
Computer Graphics and Imaging

UC Berkeley CS184/284A

Lecture 5:

Texture Mapping

Texture Mapping Has Many Uses

Pattern on ball Wood grain on floor

Ren NgCS184/284A

Describe Surface Material Properties

Pr
ou

df
oo

t e
t a

l.

Ren NgCS184/284A

Describe Surface Material Properties

• Add details without raising geometric complexity

• Paste image onto geometry or define procedurally

Ch
an

 e
t a

l.

Texture Coordinate Mappings

Ren NgCS184/284A

Think Chocolate Wrappers
Texture image

Ren NgCS184/284A

Three Spaces

Surface lives in 3D world space

Every 3D surface point also has a place where it goes 
in the 2D image and in the 2D texture.

x
y

z u

v
xs

ys

ɸ
π

world spaceimage space texture spaceScreen space Texture spaceWorld space

Image Texture Applied to Surface
Rendering with textureRendering without texture Texture image

Zo
om

Each triangle “copies” a piece of the texture image back to the surface.

Ren NgCS184/284A

Visualization of Texture Coordinates

Visualization of texture coordinates

u

v Triangle vertices in texture space

Each surface point is assigned a texture coordinate (u,v)

Ren NgCS184/284A

Image Texture Applied to Surface

u

vRendered result Triangle vertices in texture space

Each surface point is assigned a texture coordinate (u,v)

Sponza Palace Model

Textures applied to surfaces

Sponza Palace Model

Visualization of texture coordinates

Sponza Palace Model

Example textures used

Interpolation Across Triangles:

Barycentric Coordinates

Ren NgCS184/284A

Interpolation Across Triangles

Why do we want to interpolate?

• Specify values (e.g. texture coordinates) at vertices,
and obtain smoothly varying values across surface

What do we want to interpolate?

• Texture coordinates, colors, normal vectors, …

How do we interpolate?

• Barycentric coordinates

Ren NgCS184/284A

Barycentric Coordinates

A coordinate system for triangles

↵+ � + � = 1

A

B

C

(x, y) = ↵A+ �B + � C

(↵,�, �)

(x, y)

Inside the triangle if all three coordinates are non-negative

Ren NgCS184/284A

Barycentric Coordinates - Examples

A

B

C

(↵,�, �) = (1, 0, 0)

(x, y) = ↵A+ �B + � C

= A

(x, y)

Ren NgCS184/284A

Barycentric Coordinates - Examples

A

B

C

(x, y)

(↵,�, �) =
�
1
3 ,

1
3 ,

1
3

�

(x, y) = 1
3 A+ 1

3 B + 1
3 C

Ren NgCS184/284A

Linear Interpolation Across Triangle

Barycentric coords linearly interpolate values at vertices

VA, VB, VC can be
positions, texture
coordinates, color,
normal vectors,
material attributes…

V = ↵VA + � VB + � VC

V

VA

VB

VC

Ren NgCS184/284A

Barycentric Coordinates

Geometric viewpoint — proportional distances

Similar construction 
for other coordinates↵

(1�
↵)

↵
(1�

↵)

A

B

C

Ren NgCS184/284A

Computing Barycentric Coordinates

Recall the line equation we derived in Lecture 2.  
LPQ(x,y) is proportional to the distance from line PQ.

LPQ(x, y) = �(x� xP)(yQ � yP) + (y � yP)(xQ � xP)

P

Q
(x, y) }

Ren NgCS184/284A

Computing Barycentric Coordinates

Geometric viewpoint — proportional distances

↵
(1�

↵)

↵
(1�

↵)

A

B

C

↵ =
LBC(x, y)

LBC(xA, yA)

Similar construction 
for other coordinates

Ren NgCS184/284A

Barycentric Coordinate Formulas

↵ =
�(x� xB)(yC � yB) + (y � yB)(xC � xB)

�(xA � xB)(yC � yB) + (yA � yB)(xC � xB)

