Lecture 8:

Mesh Representations \&
 Geometry Processing

Computer Graphics and Imaging UC Berkeley CS184/284A

Mesh Examples

A Small Triangle Mesh

8 vertices, 12 triangles

A Large Triangle Mesh

David

Digital Michelangelo Project 28,184,526 vertices 56,230,343 triangles

A Very Large Triangle Mesh

Google Earth

Meshes reconstructed from satellite and aerial photography Trillions of triangles

Digital Geometry Processing

Geometry Processing Tasks: 3 Examples

Mesh Upsampling - Subdivision

Increase resolution via subdivision

Mesh Downsampling - Simplification

Decrease resolution; try to preserve shape/appearance

Mesh Regularization

Modify sample distribution to improve quality

Mesh Representations

List of Triangles

CS184/284A

Lists of Points / Indexed Triangle

Comparison

Triangles

+ Simple
- Redundant information

Points + Triangles

+ Sharing vertices reduces memory usage
+ Ensure integrity of the mesh (moving a vertex causes that vertex in all the polygons to move)

Topology vs Geometry

Same geometry, different mesh topology

Same mesh topology, different geometry

Topology vs Geometry

Topology vs Geometry

Meshes with same topology allow easy interpolation.

$$
V_{\text {new }}=\alpha V_{1}+(1-\alpha) V_{2}
$$

Note that basic linear interpolation may not be semantically correct.

Rotation

Linear

Same topology / Different Geometry

Topological Mesh Information

Applications:

- Constant time access to neighbors e.g. surface normal calculation, subdivision
- Editing the geometry e.g. adding/removing vertices, faces, edges, etc.

Solution: Topological data structures

Topological Validity: Manifold

Definition: a 2D manifold is a surface that when cut with a small sphere always yields a disk.

Manifold

With border

CS184/284A

With border

Ren $\mathbf{N g}$

Topological Validity: Manifold

Definition: a 2D manifold is a surface that when cut with a small sphere always yields a "disk".

If a mesh is manifold we can rely on these useful properties:

- An edge connects exactly two faces
- An edge connects exactly two vertices
- A face consists of a ring of edges and vertices
- A vertex consists of a ring of edges and faces
- Euler's polyhedron formula holds: \#f - \#e + \#v = 2 (for a surface topologically equivalent to a sphere) (Check for a cube: 6-12+8=2)

