
Computer Graphics and Imaging
UC Berkeley CS184/284A

Lecture 8:

Mesh Representations &
Geometry Processing

Mesh Examples

CS184/284A Ren Ng

A Small Triangle Mesh

8 vertices, 12 triangles

CS184/284A Ren Ng

A Large Triangle Mesh

David
Digital Michelangelo Project
28,184,526 vertices
56,230,343 triangles

CS184/284A Ren Ng

A Very Large Triangle Mesh

Google Earth
Meshes reconstructed from satellite and aerial photography
Trillions of triangles

Digital Geometry Processing
3D

 Scanning
3D

 Printing

Geometry Processing
Tasks: 3 Examples

CS184/284A Ren Ng

Mesh Upsampling – Subdivision

Increase resolution via subdivision

CS184/284A Ren Ng

Mesh Downsampling – Simplification

Decrease resolution; try to preserve shape/appearance

CS184/284A Ren Ng

Mesh Regularization

Modify sample distribution to improve quality

Mesh Representations

CS184/284A Ren Ng

List of Triangles

CS184/284A Ren Ng

Lists of Points / Indexed Triangle

CS184/284A Ren Ng

Comparison

Triangles
 + Simple
 – Redundant information

Points + Triangles
 + Sharing vertices reduces memory usage
 + Ensure integrity of the mesh (moving a vertex
 causes that vertex in all the polygons to move)

CS184/284A Ren Ng

Topology vs Geometry

Same geometry, different mesh topology

Same mesh topology, different geometry

CS184/284A Ren Ng

Topology vs Geometry

Same topology / Different Geometry

CS184/284A Ren Ng

Topology vs Geometry

Same topology / Different Geometry

Meshes with same topology allow
easy interpolation.

Note that basic linear interpolation may
not be semantically correct.

Vnew = αV1 + (1 − α)V2

Linear
Rotation

CS184/284A Ren Ng

Topological Mesh Information

Applications:

• Constant time access to neighbors
e.g. surface normal calculation, subdivision

• Editing the geometry
e.g. adding/removing vertices, faces, edges, etc.

Solution: Topological data structures

CS184/284A Ren Ng

Definition: a 2D manifold is a surface that when cut with a
small sphere always yields a disk.

Mesh manifolds have the following properties:

• An edge connects exactly two faces

• An edge connects exactly two vertices

• A face consists of a ring of edges and vertices

• A vertex consists of a ring of edges and faces

• Euler’s formula #f - #e + #v = 2 (for a surface
topologically equivalent to a sphere)
(Check for a cube: 6 – 12 + 8 = 2)

Topological Validity: Manifold

Manifold Not manifold

With border With border

CS184/284A Ren Ng

Topological Validity: Manifold

Definition: a 2D manifold is a surface that when cut with a
small sphere always yields a “disk”.

If a mesh is manifold we can rely on these useful properties:

• An edge connects exactly two faces

• An edge connects exactly two vertices

• A face consists of a ring of edges and vertices

• A vertex consists of a ring of edges and faces

• Euler’s polyhedron formula holds: #f – #e + #v = 2
(for a surface topologically equivalent to a sphere)
(Check for a cube: 6 – 12 + 8 = 2)

CS184/284A Ren Ng

Topological Validity: Orientation Consistency

AB

C

D

AB

C

D

OK bad

Non-orientable

Both facing front

AB

C

D

AB

C

D

OK bad

Inconsistent orientations

Mesh Data Structures

CS184/284A Ren Ng

Triangle-Neighbor Data Structure

struct Tri {
Vert * v[3];
Tri * t[3];

}

struct Vert {
Point pt;
Tri *t;

}

t[0]

t[1]t[2]

v[0]

v[1]

v[2]

CS184/284A Ren Ng

Triangle-Neighbor – Mesh Traversal

Tri *tccwvt(Vert *v, Tri *t)
{

if (v == t->v[0])
return t->t[0];

if (v == t->v[1])
return t->t[1];

if (v == t->v[2])
return t->t[2];

}

t[0]

t[1]t[2]

v[0]

v[1]

v[2]

Find next triangle counter-clockwise around vertex v
from triangle t

CS184/284A Ren Ng

Half-Edge Data Structure

H
a
l
f
e
d
g
e

twin

e
d
g
e

next

vertex

face

struct Halfedge {

 Halfedge *twin,

 Halfedge *next;