� =
�(x� xC)(yA � yC) + (y � yC)(xA � xC)

�(xB � xC)(yA � yC) + (yB � yC)(xA � xC)

� = 1� ↵� �

A

B

C

↵+ � + � = 1

(x, y) = ↵A+ �B + � C

(x, y) = ↵A+ �B + � C

Ren NgCS184/284A

Barycentric Coordinates

Alternative geometric viewpoint — proportional areas

A

B

C

↵ =
AA

AA +AB +AC

� =
AB

AA +AB +AC

� =
AC

AA +AB +AC

AAAB

AC

Perspective Projection and Interpolation

Ren NgCS184/284A

Perspective Projection and Interpolation

Plane tilted
down with
perspective
projection —

What’s wrong?

Texture
Correct image

Ren NgCS184/284A

Perspective Projection and Interpolation

Barycentric
interpolation of

texture
coordinates in

screen-space

Texture
Correct image

Ren NgCS184/284A

Perspective Projection Creates Non Linearity

Linear interpolation in world coordinates yields
nonlinear interpolation in screen coordinates!

Perspective interpolation supported in GPU

Image 
plane

Ren NgCS184/284A

Perspective-Correct Interpolation

Affine

screen-space

interpolation

Perspective

world-space

interpolation

Texture

Applying Textures is Sampling!

Ren NgCS184/284A

Simple Texture Mapping Operation

for each rasterized screen sample (x,y):

 (u,v) = evaluate texcoord value at (x,y)

 float3 texcolor = texture.sample(u,v);

 set sample’s color to texcolor;

Ren NgCS184/284A

Applying Textures is Sampling!

Actually “re-sampling”

Mathematically, to draw a texture sample at (u,v):

• Start with discrete, sampled 2D function f(x,y). This
function is only non-zero at sampled locations

• Reconstruct a continuous 2D function, fcont(x,y) = f(x,y) *
k(x,y) by convolution with a reconstruction filter k(x,y)

• Draw the desired sample at (u,v) from the continuous 2D
signal by function evaluation: fcont(u,v)

Signal processing concepts that should come to mind for you:

• Frequency spectrum, aliasing, Nyquist frequency, filtering,
anti-aliasing…

Ren NgCS184/284A

Point Sampling Textures

High-res reference Point sampling

Jaggies

Moire

Source image: 1280x1280 pixels 256x256 pixels

Texture Sampling Frequency

Sampling Rate on Screen vs Texture

1:1 mapping
Screen space (x,y) Texture space (u,v)

600 pixels600 pixels

Sampling Rate on Screen vs Texture

Magnified

600 pixels600 pixels

Screen space (x,y) Texture space (u,v)

Sampling Rate on Screen vs Texture

“Minified”

600 pixels600 pixels

Screen space (x,y) Texture space (u,v)

Ren NgCS184/284A

Texture Sampling Rate

The sampling frequency in screen space translates to a
sampling frequency in texture space as determined by
the mapping function.

In general the frequency varies across the scene
depending on geometric transforms, viewing
transforms, and the texture coordinate function.

Ren NgCS184/284A

Screen Pixel Area vs Texel Area

At optimal viewing size:

• 1:1 mapping between pixel sampling rate and  
texel sampling rate

• Dependent on texture resolution! e.g. 512x512

When larger (magnification)

• Multiple pixel samples per texel sample

When smaller (minification)

• One pixel sample per multiple texel samples

Ren NgCS184/284A

Screen Pixel Footprint in Texture

upsampling
magnification

downsampling
minification

Upsampling

(Magnification)

Downsampling

(Minification)

Screen Pixel Footprint in Texture

image space texture space

Screen space Texture space

NB: texture sampling pattern not rectilinear or isotropic

Estimating Footprint Area With Jacobian

x ψ(x)

(
∂u
∂x

,
∂v
∂x

)

x u

y v

(
∂u
∂y

,
∂v
∂y

)

image space texture space

(0,1)

(1,0)

Screen space Texture space

Texture Antialiasing

Ren NgCS184/284A

Will Supersampling Antialias?

