
Computer Graphics and Imaging
UC Berkeley CS184/284A

Lecture 6:

The Rasterization Pipeline

Ren NgCS184/284A

What We’ve Covered So Far

z
x

y
z
x

y

Compute position of objects
relative to the camera

Project objects onto
the screen

(0, 0)

(w, h)

Sample triangle coverage Interpolate triangle attributes Sample texture maps

Position objects and the
camera in the world

Ren NgCS184/284A

Rotating Cubes in Perspective

Ren NgCS184/284A

Rotating Cubes in Perspective

What Else Are We Missing?

Credit: Bertrand Benoit. “Sweet Feast,” 2009. [Blender /VRay]

What Else Are We Missing?

Credit: Giuseppe Albergo. “Colibri” [Blender]

Ren NgCS184/284A

What Else Are We Missing?

Surface representations

• Objects in the real world exhibit
highly complex geometric details

Lighting and materials

• Appearance is a result of how light
sources reflect off complex materials

Camera models

• Real lenses create images with
focusing and other optical effects

Ren NgCS184/284A

Course Roadmap
Intro
Rasterization
Transforms & Projection
Texture Mapping
Today: Visibility, Shading, Overall Pipeline

Rasterization Pipeline

Geometric Modeling

Lighting & Materials

Cameras & Imaging

Core Concepts
• Sampling
• Antialiasing
• Transforms

Visibility

Ren NgCS184/284A

Inspired by how painters paint
Paint from back to front, overwrite in the framebuffer

Painter’s Algorithm

[Wikipedia]

Ren NgCS184/284A

Painter’s Algorithm

Requires sorting in depth (O(n log n) for n triangles)
Can have unresolvable depth order

[F
ol

ey
 e

t a
l.]

Ren NgCS184/284A

Z-Buffer

This is the hidden-surface-removal algorithm that
eventually won.
Idea:

• Store current min. z-value for each sample position

• Needs an additional buffer for depth values

• framebuffer stores RBG color values

• depth buffer (z-buffer) stores depth (16 to 32 bits)

Ren NgCS184/284A

Z-Buffer Example
Im

age credit: D
om

inic Alves, flickr.

Rendering Depth buffer

Ren NgCS184/284A

Z-Buffer Algorithm

Initialize depth buffer to ∞
During rasterization:

for (each triangle T)
for (each sample (x,y,z) in T)

if (z < zbuffer[x,y]) // closest sample so far
framebuffer[x,y] = rgb; // update color
zbuffer[x,y] = z; // update z

else
; // do nothing, this sample is not closest

Ren NgCS184/284A

Z-Buffer Algorithm

Ren NgCS184/284A

Z-Buffer Complexity

Complexity

• O(n) for n triangles

• How can we sort n triangles in linear time?
Most important visibility algorithm

• Implemented in hardware for all GPUs

• Used by OpenGL

Simple Shading
(Blinn-Phong Reflection Model)

Ren NgCS184/284A

Simple Shading vs Realistic Lighting & Materials

What we will cover today

• A local shading model: simple, per-pixel, fast

• Based on perceptual observations, not physics

What we will cover later in the course

• Physics-based lighting and material representations

• Global light transport simulation

Perceptual Observations

Photo credit: Jessica Andrews, flickr

Specular highlights

Diffuse reflection

Ambient lighting

Ren NgCS184/284A

Local Shading

Compute light reflected toward camera

Inputs:

• Viewer direction, v

• Surface normal, n

• Light direction, l
(for each of many lights)

• Surface parameters
(color, shininess, …)

v
l n

Ren NgCS184/284A

Diffuse Reflection

Light is scattered uniformly in all directions

• Surface color is the same for all viewing directions
Lambert’s cosine law

Top face of cube
receives a certain
amount of light

Top face of
60º rotated cube

intercepts half the light

In general, light per unit
area is proportional to

cos θ = l • n

l n
θ

Ren NgCS184/284A

r
intensity
here: I/r2

I

1

intensity
here:

Light Falloff

Ren NgCS184/284A

Lambertian (Diffuse) Shading

Shading independent of view direction

diffuse
coefficient

diffusely
reflected

light

illumination
from source

v
l n

θ
Ld = kd (I/r

2)max(0,n · l)

Ren NgCS184/284A

Lambertian (Diffuse) Shading

Produces matte appearance

[F
ol

ey
 e

t
al

.]

kd

Perceptual Observations

Photo credit: Jessica Andrews, flickr

Specular highlights

Diffuse reflection

Ambient lighting

Ren NgCS184/284A

Specular Shading (Blinn-Phong)

Intensity depends on view direction

• Bright near mirror reflection direction

v
l n

Ren NgCS184/284A

Specular Shading (Blinn-Phong)

Close to mirror direction ⇔ half vector near normal

• Measure “near” by dot product of unit vectors

specular
coefficient

specularly
reflected

light

n
v

h
α

l

h = bisector(v, l)

=
v + l
�v + l�

Ls = ks (I/r
2)max(0, cos↵)p

= ks (I/r
2)max(0,n · h)p

Ren NgCS184/284A

Cosine Power Plots

Increasing p narrows the reflection lobe

[F
ol

ey
 e

t
al

.]