 Vertex *vertex;

 Edge *edge;

 Face *face;

}

Key idea: two half-edges act as
“glue” between mesh elements

Each vertex, edge and face points
to one of its half edges

struct Vertex {

 Point pt;

 Halfedge *halfedge;

}

struct Edge {

 Halfedge *halfedge;

}

struct Face {

 Halfedge *halfedge;

}

CS184/284A Ren Ng

Half-Edge Facilitates Mesh Traversal

Use twin and next pointers to move around mesh
Process vertex, edge and/or face pointers

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
 process(h->vertex);
 h = h->next;
}
while(h != f->halfedge);

Example 1: process all vertices of a face

CS184/284A Ren Ng

Half-Edge Facilitates Mesh Traversal

Example 2: process all edges around a vertex

Halfedge* h = v->halfedge;
do {
 process(h->edge);
 h = h->twin->next;
}
while(h != v->halfedge);

ha
lf
ed
ge

twin

twin

next

next
Vertex

Local Mesh Operations

CS184/284A Ren Ng

Half-Edge – Local Mesh Editing

Basic operations for linked list: insert, delete
Basic ops for half-edge mesh: flip, split, collapse edges

b

c

a d

b

c

a d

flip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

Allocate / delete elements; reassign pointers
(Care needed to preserve mesh manifold property)

CS184/284A Ren Ng

Half-Edge – Edge Flip

• Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

b

c

a d

b

c

a d

flip

• Long list of pointer reassignments

• However, no elements created/destroyed.

CS184/284A Ren Ng

Half-Edge – Edge Split

• Insert midpoint m of edge (c,b), connect to get
four triangles:

• This time have to add elements

• Again, many pointer reassignments

b

m

c

a d

b

c

a d

split

CS184/284A Ren Ng

Half-Edge – Edge Collapse

• Replace edge (c,d) with a single vertex m:

• This time have to delete elements

• Again, many pointer reassignments

a

b

c d

a

b

m

collapse

Global Mesh Operations

CS184/284A Ren Ng

Global Mesh Operations: Geometry Processing

• Mesh subdivision

• Mesh simplification

• Mesh regularization

Subdivision Surfaces

CS184/284A Ren Ng

Subdivision Surfaces

Start with coarse polygon mesh (“control cage”)

• Subdivide each element

• Update vertices via local averaging
Many possible rules:

• Catmull-Clark (quads)

• Loop (triangles)

• ...
Common issues:

• interpolating or approximating?

• continuity at vertices?
Relatively easy for modeling; harder to guarantee continuity

CS184/284A Ren Ng

Core Idea: Let Subdivision Define The Surface

In Bezier curves, we saw:

• Evaluation by subdivision (de Casteljau algorithm)

• Or evaluation by algebra (Bernstein polynomials)
Insight that leads to subdivision surfaces:

• Free ourselves from the algebraic evaluation

• Let subdivision fully define the surface
Many possible subdivision rules – different surfaces

• Technical challenge shifts to designing rules and proving
properties (e.g. convergence and continuity)

• Applying rules to compute surface is procedural

Loop Subdivision

Ren NgCS184/284A

Loop Subdivision

Common subdivision rule for triangle meshes
“C2” smoothness away from irregular vertices
Approximating, not interpolating

Sim
on Fuhrm

an

Loop Subdivision Algorithm

• Split each triangle into four

1/8

1/8

3/83/8

New vertices

u u

u u

u u1 – n*u

n: vertex degree

u: 3/16 if n=3, 3/(8n) otherwise

Old vertices

• Assign new vertex positions according to weights:

CS184/284A Ren Ng

Loop Subdivision Algorithm

Example, for degree 6 vertices

10/16

1/16

1/16 1/16

1/16

1/16 1/16

CS184/284A Ren Ng

Loop Subdivision Algorithm

Simon Fuhrman

CS184/284A Ren Ng

Semi-Regular Meshes

Most of the mesh has
vertices with degree 6
But if the mesh is
topologically equivalent to
a sphere, then not all the
vertices can have degree 6
Must have a few
extraordinary points
(degree not equal to 6)

Extraordinary point

CS184/284A Ren Ng

Proof: Always an Extraordinary Vertex

Our mesh (topologically equivalent to sphere) has V vertices, E edges, and
T triangles
E = 3/2 T