High-res reference Point sampling512x supersampling

High quality, but costly

Ren NgCS184/284A

Texture Antialiasing

Will supersampling work?

• Yes, high quality, but costly

• When highly minified, many texels in pixel footprint

Goal: efficient texture antialiasing

• Want antialiasing with one/few texels per pixel

• How? Antialiasing = filtering before sampling!

Antialiasing: Signal, Sampling Rate, Nyquist Rate?
image space texture space

Screen space Texture space

What signal are we sampling? What is the sampling

frequency? What is the Nyquist frequency?

Texture Filtering

Texture Magnification

Ren NgCS184/284A

Texture Magnification - Easy Case

(Generally don’t want this — insufficient resolution)

This is image interpolation (will see kernel function)

Nearest Bilinear Bicubic

Ren NgCS184/284A

Bilinear Filtering

Want to sample
texture value f(u,v) at
red point  
 
Black points indicate
texture sample
locations

Ren NgCS184/284A

Bilinear Filtering

u00

u01 u11

u10

Take 4 nearest
sample locations,
with texture values
as labeled.

Ren NgCS184/284A

Bilinear Filtering

u00

u01 u11

u10

t

s

And fractional
offsets, (s,t) as shown

Ren NgCS184/284A

Bilinear Filtering

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Ren NgCS184/284A

Bilinear Filtering

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps (horizontal)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1

Ren NgCS184/284A

Bilinear Filtering

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1

Final vertical lerp, to get result:

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

Ren NgCS184/284A

Reconstruction Filter Function

Test your understanding:

• What is the reconstruction filter k(x,y) for bilinear
interpolation? Nearest? What is a theoretically ideal filter?
What are the pros/cons of each?

Nearest Bilinear Bicubic

Texture Minification

Ren NgCS184/284A

Texture Minification - Hard Case

Challenging

• Many texels can contribute to pixel footprint

• Shape of pixel footprint can be complex

Idea:

• Take texture image file, then low-pass filter it (i.e. filter out
high frequencies) and downsample it (i.e. sample at a lower
resolution) texture file. Do this recursively, and store
successively lower resolution, each with successively lower
maximum signal frequency.

• For each sample, use the texture file whose resolution
approximates the screen sampling rate

Ren NgCS184/284A

Level 0 - Full Resolution Texture

Aliasing

OK

Ren NgCS184/284A

Level 2 - Downsample 4x4

Aliasing

Blurring

Ren NgCS184/284A

Level 4 - Downsample 16x16

OK

Blurring

Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

“Mip” comes from the Latin “multum in parvo", meaning a multitude in a small space

Mipmap (L. Williams 83)

Williams’ original
proposed mipmap layout

“Mip hierarchy”

level = D

u

v

What is the storage overhead of a mipmap?

D

Computing Mipmap Level D

u

v

Estimate texture footprint using texture coordinates
of neighboring screen samples

Screen space (x,y) Texture space (u,v)

Computing Mipmap Level D

L

u

v
du/dx

dv/dx

D = log2 L

L = max

0

@
s✓

du

dx

◆2

+

✓
dv

dx

◆2

,

s✓
du

dy

◆2

+

✓
dv

dy

◆2
1

A

(u,v)00 (u,v)10

(u,v)01

Computing Mipmap Level D

L

u

v
du/dx

dv/dxL

D = log2 L

L = max

0

@
s✓

du

dx

◆2

+

✓
dv

dx

◆2

,

s✓
du

dy

◆2

+

✓
dv

dy

◆2
1

A

(u,v)00 (u,v)10

(u,v)01

Visualization of Mipmap Level

D rounded to nearest integer level

Ren NgCS184/284A

Trilinear Filtering

Mipmap Level D Mipmap Level D+1

Bilinear result Bilinear result

Linear interpolation based on continuous D value

Visualization of Mipmap Level

Trilinear filtering: visualization of continuous D

Ren NgCS184/284A

Bilinear vs Trilinear Filtering Cost

Bilinear resampling:

• 4 texel reads

• 3 lerps (3 mul + 6 add)

Trilinear resampling:

• 8 texel reads

• 7 lerps (7 mul + 14 add)

Ren NgCS184/284A

Texture Filtering in Assignment

Image resampling choices

• Nearest

• Bilinear interpolation

Mipmap level resampling choices

• Always level 0

• Nearest D

• Linear interpolation

2 x 3 = 6 choices

Mipmap Limitations

Point sampling

Mipmap Limitations

Point samplingSupersampling 512x

Mipmap Limitations

Point samplingMipmap trilinear sampling

Overblur  
Why?

Anisotropic Filtering

Elliptical weighted average (EWA) filtering

Ren NgCS184/284A

Anisotropic Filtering

Ripmaps and summed area tables

• Can look up axis-aligned
rectangular zones

• Diagonal footprints still a
problem

EWA filtering

• Use multiple lookups

• Weighted average

• Mipmap hierarchy still helps

ellipse testing can be done with one function evaluation
(this is faster than point-in-quadrilateral testing, which
requires substitution into four line equations). The func-
tion for this test is a quadratic in the texture coordinates
u and v:

Q(u,v) = Au2 + Buv+ Cv2
where u = 0, v = 0 is the center of the ellipse. This
function is an elliptical paraboloid. Points inside the
ellipse satisfy Q (u,v) < Ffor some threshold F. In texture
space the contours of Q are concentric ellipses (Figure 8),
but when mapped to screen space, they are nearly circu-
lar. Since Q is parabolic it is proportional to r2, where r is
the distance from the center of a pixel in screen space.
This radius r is just the parameter needed when indexing
a kernel, so Q can serve two purposes: inclusion testing
and kernel indexing.
The kernel f(r) is stored in a weight lookup table,

WTAB. Rather than index WTAB by r, which would
necessitate the calculation of r =V at each pixel, we
define

WTAB[Q]=f(\fQ)
so that the array can be indexed directly by Q.
Warping a lookup table for computational efficiency is

a useful trick that has been applied by others3"7 A good
kernel to use is the Gaussian f(r) = e-ar, shown in Figure
9, for which WTAB[Q] = e-aQ. The Gaussian is preferred
to the theoretically optimal sinc kernel because it decays
much more quickly. By properly scaling A, B, C, and F, the
length of the WTAB array can be controlled to minimize
quantization artifacts (several thousand entries have
proven sufficient). The parameters F and a can be tuned
to adjust the filter cutoff radius and the degree of pixel
overlap.
To evaluate Q efficiently, we employ the method of

finite differences. Since Q is quadratic, two additions
suffice to update Q from one pixel to the next? The
following pseudocode implements the EWA filter for
monochrome pictures (it is easily modified for color).
Integer variables are lowercase; floating-point variables
are uppercase.

1* Let texture[v,uJ be a 2-dimensional array holding texture *1
< Compute texture space ellipse center (UO,VO)

from screen coordinates (x,y) >

. Compute (Ux,Vx) au av and (Uy,Vy) =
ai atax, ax J ay..]

/* Now find ellipse corresponding to a circular pixel: */
A - Vx*Vx+Vy*Vy
B - -2.*(Ux*Vx+Uy*Vy)
C - UX*UX+Uy*Uy
F - Ux*Vy-Uy*Vx
F - F*F
< scale A, B, C, and F equally so that F - WTAB length >

/* Ellipse is AU2+BUV+CV2=F, where U=u-UO, V=v-VO *1

EWA(UO,VO,A,B,C,F)

begin
< Find bounding box around ellipse: ul.u.u2, vl.v.v2 >
NUM = 0.
DEN - 0.
DDQ = 2.*A
U = ul-UO
1* scan the box */
for v-vl to v2 do begin
V = v-VO
DQ = A*(2.*U+l.)+B*V /* =Q(U+I,V)-Q(U,V) *1
Q = (C*V+B*U)*V+A*U*U
for u=ul to u2 do begin

