+\Delta t},$$

- Solve nonlinear problem for $\, oldsymbol{x}^{t+\Delta t}$ and $\, \dot{oldsymbol{x}}^{t+\Delta t}$
- Use root-finding algorithm, e.g. Newton's method
- Can be made unconditionally stable

$\dot{\boldsymbol{x}}^{t+\Delta t}, t+\Delta t$ $\dot{\boldsymbol{x}}^{t+\Delta t}, t+\Delta t$
Position-Based / Verlet Integration

Idea:

- After modified Euler forward-step, constrain positions of particles to prevent divergent, unstable behavior
- Use constrained positions to calculate velocity
- Both of these ideas will dissipate energy, stabilize

Pros / cons

- Fast and simple
- Not physically based, dissipates energy (error)
- Highly recommended (assignment)

nergy (error) t)

Position-Based / Verlet Integration

Algorithm 1 Position-based dynamics

1: for all vertices *i* do initialize $\mathbf{x}_i = \mathbf{x}_i^0$, $\mathbf{v}_i = \mathbf{v}_i^0$, $w_i = 1/m_i$ 2: 3: end for 4: **loop** for all vertices *i* do $\mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t w_i \mathbf{f}_{ext}(\mathbf{x}_i)$ 5: for all vertices *i* do $\mathbf{p}_i \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i$ 6: for all vertices *i* do genCollConstraints($\mathbf{x}_i \rightarrow \mathbf{p}_i$) 7: **loop** solverIteration **times** 8: projectConstraints($C_1, \ldots, C_{M+M_{Coll}}, \mathbf{p}_1, \ldots, \mathbf{p}_N$) 9: end loop 10: for all vertices *i* do 11: $\mathbf{v}_i \leftarrow (\mathbf{p}_i - \mathbf{x}_i) / \Delta t$ 12: 13: $\mathbf{x}_i \leftarrow \mathbf{p}_i$ end for 14: velocityUpdate($\mathbf{v}_1, \ldots, \mathbf{v}_N$) 15: 16: **end loop**

Position-Based Simulation Methods in Computer Graphics Bender, Müller, Macklin, Eurographics 2015

CS184/284A

Particle Systems

Particle Systems

Model dynamical systems as collections of large numbers of particles

Each particle's motion is defined by a set of physical (or non-physical) forces

Popular technique in graphics and games

- Easy to understand, implement
- Scalable: fewer particles for speed, more for higher complexity

Challenges

- May need many particles (e.g. fluids)
- May need acceleration structures (e.g. to find nearest particles for interactions)

CS184/284A

Particle System Animations

For each frame in animation

- [If needed] Create new particles
- Calculate forces on each particle
- Update each particle's position and velocity
- [If needed] Remove dead particles
- Render particles

Particle System Forces

Attraction and repulsion forces

- Gravity, electromagnetism, ...
- Springs, propulsion, ...
- **Damping forces**
 - Friction, air drag, viscosity, ...
- Collisions
 - Walls, containers, fixed objects, ...
 - Dynamic objects, character body parts, ...

Already Discussed Springs

Internally-damped non-zero length spring

$$f_{a \to b} = k_s \frac{b - a}{||b - a||} (||b - a|| - b)$$
$$-k_d \frac{b - a}{||b - a||} (\dot{b} - \dot{a}) \cdot \frac{b}{||b|}$$

CS184/284A

Simple Gravity

Gravity at earth's surface due to earth

- F = -mg
- m is mass of object
- g is gravitational acceleration, $g = -9.8 m/s^2$

$$F_g = -mg$$

 $g = (0, 0, -9.8) \,\mathrm{m/s^2}$

Gravitational Attraction

Newton's universal law of gravitation

Gravitational pull between particles

$$F_g = G \frac{m_1 m_2}{d^2}$$
$$G = 6.67428 \times 10^{-11}$$

 m_1

d

CS184/284A

on cles

$\mathrm{Nm}^{2}\mathrm{kg}^{-2}$

Example: Galaxy Simulation

Disk galaxy simulation, NASA Goddard

CS184/284A

Example: Particle-Based Fluids

Macklin and Müller, Position Based Fluids , TOG 2013

Example: Granular Materials

Bell et al, "Particle-Based Simulation of Granular Materials"

Example: Flocking Birds

Simulated Flocking as an ODE

Model each bird as a particle Subject to very simple forces:

- <u>attraction</u> to center of neighbors
- <u>repulsion</u> from individual neighbors
- <u>alignment</u> toward average trajectory of neighbors

Simulate evolution of large particle system numerically

Emergent complex behavior (also seen in fish, bees, ...)

repulsion

Credit: Craig Reynolds (see <u>http://www.red3d.com/cwr/boids/</u>)

alignment

Slide credit: Keenan Crane

Example: Crowds

Where are the bottlenecks in a building plan?