Topological Validity: Orientation Consistency

Both facing front

Inconsistent orientations

Non-orientable

Mesh Data Structures

Triangle-Neighbor Data Structure

Triangle-Neighbor - Mesh Traversal

Find next triangle counter-clockwise around vertex v from triangle t

Half-Edge Data Structure

```
struct Halfedge {
    Halfedge *twin,
    Halfedge *next;
    Vertex *vertex;
    Edge *edge;
    Face *face;
}
struct Vertex {
    Point pt;
    Halfedge *halfedge;
}
struct Edge {
    Halfedge *halfedge;
}
struct Face {
    Halfedge *halfedge;
}

Key idea: two half-edges act as
"glue" between mesh elements


Each vertex, edge and face points to one of its half edges

\section*{Half-Edge Facilitates Mesh Traversal}

Use twin and next pointers to move around mesh
Process vertex, edge and/or face pointers
Example 1: process all vertices of a face

Halfedge* \(h=f\)->halfedge;
do \{
process(h->vertex);
h = h->next;
\}
while( h ! = f->halfedge );

\section*{Half-Edge Facilitates Mesh Traversal}

Example 2: process all edges around a vertex

Halfedge* h = v->halfedge; do \{
process(h->edge);
h = h->twin->next;
\} while( h != v->halfedge );


CS184/284A
Ren Ng

\section*{Local Mesh Operations}

\section*{Half-Edge - Local Mesh Editing}

Basic operations for linked list: insert, delete
Basic ops for half-edge mesh: flip, split, collapse edges


Allocate / delete elements; reassign pointers
(Care needed to preserve mesh manifold property)

\section*{Half-Edge - Edge Flip}
- Triangles ( \(a, b, c\) ), ( \(b, d, c\) ) become ( \(a, d, c\) ), \((a, b, d)\) :

- Long list of pointer reassignments
- However, no elements created/destroyed.

\section*{Half-Edge - Edge Split}
- Insert midpoint m of edge (c,b), connect to get four triangles:

- This time have to add elements
- Again, many pointer reassignments

\section*{Half-Edge - Edge Collapse}
- Replace edge ( \(c, d\) ) with a single vertex \(m\) :

- This time have to delete elements
- Again, many pointer reassignments

\section*{Global Mesh Operations}

\section*{Global Mesh Operations: Geometry Processing}
- Mesh subdivision
- Mesh simplification
- Mesh regularization


\section*{Subdivision Surfaces}

\section*{Subdivision Surfaces}

Start with coarse polygon mesh ("control cage")
- Subdivide each element
- Update vertices via local averaging

Many possible rules:
- Catmull-Clark (quads)
- Loop (triangles)

Common issues:

- interpolating or approximating?
- continuity at vertices?


Relatively easy for modeling; harder to guarantee continuity

\section*{Core Idea: Let Subdivision Define The Surface}

In Bezier curves, we saw:
- Evaluation by subdivision (de Casteljau algorithm)
- Or evaluation by algebra (Bernstein polynomials)

Insight that leads to subdivision surfaces:
- Free ourselves from the algebraic evaluation
- Let subdivision fully define the surface

Many possible subdivision rules - different surfaces
- Technical challenge shifts to designing rules and proving properties (e.g. convergence and continuity)
- Applying rules to compute surface is procedural

\section*{Loop Subdivision}

\section*{Loop Subdivision}

Common subdivision rule for triangle meshes "C2" smoothness away from irregular vertices
Approximating, not interpolating

uemxyn」 uom!s

\section*{Loop Subdivision Algorithm}
- Split each triangle into four

- Assign new vertex positions according to weights:

n : vertex degree u: \(\mathbf{3 / 1 6}\) if \(n=3,3 /(8 n)\) otherwise

New vertices
Old vertices

\section*{Loop Subdivision Algorithm}

Example, for degree 6 vertices


\section*{Loop Subdivision Algorithm}


Simon Fuhrman

\section*{Semi-Regular Meshes}

Most of the mesh has vertices with degree 6

But if the mesh is topologically equivalent to a sphere, then not all the vertices can have degree 6
Must have a few extraordinary points (degree not equal to 6 )

\section*{Extraordinary point}


\section*{Proof: Always an Extraordinary Vertex}

Our mesh (topologically equivalent to sphere) has V vertices, E edges, and Ttriangles
\(E=3 / 2 T\)
- There are 3 edges per triangle, and each edge is part of 2 triangles
- Therefore \(\mathrm{E}=3 / 2 \mathrm{~T}\)
\(\mathrm{T}=2 \mathrm{~V}-4\)
- Euler Convex Polyhedron Formula: T-E + V = 2
- => \(\mathrm{V}=3 / 2 \mathrm{~T}-\mathrm{T}+2\) => \(\mathrm{T}=2 \mathrm{~V}-4\)

If all vertices had 6 triangles, \(T=2 V\)