• There are 3 edges per triangle, and each edge is part of 2 triangles

• Therefore E = 3/2T
T = 2V – 4

• Euler Convex Polyhedron Formula: T – E + V = 2

• => V = 3/2 T – T + 2 => T = 2V – 4
If all vertices had 6 triangles, T = 2V

• There are 6 edges per vertex, and every edge connects 2 vertices

• Therefore, E = 6/2V => 3/2T = 6/2V => T = 2V
T cannot equal both 2V – 4 and 2V, a contradiction

• Therefore, the mesh cannot have 6 triangles for every vertex

Loop Subdivision via Edge Operations

Images cribbed from Keenan Crane, cribbed from Denis Zorin

(Don’t forget to update vertex positions!)

split

First, split edges of original mesh in any order:

flip

Next, flip new edges that touch a new & old vertex:

CS184/284A Ren Ng

Continuity of Loop Subdivision Surface

At extraordinary points

• Surface is at least C1 continuous
Everywhere else (“ordinary” regions)

• Surface is C2 continuous

CS184/284A Ren Ng

Loop Subdivision Results

Catmull-Clark Subdivision

Ren NgCS184/284A

Catmull-Clark Subdivision (Regular Quad Mesh)

Ren NgCS184/284A

Catmull-Clark Subdivision (Regular Quad Mesh)

Ren NgCS184/284A

Catmull-Clark Subdivision (Regular Quad Mesh)

Each subdivision step:
 Add vertex in each face
 Add midpoint on each edge
 Connect all new vertices

Ren NgCS184/284A

Catmull-Clark Vertex Update Rules (Quad Mesh)

Face point f =
v1 + v2 + v3 + v4

4v1

v2 v3

v4

f

v1

v2

f1 f2
e

e =
v1 + v2 + f1 + f2

4

Edge point

f1 f2

f3 f4

p
v

m1

m2

m3

m4

Vertex point

v =
f1 + f2 + f3 + f4 +2(m1 +m2 +m3 +m4)+4p

16

m midpoint of edge, not “edge point”
p old “vertex point”

Catmull-Clark Subdivision (General Mesh)

Non-quad face

Extraordinary
vertex
(valence != 4)

Each subdivision step:
 Add vertex in each face
 Add midpoint on each edge
 Connect all new vertices

Ren NgCS184/284A

Catmull-Clark Subdivision (General Mesh)

How many extraordinary
vertices after first subdivision?
What are their valences?
How many non-quad faces?

Ren NgCS184/284A

Catmull-Clark Subdivision (General Mesh)

Ren NgCS184/284A

Catmull-Clark Subdivision (General Mesh)

Ren NgCS184/284A

Catmull-Clark Vertex Update Rules (General Mesh)

f = average of surrounding vertices

e =
f1 + f2 + v1 + v2

4 These rules reduce to
earlier quad rules for
ordinary vertices / facesv =

f̄
n

+
2m̄
n

+
p(n�3)

n

f̄ = average of adjacent face points
m̄ = average of adjacent midpoints

n = valence of vertex
p = old ”vertex” point

Ren NgCS184/284A

Continuity of Catmull-Clark Surface

At extraordinary points

• Surface is at least C1 continuous
Everywhere else (“ordinary” regions)

• Surface is C2 continuous

What About Sharp Creases?

From Pixar Short, “Geri’s Game”
Hand is modeled as a Catmull Clark surface with creases between skin and fingernail

CS184/284A Ren Ng

What About Sharp Creases?

Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases

CS184/284A Ren Ng

Creases + Boundaries

Can create creases in subdivision surfaces by marking
certain edges as “sharp”. Boundary edges can be
handled the same way

• Use different subdivision rules for vertices along
these “sharp” edges

1

2

1

2

1

8

1

8
3

4

Insert new midpoint vertex,
weights as shown

Update existing vertices,
weights as shown

CS184/284A Ren Ng

Subdivision in Action (“Geri’s Game”, Pixar)

Subdivision used for entire
character:

• Hands and head

• Clothing, tie, shoes

Subdivision in Action (Pixar’s “Geri’s Game”)

Mesh Simplification

CS184/284A Ren Ng

How Do We Resample Meshes? (Reminder)

Edge split is (local) upsampling:

Edge collapse is (local) downsampling:

Edge flip is (local) resampling:

Still need to intelligently decide which edges to modify!
b

c

a d

b

c

a d

flip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

CS184/284A Ren Ng

Mesh Simplification

Goal: reduce number of mesh elements while
maintaining overall shape

30,000 triangles 3,000 300 30

How to compute?