1* ignore pixel if Q out of range *1
if Q<F then begin
WEIGHT = WTAB[floor(Q)]
1* read and weight texture pixel */
NUM - NUM+WEIGHT*texture[v,u]
/* DEN is denominator (for normalization) */
DEN = DEN+WEIGHT

end
Q = Q+DQ
DQ = DQ+DDQ

end
end
return(NUM/DEN)

end

This implementation can be optimized further by re-
moving redundant calculations from the v loop and, with
proper checking, by using integer variables throughout.
The EWA filter computes the weighted average of

elliptical areas incrementally, requiring one floating-point
multiply, four floating-point adds, one integerization, and
one table lookup per texture pixel. Blinn et al.'s method,
which is the most similar to EWA, appears to have

Figure 8. Contours of elliptical paraboloid Q and box
around Q = F. Dots are centers of texture space pixels.

June 1986 25

Greene & Heckbert ‘86

Wikipedia

Advanced Texturing Methods

Ren NgCS184/284A

Many, Many Uses for Texturing

In modern GPUs, texture = memory + filtering

• General method to bring data to fragment calculations

Many applications

• Environment lighting

• Store microgeometry

• Procedural textures

• Solid modeling

• Volume rendering

• …

Ren NgCS184/284A

Environment Map

A function from the sphere to colors, 
stored as a texture.

[B
lin

n
&

 N
ew

el
l 1

97
6]

Lat / long texture map Reflection vector indexes into texture map

Spherical Environment Map

Hand with Reflecting Sphere. M. C. Escher, 1935. lithograph Light Probes, Paul Debevec

Ren NgCS184/284A

Environmental Lighting

Environment map (left) used to render realistic lighting

Ren NgCS184/284A

Cube Map

(u, v) = (1, 1)
x = y = z

(u, v) = (0, 0)
x = –y = –z

right face has
x > |y| and
x > |z|

A vector maps to cube point along that direction.  
The cube is textured with 6 square texture maps.

Ren NgCS184/284A

[Emil Persson]

Displacement Mapping

Texture stores perturbation to surface position

Paweł Filip

tolas.wordpress.com

base surface

displaced surface

hand-painted displacement map (detail)

Ren NgCS184/284A

Bump Mapping

4. DEPENDANCE ON SCALE

One feature of the perturbation calculation
is that the perturbation amount is not invariant
with the scale at which the object is drawn. If
the X, Y, and Z surface definiton functions are
scaled up by 2 then the normal vector length, INI,

scaled up by a factor of 4 while the
perturbation amount, IDI, is only scaled by 2.
This effect is due to the fact that the object is
being scaled but the displacement function F is
not. (Scale changes due to the object moving
nearer or farther from the viewer in perspective
space do not affect the size of the wrinkles, only
scale shanges applied directly to the object.) The
net effect of this is that if an object is scaled
up, the wrinkles flatten out. This is illustrated
in figure 9.

norma l stretched

Figure 9 - stretched Bump Texture

This effect might be desirable for some
applications but undesirable for others. A scale
invariant perturbation, D', must scale at the same
rate as N. An obvious choice for this is

D' = a D INI/IDI

50 ID’1 = a INI

where a is independent of scales in P. The value
of a is then the tangent of the effective rotation
angle.

tan+' = ID'l/lNl = a

This can be defined in various ways. One simple
choice is a generalization from the simple, flat
unit square patch

X(u,v) = u
Y(u,v) = v
Z(u,v) = 0

For this patch the original normal vector
perturbation gives

N = (0,0,1)
D = (-Fu,-Fv,0)

tan+ = sqrt(Fu'+Fv')

Here the value of a is purely a function of F.
Use of the same function for arbitrary patches
corresponds to a perturbation of

a = sqrt(Fu'+Fv.')
D' = a D lNl/lDl

N" = N + D'

The texture defining function F is now no longer
being used as an actual displacement added to the
position of the surface. It just serves to
provide (in the form if its derivatives) a means
of defining the rotation axis and angle as
functions of u and v.