- There are 6 edges per vertex, and every edge connects 2 vertices
- Therefore, \(\mathrm{E}=6 / 2 \mathrm{~V} \Rightarrow 3 / 2 \mathrm{~T}=6 / 2 \mathrm{~V}=>\mathrm{T}=2 \mathrm{~V}\)

T cannot equal both \(2 \mathrm{~V}-4\) and 2 V , a contradiction
- Therefore, the mesh cannot have 6 triangles for every vertex

\section*{Loop Subdivision via Edge Operations}

First, split edges of original mesh in any order:


Next, flip new edges that touch a new \& old vertex:

(Don't forget to update vertex positions!)

\section*{Continuity of Loop Subdivision Surface}

At extraordinary points
- Surface is at least \(\mathrm{C}^{1}\) continuous

Everywhere else ("ordinary" regions)
- Surface is \(\mathrm{C}^{2}\) continuous

\section*{Loop Subdivision Results}


\section*{Catmull-Clark Subdivision}

Catmull-Clark Subdivision (Regular Quad Mesh)


\section*{Catmull-Clark Subdivision (Regular Quad Mesh)}


\section*{Catmull-Clark Subdivision (Regular Quad Mesh)}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Catmull-Clark Vertex Update Rules (Quad Mesh)}

Face point

\[
\begin{aligned}
& f=\frac{v_{1}+v_{2}+v_{3}+v_{4}}{4} \\
& e=\frac{v_{1}+v_{2}+f_{1}+f_{2}}{4}
\end{aligned}
\]

Edge point



Vertex point
\[
v=\frac{f_{1}+f_{2}+f_{3}+f_{4}+2\left(m_{1}+m_{2}+m_{3}+m_{4}\right)+4 p}{16}
\]
\(m\) midpoint of edge, not "edge point"
p old "vertex point"

\section*{Catmull-Clark Subdivision (General Mesh)}


\section*{Catmull-Clark Subdivision (General Mesh)}


\section*{Catmull-Clark Subdivision (General Mesh)}


\section*{Catmull-Clark Subdivision (General Mesh)}


\section*{Catmull-Clark Vertex Update Rules (General Mesh)}
\(f=\) average of surrounding vertices
\[
\begin{aligned}
& e=\frac{f_{1}+f_{2}+v_{1}+v_{2}}{4} \\
& v=\frac{\bar{f}}{n}+\frac{2 \bar{m}}{n}+\frac{p(n-3)}{n}
\end{aligned}
\]
These rules reduce to earlier quad rules for ordinary vertices / faces
\(\bar{m}=\) average of adjacent midpoints
\(\bar{f}=\) average of adjacent face points
\(n=\) valence of vertex
\(p=\) old "vertex" point

\section*{Continuity of Catmull-Clark Surface}

At extraordinary points
- Surface is at least \(\mathrm{C}^{1}\) continuous

Everywhere else ("ordinary" regions)
- Surface is \(\mathrm{C}^{2}\) continuous

\section*{What About Sharp Creases?}


From Pixar Short, "Geri's Game"
Hand is modeled as a Catmull Clark surface with creases between skin and fingernail

\section*{What About Sharp Creases?}

Loop with Sharp Creases


Catmull-Clark with Sharp Creases


Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases

\section*{Creases + Boundaries}

Can create creases in subdivision surfaces by marking certain edges as "sharp". Boundary edges can be handled the same way
- Use different subdivision rules for vertices along these "sharp" edges


Insert new midpoint vertex, weights as shown


Update existing vertices, weights as shown

\section*{Subdivision in Action ("Geri's Game", Pixar)}

Subdivision used for entire character:
- Hands and head
- Clothing, tie, shoes

Subdivision in Action (Pixar's "Geri's Game")


Mesh Simplification

\section*{How Do We Resample Meshes? (Reminder)}

Edge split is (local) upsampling:


Edge collapse is (local) downsampling:

Edge flip is (local) resampling:


Still need to intelligently decide which edges to modify!

\section*{Mesh Simplification}

Goal: reduce number of mesh elements while maintaining overall shape


30,000 triangles



3,000



300
8


30

How to compute?

\section*{Estimate: Error Introduced by Collapsing An Edge?}
- How much geometric error for collapsing an edge?


\section*{Sketch of Quadric Error Mesh Simplification}

\section*{Simplification via Quadric Error}

Iteratively collapse edges
Which edges? Assign score with quadric error metric*
- approximate distance to surface as sum of distances to planes containing triangles
- iteratively collapse edge with smallest score
- greedy algorithm... great results!
* (Garland \& Heckbert 1997)


Ren Ng

\section*{Quadric Error Matrix}

Key idea:
- \(4 \times 4\) ("quadric") symmetric matrix encodes distance to plane

For plane \(a x+b y+c z+d=0\)
- Distance of query point ( \(x, y, z\) ) from plane is given by \(u^{\top} Q u\) :
- \(u:=(x, y, z, 1)^{\top}\) is the query point in homogeneous coordinates
- And Q is a symmetric matrix as follows:
\[