Ren NgCS184/284A

Specular Shading (Blinn-Phong)

[F
ol

ey
 e

t
al

.]

ks

p

Ls = ks (I/r
2)max(0, cos↵)p

= ks (I/r
2)max(0,n · h)pLs = ks (I/r
2)max(0, cos↵)p

= ks (I/r
2)max(0,n · h)p

Perceptual Observations

Photo credit: Jessica Andrews, flickr

Specular highlights

Diffuse reflection

Ambient lighting

Ren NgCS184/284A

Ambient Shading

Shading that does not depend on anything

• Add constant color to account for disregarded
illumination and fill in black shadows

ambient
coefficient

reflected
ambient

light

La = ka Ia

Ren NgCS184/284A

Blinn-Phong Reflection Model

Ambient Diffuse Specular Phong Reflection+ + =

L = La + Ld + Ls

= ka Ia + kd (I/r
2)max(0,n · l) + ks (I/r

2)max(0,n · h)p

Ren NgCS184/284A

Blinn-Phong Reflection Model

L = La + Ld + Ls

= ka Ia + kd (I/r
2)max(0,n · l) + ks (I/r

2)max(0,n · h)p

Shading Triangle Meshes

Ren NgCS184/284A

Shading Frequency: Triangle, Vertex or Pixel

Shade each triangle (flat shading)

• Triangle face is flat — one normal vector

• Not good for smooth surfaces

Shade each vertex (“Gouraud” shading)

• Interpolate colors from vertices across triangle

• Each vertex has a normal vector

Shade each pixel (“Phong” shading)

• Interpolate normal vectors across each triangle

• Compute full shading model at each pixel

Shading Frequency: Face, Vertex or Pixel

Image credit: Happyman, http://cg2010studio.com/

Num
Vertices

Face
Flat

Vertex
Gouraud

Pixel
Phong (*)

Shading freq. :
Shading type :

Ren NgCS184/284A

Best to get vertex normals from
the underlying geometry

• e.g. consider a sphere

Otherwise have to infer vertex
normals from triangle faces

• Simple scheme: average
surrounding face normals

Defining Per-Vertex Normal Vectors

Ren NgCS184/284A

Barycentric interpolation of vertex normals

Defining Per-Pixel Normal Vectors

Problem: length of vectors?

Rasterization Pipeline

Ren NgCS184/284A

Rasterization Pipeline

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Display

 Application 1

2

3

4 Input: vertices in 3D space

Vertex Stream Vertices positioned in screen space

Triangle Stream Triangles positioned in screen space

Fragment Stream Fragments (one per covered sample)

Shaded Fragments Shaded fragments

Output: image (pixels)

Ren NgCS184/284A

Rasterization Pipeline

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

z

x

y

Modeling & viewing transforms

Ren NgCS184/284A

Rasterization Pipeline

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

Sampling triangle coverage

Ren NgCS184/284A

Rasterization Pipeline

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

+ Specular Phong Reflection=

Ambient Diffuse+

Evaluating shading functions

Ren NgCS184/284A

Rasterization Pipeline

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

Texture mapping

Ren NgCS184/284A

Rasterization Pipeline

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

Z-Buffer Visibility Tests

• Program vertex and fragment processing stages
• Describe operation on a single vertex (or fragment)

Shader Programs

Example GLSL fragment shader program

uniform sampler2D myTexture;
uniform vec3 lightDir;
varying vec2 uv;
varying vec3 norm;

void diffuseShader()
{
 vec3 kd;
 kd = texture2d(myTexture, uv);
 kd *= clamp(dot(–lightDir, norm), 0.0, 1.0);
 gl_FragColor = vec4(kd, 1.0);
}

• Shader function executes
once per fragment.

• Outputs color of surface
at the current fragment’s
screen sample position.

• This shader performs a
texture lookup to obtain
the surface’s material
color at this point, then
performs a diffuse
lighting calculation.

• Program vertex and fragment processing stages
• Describe operation on a single vertex (or fragment)

Shader Programs

Example GLSL fragment shader program

uniform sampler2D myTexture; // program parameter
uniform vec3 lightDir; // program parameter
varying vec2 uv; // per fragment value (interp. by rasterizer)
varying vec3 norm; // per fragment value (interp. by rasterizer)

void diffuseShader()
{
 vec3 kd;
 kd = texture2d(myTexture, uv); // material color from texture
 kd *= clamp(dot(–lightDir, norm), 0.0, 1.0); // Lambertian shading model
 gl_FragColor = vec4(kd, 1.0); // output fragment color
}

Ren NgCS184/284A

Shading from Today is Phenomenological (Hack)

Ren NgCS184/284A

Things to Remember

Visibility

• Painter’s algorithm and Z-Buffer algorithm
Simple Shading Model

• Key geometry: lighting, viewing & normal vectors

• Ambient, diffuse & specular reflection functions

• Shading frequency: triangle, vertex or fragment
Graphics Rasterization Pipeline

• Where do transforms, rasterization, shading, texturing
and visibility computations occur?

• GPU = parallel processor implementing graphics pipeline

Ren NgCS184/284A

Acknowledgments

Thanks to Steve Marschner, Mark Pauly, Kayvon
Fatahalian and Angjoo Kanazawa for presentation
resources.