Example: Crowds + "Rock" Dynamics

Suggested Reading

Physically Based Modeling: Principles and Practice

- Andy Witkin and David Baraff
- http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html
- Numerical Recipes in C++
 - Chapter 16

Any good text on integrating ODE's

Just Scratching the Surface...

Physical simulation is a huge field in graphics, engineering, science

Today: intro to particle systems, solving ODEs

Partial differential equations

- Diffusion equation, heat equation, ...
- Used in graphics for liquids, smoke, fire, etc.

Rigid body

Simulation of sound

• • •

Example: Mass Spring Dress + Character

FEM (Finite Element Method) Instead of Springs

CS184/284A

Things to Remember

Physical simulation = mathematical modeling of dynamical systems & solution by numerical integration

Particle systems

- Flexible force modeling, e.g. spring-mass sytems, gravitational attraction, fluids, flocking behavior
- Newtonian equations of motion = ODEs
- Solution by numerical integration of ODEs: Explicit Euler, Implicit Euler, Adaptive, Position-Based / Verlet
- Error and instability, methods to combat instability

Acknowledgments

Many thanks to James O'Brien, Keenan Crane and Tom Funkhouser for lecture resources.

CS184/284A

Example: Fluids

Macklin and Müller, Position Based Fluids TOG 2013

Problem Setup

Lagrangian Formulation

- Where in space did this material move to?
- Commonly used for solid materials

Eulerian Formulation

- What material is at this location in space?
- Commonly used for fluids
 - Why: Because fluids don't remember their shape

Problem Discretization

Grids

- Store quantities on a grid
- Fluid move "through" grid
- Scales reasonably well to large systems
- Surface tracking is challenging

Particles

- Fluid defined by locations of particles
- Inter-particle forces create fluid behavior
- Scaling to large systems not simple
- Surface tracking less difficult

Many popular methods combine grids and particles

Fluid Grid

Store Fluid State On Grid

- Velocity
- Pressure
- Density
- **Staggered Grid**
 - Bilinear interpolation
 - Seems odd at first
 - Very useful

Non-staggered produces unstable checkerboard

Ren Ng

Fluid Grid

2D Staggered Grid

$$\mathbf{u} = \mathbf{u}(x, y)$$
$$p = p(x, y)$$

CS184/284A

3D Staggered Grid

 $\mathbf{u} = \mathbf{u}(x, y, z)$

p = p(x, y, z)

Fluid Grid

CS184/284A

Gradient:

Direction of greatest change

$$\operatorname{grad}(p(x, y)) = \nabla p |_{x, y} = \begin{bmatrix} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial y} \end{bmatrix}$$
$$\operatorname{grad}(p) = \nabla p$$

The ∇ is a differential operator, like $\frac{\partial}{\partial x}$, but a vector $\nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix}$

CS184/284A

 $\mathbf{v} = \mathbf{v}(x, y)$ p = p(x, y)

 ∂x

Gradient:

Direction of greatest change

$$\mathbf{grad}(p) = \nabla p = \begin{bmatrix} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial y} \end{bmatrix}$$

CS184/284A

In 3D, cell centers and faces

Gradient:

Direction of greatest change

$$\mathbf{div}(\mathbf{u}) = \nabla \cdot \mathbf{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

In 3D, cell centers and faces

CS184/284A

$$\mathbf{grad}(p) = \nabla p = \begin{bmatrix} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial y} \end{bmatrix}$$

Ren Ng

Gradient:

Direction of greatest change

$$\mathbf{grad}(p) = \nabla p = \begin{bmatrix} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial y} \end{bmatrix}$$

CS184/284A

Divergence:

Circulation around point Net flow in or out of region

$$\operatorname{div}(\mathbf{u}) = \nabla \cdot \mathbf{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$
$$\nabla \times \mathbf{u}$$

Curl:

$$\operatorname{curl}(\mathbf{u}) = \nabla \times \mathbf{u} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

In 3D, cell faces and edges

Gradient:

Direction of greatest change

$$\mathbf{grad}(p) = \nabla p = \begin{bmatrix} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial y} \end{bmatrix}$$

$$\mathbf{div}(\mathbf{u}) = \nabla \cdot \mathbf{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

CS184/284A

Curl:

Circulation around point

$$\operatorname{curl}(\mathbf{u}) = \nabla \times \mathbf{u} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

In 3D, curl is vector stored at edges

Divergence: Net flow in or out of region

 $\mathbf{div}(\mathbf{u}) = \nabla \cdot \mathbf{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$

Laplacian:

Difference from the neighborhood average

$$\nabla^2 = \nabla \cdot \nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

CS184/284A **Ren Ng**

$$\operatorname{curl}(\mathbf{u}) = \nabla \times \mathbf{u} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

Gradient:

Direction of greatest change

$$\mathbf{grad}(p) = \nabla p = \begin{bmatrix} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial y} \end{bmatrix}$$

Laplacian:

Difference from the neighborhood average

$$\nabla^2 = \nabla \cdot \nabla = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

Divergence: Net flow in or out of region

$$\mathbf{div}(\mathbf{u}) = \nabla \cdot \mathbf{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

Directional Derivative:

How a quantity changes as point of observation moves

moving in x direction?

change as we move in the x direction?