Q=\left[\begin{array}{llll}
a^{2} & a b & a c & a d \\
a b & b^{2} & b c & b d \\
a c & b c & c^{2} & c d \\
a d & b d & c d & d^{2}
\end{array}\right]
\]
- Q contains 10 unique coefficients (small storage)

\section*{Quadric Error Matrix: Derivation}
\(\begin{array}{lc}\text { - Suppose in coordinates we have } \\ \text { - a query point }(\mathbf{x}, \mathbf{y}, \mathbf{z}) & Q=\left[\begin{array}{llll}a^{2} & a b & a c & a d \\ a b & b^{2} & b c & b d \\ \text { - a normal ( } \mathbf{a}, \mathbf{b}, \mathbf{c}) \\ \text { - an offset } \mathbf{d}:=-\left(\mathbf{x}_{\mathbf{p}}, \mathbf{y}_{\mathbf{p}}, \mathbf{z}_{\mathrm{p}}\right) \bullet(\mathbf{a}, \mathbf{b}, \mathbf{c})\end{array}\right]\end{array}\)
- Then in homogeneous coordinates, let
- \(u:=(x, y, z, 1)\)
- \(v:=(a, b, c, d)\)
- Signed distance to plane is then
\(\mathrm{D}=\mathbf{u} \mathbf{v}^{\boldsymbol{\top}}=\mathbf{v u} \mathbf{u}^{\top}=a \mathrm{x}+\mathrm{by}+\mathrm{cz}+\mathrm{d}\)
- Squared distance is \(D^{2}=\left(u v^{\top}\right)\left(v u^{\top}\right)=u\left(v^{\top} v\right) u^{\top}:=u^{\top} \mathbf{Q u}\)

\section*{Quadric Error At Vertex}

Approximate distance to vertex's triangles as sum of distances to each triangle's plane.
Encode this as a single quadric matrix for the vertex that is the sum of quadric error matrices for all triangles
\(\mathrm{Q}_{\mathrm{V}}\)

\[
Q_{V}=\sum_{i=1}^{N} Q_{i}
\]

\section*{Quadric Error of Edge Collapse}
- How much does it cost to collapse an edge?
- Idea: compute edge midpoint, measure quadric error

- Better idea: choose point that minimizes quadric error
- More details: Garland \& Heckbert 1997.

\section*{Quadric Error Simplification: Algorithm}
- Compute quadric error matrix \(Q\) for each triangle
- Set \(Q\) at each vertex to sum of \(Q s\) from neighbor triangles
- Set \(Q\) at each edge to sum of \(O s\) at endpoints
- Find point at each edge minimizing quadric error
- Until we reach target \# of triangles:

- collapse edge ( \(\mathrm{i}, \mathrm{j}\) ) with smallest cost to get new vertex \(m\)
- add \(\mathrm{Q}_{\mathrm{i}}\) and \(\mathrm{Q}_{\mathrm{j}}\) to get quadric \(\mathrm{Q}_{\mathrm{m}}\) at vertex m
- update cost of edges touching vertex m


\section*{Quadric Error Mesh Simplification}


Mesh Regularization

\section*{What Makes a "Good" Triangle Mesh?}

One rule of thumb: triangle shape

More specific condition: Delaunay

- "Circumcircle interiors contain no vertices."

Not always a good condition, but often*
- Good for simulation
- Not always best for shape approximation

*See Shewchuk, "What is a Good Linear Element"

\section*{What Else Constitutes a Good Mesh?}

Rule of thumb: regular vertex degree
Triangle meshes: ideal is every vertex with valence 6:

"GOOD

"OK"

"BAD"

Why? Better triangle shape, important for (e.g.) subdivision:

*See Shewchuk, "What is a Good Linear Element"

\section*{Isotropic Remeshing}

\section*{Try to make triangles uniform in shape and size}


CS184/284A
Ren \(\mathbf{N g}\)

\section*{How Do We Improve Degree?}

Edge flips!
If total deviation from degree 6 gets smaller, flip it!


Iterative edge flipping acts like "discrete diffusion" of degree
No (known) guarantees; works well in practice

\section*{How Do We Make Triangles "More Round"?}

Delaunay doesn't mean equilateral triangles
Can often improve shape by centering vertices:

[Crane, "Digital Geometry Processing with Discrete Exterior Calculus"]

\section*{Isotropic Remeshing Algorithm*}

\section*{Repeat four steps:}
- Split edges over 4/3rds mean edge legth
- Collapse edges less than \(4 / 5\) ths mean edge length
- Flip edges to improve vertex degree
- Center vertices tangentially
*Based on Botsch \& Kobbelt, "A Remeshing Approach to Multiresolution Modeling"

\section*{Things to Remember}

Triangle mesh representations
- Triangles vs points+triangles
- Half-edge structure for mesh traversal and editing

Geometry processing basics
- Local operations: flip, split, and collapse edges
- Upsampling by subdivision (Loop, Catmull-Clark)
- Downsampling by simplification (Quadric error)
- Regularization by isotropic remeshing

\section*{Acknowledgments}

This slide set contain contributions from:
- Kayvon Fatahalian
- David Forsyth
- Pat Hanrahan
- Angjoo Kanazawa
- Steve Marschner
- Ren Ng
- James O'Brien
- Mark Pauly```