5 . ALIASING

In an earlier paper 121, the author described
the effect of aliasing on images made with color
texture mapping. The same problems can arise with
this new form. That is, undesirable artifacts can
enter the image in regions where the texture
pattern maps into a small screen region. The
solution applied to color textures was to average
the texture pattern over the region corresponding
to each picture element in the final image. The
bump texture definition function, however, does
not have a linear relationship to the intensity of
the final image. If the bump texture is averaged
the effect will be to smooth out the bumps rather
than average the intensities. The correct
solution to this problem would be to compute the
intensities at some high sub-pixel resolution and
average them. Simply filtering the bump function
can, however, reduce the more offensive artifacts- -.
o f aliasing. Figure 10 shows the result of such
an operation.

Before
:

After

Figure 10 - Filtering Bump Texture

291

[Blinn 1978]

sznple results that can be achieved with this
technique. The first pattern, a hand drawn unit
cell of bricks was mapped onto the sphere on the
cover.

Figure 8 Hand Drawn Functions Figure A- Hand Drawn Bump Funtions

Texture stores perturbation to surface normal

Ren NgCS184/284A

Bump Mapping

What is missing?

Geometry Bump mapping Displacement mapping
Perturbs normals Perturbs positions

Ren NgCS184/284A

3D Procedural Noise + Solid Modeling

Ken Perlin

Pe
rl

in
 n

oi
se

, K
en

 P
er

lin

Ren NgCS184/284A

Provide Precomputed Shading
A

utodesk

Simple 
shading

Ambient occlusion 
texture map

With ambient 
occlusion

Ren NgCS184/284A

3D Textures and Volume Rendering

M
ar

c
Le

vo
y

Ren NgCS184/284A

Things to Remember

Many uses of texturing

• Bring high-resolution data to fragment calculations

• Colors, normals, lighting on sphere, volumetric data, …

How does texturing work?

• Texture coordinate parameterization

• Barycentric interpolation of coordinates

• Texture sampling pattern and frequency

• Mipmaps: texture filtering hierarchy, level calculation,
trilinear interpolation

• Anisotropic sampling

Ren NgCS184/284A

Acknowledgments

Thanks to Kayvon Fatahalian, Steve Marschner, Mark
Pauly and Angjoo Kanazawa for presentation
resources.

Bonus Slides

Examples of Texture  
Coordinate Functions

Ren NgCS184/284A

Examples of Texture Coordinate Functions

A parametric surface (e.g. spline patch)

• Use parameter space coordinates as texture
coordinates directly 

[W
ol

fe
 /

SG
97

 S
lid

e
se

t]

Ren NgCS184/284A

Planar projection

Examples of Texture Coordinate Functions

Rosalee Wolfe

http://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/r_wolfe_mapping_1.htm

Ren NgCS184/284A

Examples of Texture Coordinate Functions

Rosalee Wolfe

http://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/r_wolfe_mapping_1.htm

Spherical projection

Ren NgCS184/284A

Examples of Texture Coordinate Functions

Cube map projection

Rosalee Wolfe

http://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/r_wolfe_mapping_1.htm

Ren NgCS184/284A

Function of object or world coordinates?

Examples of Texture Coordinate Functions

Rosalee Wolfe

http://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/r_wolfe_mapping_1.htm

Ren NgCS184/284A

Examples of Texture Coordinate Functions

Complex surfaces: project parts to parametric surfaces

[T
ito

 P
ag

an
]

Ren NgCS184/284A

Creating Good Surface Coordinates is Hard

Finding cuts

Texture atlases

Levy et al: Least Squares Conformal Maps

for Automatic Texture Atlas Generation, SIGGRAPH, 2002

