Lecture 3: Intro to Signal Processing: Sampling, Aliasing, Antialiasing

Computer Graphics and Imaging UC Berkeley CS184/284A

Sampling is Ubiquitous in Computer Graphics and Imaging

Video = Sample Time

CS184/284A

alliansosallassat for Aren

Harold Edgerton Archive, MIT

Photograph = Sample Image Sensor Plane

CS184/284A

Rasterization = Sample 2D Positions

0	0	0	0	0	0	0	0
0	0	0	0	0	0		0
0	0	0	0	0	9	•	þ
0	0	0	0	0	•	•	
0	0	0	0		•	•	•
0	0	0	0	•	•	•	•
0	0	0		•	•	•	•
0	0	9	•	•	•	•	•
0	0		•	•		0	0
0	4	0	0	0	0	0	0

CS184/284A

Ray Tracing = Sample Rays

٩

Jensen

Lighting Integrals: Sample Incident Angles

Sampling Artifacts in Graphics and Imaging

Wagon Wheel Illusion (False Motion)

Created by Jesse Mason, https://www.youtube.com/watch?v=QOwzkND_ooU

Moiré Patterns in Imaging

Read every sensor pixel Skip odd rows and columns

CS184/284A

Jaggies (Staircase Pattern)

This is also an example of "aliasing" – a sampling error

CS184/284A

Jaggies (Staircase Pattern)

CS184/284A

Retort by Don Mitchell

Sampling Artifacts in Computer Graphics

Artifacts due to sampling - "Aliasing"

- Jaggies sampling in space
- Wagon wheel effect sampling in time
- Moire undersampling images (and texture maps)
- [Many more] ...

We notice this in fast-changing signals (high frequency), when we sample too slowly

Antialiasing Idea: Filter Out High Frequencies Before Sampling

Video: Point Sampling vs Antialiased Sampling in Time

Thin stream of water from kitchen tap

Point in Time N 1/4000 sec exposure 1/4

CS184/284A

Motion Blurred 1/60 sec exposure

Video: Point Sampling in Time

60 fps video. 1/4000 second exposure is sharp in time, causes time aliasing.

CS184/284A

Video: Motion-Blurred (Antialiased) Sampling in Time

60 fps video. 1/60 second exposure is motion-blurred in time, no aliasing.

CS184/284A

Rasterization: Point Sampling in Space

Sample

Note jaggies in rasterized triangle where pixel values are pure red or white

CS184/284A

Rasterization: Antialiased Sampling

(remove frequencies above Nyquist)

Note antialiased edges in rasterized triangle where pixel values take intermediate values

CS184/284A

Sample

Point Sampling

One sample per pixel

Antialiasing

Point Sampling vs Antialiasing

Jaggies

CS184/284A

Pre-Filtered

Antialiasing vs Blurred Aliasing

Blurred Jaggies (Sample then filter)

CS184/284A

Pre-Filtered (Filter then sample)

This Lecture

Let's dig into the fundamental reasons why this works And look at how to implement antialiased rasterization

Frequency Space

Sines and Cosines

CS184/284A

Frequencies $\cos 2\pi f x$

CS184/284A

Fourier Transform

Represent a function as a weighted sum of sines and cosines

Joseph Fourier 1768 - 1830

 $2A\cos(t\omega) = 2A\cos(3t\omega) + 2A\cos(5t\omega) = 2A\cos(7t\omega)$ A $f(x) = \frac{7}{2}$ 3π 7π 5π π

Fourier Transform Decomposes A Signal Into Frequencies

$$f(x) F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-2\pi x}$$
Spatial Fourier transformed on Inverse transformed on the second seco

$$f(x) = \int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega}$$

Recall
$$e^{ix} = \cos x + ix$$

CS184/284A

 $^{\cdot i\omega x}d\omega$

 $\sin x$

Higher Frequencies Need Faster Sampling

X

Low-frequency signal: sampled adequately for reasonable reconstruction

High-frequency signal is insufficiently sampled: reconstruction incorrectly appears to be from a low frequency signal

Undersampling Creates Frequency Aliases

High-frequency signal is insufficiently sampled: samples erroneously appear to be from a low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are called "aliases"