CS184/284A Ren Ng

"Vector Analysis" - lots of fun math

$$\operatorname{curl}(\mathbf{u}) = \nabla \times \mathbf{u} = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

Gradient:

Direction of greatest change

$$\operatorname{grad}(p) = \nabla p = \begin{bmatrix} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial y} \end{bmatrix}$$

Navier-Stokes Equations (N-SE)

ρ is density

 ν is viscosity
Bad Solver

- Store velocity (\mathbf{u}) and density (ρ) on staggered grid
- Compute pressure (p) as function of density
 - Use N-SE to update velocities
 - Update densities $\dot{\rho} \propto -(\mathbf{u} \cdot \nabla)\rho + \nabla \cdot (\mathbf{u} \rho)$
- - Repeat until end of simulation

Problem: Pressure waves move fast so this explicit method must use very small timesteps or go unstable.

Problem: Advection term also limits time step based on speed of fluid. (Bulk speed of fluid is generally less than wave speed.)

Replace pressure forces with constraints

- No more pressure waves
- This is another projection method!

Divergence is net in-/out-flow

Constrain divergence to be zero by projection

•
$$\nabla \cdot \mathbf{u} = 0$$

Split advection term off from the rest of N-SE and use semi-Lagrangian advection.

"Stable Fluids" by Jos Stam, SIGGRAPH 99 **CS184/284A**

Separate problems terms from the rest:

$$\Delta \mathbf{u} = \Delta t \left(-(\mathbf{u} \cdot \nabla)\mathbf{u} - \frac{\nabla p}{\rho} + \frac{\nu}{\rho} \nabla^2 \mathbf{u} \right)$$
$$\Delta \mathbf{u} = \Delta t \left(\Delta \mathbf{u}_a + \Delta \mathbf{u}_p + \frac{\nu}{\rho} \nabla^2 \mathbf{u} + \frac{\mathbf{u}_b}{\rho} \nabla^2 \mathbf{u} + \frac{\mathbf{u}_b}{\rho} \nabla^2 \mathbf{u} \right)$$
$$\mathbf{u}^* = \mathbf{u}^t + \Delta t \left(\frac{\nu}{\rho} \nabla^2 \mathbf{u} + \frac{\mathbf{f}_f}{\rho} \right)$$
Unprojected and unadvected new velocities

Separate problems terms from the rest:

$$\mathbf{u}^* = \mathbf{u}^t + \Delta t \left(\frac{\nu}{\rho} \nabla^2 \mathbf{u} + \frac{\mathbf{f}_f}{\rho} \right)$$

In general we will have $\nabla \cdot \mathbf{u}^* \neq 0$ Use pressure to correct this:

$$\nabla \cdot \left(\mathbf{u}^* + \Delta \mathbf{u}_p \right) = \nabla \cdot \mathbf{u}^* + \Delta \mathbf{u}_p = -\Delta t \frac{\nabla p}{\rho}$$
$$\Delta \mathbf{u}_p = -\Delta t \frac{\nabla p}{\rho}$$
$$\nabla \cdot \mathbf{u}^* = \Delta t \nabla \cdot \frac{\nabla p}{\rho}$$
CS184/284A

Separate problems terms from the rest:

CS184/284A

Add pressure correction to get projected, but not advected, velocities:

$$\mathbf{u}^+ = \mathbf{u}^* - \frac{\Delta t \, \nabla^2}{\rho}$$

Solving for pressure

- Successive over-relaxation
 - Easy to understand and implement, but slow
- Pre-conditions conjugate gradient
 - Widely used, reasonably fast
 - [Modified] Incomplete Cholesky for preconditioned
- Other problem-specific methods

CS184/284A

Add pressure correction to get projected, but not advected, velocities:

CS184/284A

With pressure projection

Semi-Lagrangian Advection (A method of characteristics)

Instead of using 2nd order advection term, pick up the values and move them!

- For each location
 - Track backward through grid for Δt
 - Interpolate value
 - Copy to new location

Note: This works for other quantities besides velocity.

Note: Vector values should be rotated based on flow, but most people don't do this.

Note: Backtrace is done in one or more substeps.

CS184/284A

Semi-Lagrangian Advection

Unconditionally stable

Large steps introduce extra damping

Viscosity term often omitted as unwanted

Stable Fluids

Demo by Amanda Ghassaei

https://apps.amandaghassaei.com/gpu-io/examples/fluid/

Things to notice:

- In pressure view you can see grid cells
 - You don't see them when simulation is rendered!
- Note how much damping there is
- Note how pressure changes as cursor is moved