"Alias" = False Identity

"Batman" = Bruce Wayne's alias to hide his true identity

CS184/284A

Visualization of Frequency Space

2D Frequency Space

Spatial Domain

Note: Frequency domain also known as frequency space, Fourier domain, spectrum, ... CS184/284A **Ren Ng**

Frequency Domain

Spatial Domain

CS184/284A

Ren Ng

Frequency Domain

$\sin(2\pi/32)x$ — frequency 1/32; 32 pixels per cycle

Spatial Domain

CS184/284A

Frequency Domain
$\sin(2\pi/16)x$ — frequency 1/16; 16 pixels per cycle

Frequency Domain

$\sin(2\pi/16)y$

CS184/284A

Ren Ng

Frequency Domain

 $\sin(2\pi/32)x \times \sin(2\pi/16)y$

CS184/284A

Frequency Domain

 $\exp(-r^2/16^2)$

CS184/284A

Ren Ng

Frequency Domain

 $\exp(-r^2/32^2)$

CS184/284A

Ren Ng

Frequency Domain

 $\exp(-x^2/32^2) \times \exp(-y^2/16^2)$

CS184/284A

Frequency Domain

Rotate 45 $\exp(-x^2/32^2) \times \exp(-y^2/16^2)$

CS184/284A

Frequency Domain

Visualizing Image Frequency Content

Spatial Domain

CS184/284A

Frequency Domain

Filter Out Low Frequencies Only (Edges)

Spatial Domain

CS184/284A

Frequency Domain

Filter Out High Frequencies (Blur)

Spatial Domain

CS184/284A

Frequency Domain

Filter Out Low and High Frequencies

Spatial Domain

CS184/284A

Frequency Domain

Filter Out Low and High Frequencies

Spatial Domain

CS184/284A

Frequency Domain

Filtering = Convolution

3 8	6	4
-----	---	---

CS184/284A

3 8	6	4
-----	---	---

3x1 + 5x2 + 3x1 = 16

Result

CS184/284A

3 8	6	4
-----	---	---

5x1 + 3x2 + 7x1 = 18

Result

CS184/284A

3 8	6	4
-----	---	---

Convolution Theorem

Convolution in the spatial domain is equal to multiplication in the frequency domain, and vice versa

Option 1:

- Filter by convolution in the spatial domain
- **Option 2:**
 - Transform to frequency domain (Fourier transform)
 - Multiply by Fourier transform of convolution kernel
 - Transform back to spatial domain (inverse Fourier)

Convolution Theorem

Spatial Domain

*

Fourier | Transform

Frequency Domain

CS184/284A

Inv. Fourier

Box Filter

Example: 3x3 box filter

CS184/284A

Box Function = "Low Pass" Filter

CS184/284A

Frequency Domain

Wider Filter Kernel = Lower Frequencies

Spatial Domain

CS184/284A

Frequency Domain

Wider Filter Kernel = Lower Frequencies

As a filter is localized in the spatial domain, it spreads out in frequency domain.

Conversely, as a filter is localized in frequency domain, it spreads out in the spatial domain

Efficiency?

When is it faster to implement a filter by convolution in the spatial domain?

When is it faster to implement a filter by multiplication in the frequency domain?

Nyquist Frequency & Antialiasing

Nyquist Theorem

Theorem: We get no aliasing from frequencies in the signal that are less than the Nyquist frequency (which is defined as half the sampling frequency) *

* Won't cover proof in course, see Shannon sampling theorem

CS184/284A

No Aliasing!

Frequency Domain

CS184/284A

Aliasing!

Frequency Domain

CS184/284A

No Aliasing!

Frequency Domain

Visual Example: Image Frequencies & Nyquist Frequency

In the following image sequence:

- Image is 512x512 pixels
- We will progressively blur the image, see how the frequency spectrum shrinks, and see what the maximum frequency is

Spatial Domain

CS184/284A

Frequency Domain

Spatial Domain

CS184/284A

Frequency Domain

Spatial Domain

CS184/284A

Frequency Domain

Spatial Domain

CS184/284A

Frequency Domain
Image Frequency: Visual Example

Spatial Domain

CS184/284A

Frequency Domain

Image Frequency: Visual Example

Spatial Domain

CS184/284A

Frequency Domain

Image Frequency: Visual Example

Spatial Domain

CS184/284A

Frequency Domain

In next sequence:

- Visualize sampling an image every 16 pixels
- Visualize when image is blurred enough that image frequencies match Nyquist frequency (no aliasing)

Spatial Domain

CS184/284A

Frequency Domain

Spatial Domain

CS184/284A

Max signal freq ≈1/2

Nyq. freq = 1/32

Frequency Domain

Spatial Domain

CS184/284A

Max signal freq ≈1/4

Nyq. freq = 1/32

Frequency Domain

Spatial Domain

CS184/284A

Max signal freq ≈1/8

Nyq. freq = 1/32

Frequency Domain

Spatial Domain

CS184/284A

Frequency Domain

• • • • • • • • • • • • • • • • • • •	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	XaW
• • • • • • • • • • • • • • • • • • • •	
 	
 	
• • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • •	
 	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • •	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
• <u>• • • • • • • • • • • • • • • • • • </u>	
\cdot sampling = every 16 pixels $\cdot \cdot \cdot$	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Spatial Domain

CS184/284A

Frequency Domain

Max sampling = every 16 pixels	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
Max sampling = every 16 pixels	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
Max sampling = every 16 pixels	•	•	•	•	•	•	•	•	۰	0	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	•	•	•	•	•			
Max sampling = every 16 pixels	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
Max sampling = every 16 pixels	•	•	۰	۰	•	•	•	•	٥	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	•	•			
Max sampling = every 16 pixels	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	•			
Max sampling = every 16 pixels	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
Max sampling = every 16 pixels	•	•	•	•	•	•	•	•	•	•	۰	۰	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	•			
Max sampling = every 16 pixels	•	•	•	•	•	•	•	•	•	•	۰	۰	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	•			
sampling = every 16 pixels	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		Ma	
sampling = every 16 pixels	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
sampling = every 16 pixels	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	۰	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	•			
sampling = every 16 pixels	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	۰	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	۰	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	۰	۰	•	•			
sampling = every 16 pixels	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	۰	۰	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	•	•	•	•	•	•	•	•	•	٥	۰	•	•	•	•	•	۰	۰	۰	•	•	•	۰	۰	۰	۰	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	۰	•	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	٢	٢	•	•	•	•	•	•	•	•	٢	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	•	•	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	٢	•	•	•	•	•	•	•	•	٢	•	•	•	•	•	•	•	۰	•	•	•	•	•	۰	•	•	۲	•			
<pre>sampling = every 16 pixels</pre>	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			
<pre>sampling = every 16 pixels</pre>	•	•	۰	•			•	•	•	•	•	•	٢	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٢	•			
<pre>sampling = every 16 pixels</pre>	•	•						•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
sampling = every 16 pixels	•	•						•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۲	•			
sampling = every 16 pixels	•						•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
	•			C	2				'n	Ô	•					Ŷ	8	2	•		° V		Ŝ	•	•	•	•	•	•	•	•			
	•			ľ			Ľ			3	•	0		0		y	0		0			\mathbf{i}		•	•	•	•	•	•	•	•			
	•			•	•	°	Ů	Ů	•	e	•	°	o	•	•	•	•	•	•	•	0	0	•	0	0	0	•	0	0	0	0			

Spatial Domain

CS184/284A

Frequency Domain

Recap:

- Filter (blur) original image to reduce maximum signal frequency
- Create low-resolution image by sampling only every 16 pixels
 - (Sampling frequency is 1/16, and Nyquist frequency is 1/32)

Aliasing

Which do you prefer?

CS184/284A

aximum signal frequency og only every 16 pixels uist frequency is 1/32)

Overblurring

Recap:

- Filter (blur) original image to reduce maximum signal frequency
- Create low-resolution image by sampling only every 16 pixels
 - (Sampling frequency is 1/16, and Nyquist frequency is 1/32)

Aliasing and over blurring can be objectionable even at small image sizes

CS184/284A

More blur

Overblurring

Antialiasing

Reminder: Nyquist Theorem

Theorem: We get no aliasing from frequencies in the signal that are less than the Nyquist frequency (which is defined as half the sampling frequency)

Consequence: sampling at twice the highest frequency in the signal will eliminate aliasing

CS184/284A

How Can We Reduce Aliasing Error?

Increase sampling rate (increase Nyquist frequency)

- Higher resolution displays, sensors, framebuffers...
- But: costly & may need very high resolution

Antialiasing

- Simple idea: remove (or reduce) signal frequencies above the Nyquist frequency before sampling
- How? Filter out high frequencies before sampling.

Regular Sampling

Note jaggies in rasterized triangle where pixel values are pure red or white

CS184/284A

Antialiased Sampling

(remove frequencies above Nyquist)

Note antialiased edges in rasterized triangle where pixel values take intermediate values

CS184/284A

Ren Ng

Sample

A Practical Pre-Filter

A 1 pixel-width box filter will attenuate frequencies whose period is less than or equal to 1 pixel-width

This is practical to implement — why?

CS184/284A

Antialiasing By Averaging Values in Pixel Area

Convince yourself the following are the same:

Option 1:

- Convolve f(x,y) by a 1-pixel box-blur
- Then sample at every pixel

Option 2:

Compute the average value of f(x,y) in the pixel

Antialiasing by Computing Average Pixel Value

In rasterizing one triangle, the average value inside a pixel area of f(x,y) = inside(triangle,x,y) is equal to the area of the pixel covered by the triangle.

CS184/284A

Antialiasing By Supersampling

Supersampling

We can approximate the effect of the 1-pixel box filter by sampling multiple locations within a pixel and averaging their values:

4x4 supersampling

CS184/284A

Point Sampling: One Sample Per Pixel

Take NxN samples in each pixel.

2x2 supersampling

Average the NxN samples "inside" each pixel.

Averaging down

Average the NxN samples "inside" each pixel.

Averaging down

Average the NxN samples "inside" each pixel.

Supersampling: Result

This is the corresponding signal emitted by the display

		75%		
	75%	100%	50%	
25%	50%	50%	50%	

Point Sampling

One sample per pixel

4x4 Supersampling + Downsampling

Pixel value is average of 4x4 samples per pixel

Antialiasing By Supersampling - Summary

- Antialiasing = remove frequencies above Nyquist before sampling
- We can attenuate these frequencies quite well with a 1-pixel box filter (convolution)
- We approximated the 1-pixel box sampling by supersampling and averaging
- Simple, good idea high image quality, but costly
- May feel "right", but can get even higher quality!

Supersampling Implementation Tips

Tip 1: Sample Locations

CS184/284A

Tip 1: Sample Locations

2x2 supersampling: locations for pixel (i,j)

Tip 1: Sample Locations

Sample locations for NxN supersampling?

CS184/284A
Tip 2: Supersampling Multiple Triangles

So far, we rasterized only a single triangle:

- Supersample
- Then average down

How should this change when we rasterize N triangles in the same image?

- Supersample and average down each triangle, one by one?
- Or supersample all N triangles onto a high-res grid, then average down?

What are the algorithmic implications?

• E.g. what is the minimum memory needed?

CS184/284A

Supersample

Average Down

Note: There is Much, Much More To Sampling Theory & Practice!

Things to Remember

Signal processing key concepts:

- Frequency domain vs spatial domain
- Filters in the frequency domain scale frequencies
- Filters in the sampling domain = convolution
- Sampling and aliasing
 - Image generation involves sampling
 - Nyquist frequency is half the sampling rate
 - Frequencies above Nyquist appear as aliasing artifacts
 - Antialiasing = filter out high frequencies before sampling
 - Interpret supersampling as (approx) box pre-filter antialiasing

Acknowledgments

Thanks to Kayvon Fatahalian, Pat Hanrahan, Mark Pauly and Steve Marschner for slide resources.

CS184/284A

Sampling Food for Thought

Off-Grid Sampling?

CS184/284A

Random Sampling?

CS184/284A

Use Samples "Outside" Pixel?

CS184/284A

Non-Uniform Sample Weighting?

CS184/284A

Sampling Stress Test: Zone Plate

 $f(x,y) = sin(x^2+y^2)$

What should this look like?

Real signal (low frequency oscillation)

CS184/284A

Figure credit: Pat Hanrahan and Bryce Summers

Aliasing from undersampling increasingly high frequencies