CS184/284A Ren Ng

Estimate: Error Introduced by Collapsing An Edge?

• How much geometric error for collapsing an edge?

collapse

Sketch of Quadric Error
Mesh Simplification

CS184/284A Ren Ng

Simplification via Quadric Error

Iteratively collapse edges
Which edges? Assign score with quadric error metric*

• approximate distance to surface as sum of
distances to planes containing triangles

• iteratively collapse edge with smallest score

• greedy algorithm... great results!

* (Garland & Heckbert 1997)

CS184/284A Ren Ng

Quadric Error Matrix

Key idea:

• 4x4 (“quadric”) symmetric matrix encodes distance to plane

For plane ax + by + cz + d = 0

• Distance of query point (x, y, z) from plane is given by uTQu:

• u := (x, y, z, 1)T is the query point in homogeneous coordinates

• And Q is a symmetric matrix as follows:

• Q contains 10 unique coefficients (small storage)

CS184/284A Ren Ng

Quadric Error Matrix: Derivation

• Suppose in coordinates we have

• a query point (x,y,z)

• a normal (a,b,c)

• an offset d := –(xp,yp,zp) • (a,b,c)

• Then in homogeneous coordinates, let

• u := (x,y,z,1)

• v := (a,b,c,d)

• Signed distance to plane is then
D = uvT = vuT = ax+by+cz+d

• Squared distance is D2 = (uvT)(vuT) = u (vTv) uT := uTQu

Quadric Error At Vertex

Approximate distance to vertex’s triangles as sum of
distances to each triangle’s plane.
Encode this as a single quadric matrix for the vertex
that is the sum of quadric error matrices for all
triangles

Q1

Q2Q3

Q4

Q5

QV

QV =
NX

i=1

Qi

CS184/284A Ren Ng

Quadric Error of Edge Collapse

• How much does it cost to collapse an edge?

• Idea: compute edge midpoint, measure quadric error

collapse

• Better idea: choose point that minimizes quadric error

• More details: Garland & Heckbert 1997.

Quadric Error Simplification: Algorithm

• Compute quadric error matrix Q for each triangle

• Set Q at each vertex to sum of Qs from neighbor triangles

• Set Q at each edge to sum of Qs at endpoints

• Find point at each edge minimizing quadric error

• Until we reach target # of triangles:

• collapse edge (i,j) with smallest cost to get new vertex m

• add Qi and Qj to get quadric Qm at vertex m

• update cost of edges touching
vertex m

CS184/284A Ren Ng

Quadric Error Mesh Simplification

5,804 994 532 248 64

G
arland and H

eckbert ‘97

30,000 triangles 3,000 300 30

Mesh Regularization

One rule of thumb: triangle shape

More specific condition: Delaunay
• “Circumcircle interiors contain no vertices.”

Not always a good condition, but often*
• Good for simulation
• Not always best for shape approximation

What Makes a “Good” Triangle Mesh?

“GOO “BAD”

*See Shewchuk, “What is a Good Linear Element”

subdivide

What Else Constitutes a Good Mesh?

Rule of thumb: regular vertex degree
Triangle meshes: ideal is every vertex with valence 6:

Why? Better triangle shape, important for (e.g.)
subdivision:

“GOOD “OK” “BAD”

*See Shewchuk, “What is a Good Linear Element”

CS184/284A Ren Ng

Isotropic Remeshing
Try to make triangles uniform in shape and size

CS184/284A Ren Ng

How Do We Improve Degree?

Edge flips!
If total deviation from degree 6 gets smaller, flip it!

flip

Iterative edge flipping acts like “discrete diffusion” of degree

No (known) guarantees; works well in practice

CS184/284A Ren Ng

How Do We Make Triangles “More Round”?

Delaunay doesn’t mean equilateral triangles
Can often improve shape by centering vertices:

average

[Crane, “Digital Geometry Processing with Discrete Exterior Calculus”]

Isotropic Remeshing Algorithm*

Repeat four steps:

• Split edges over 4/3rds mean edge legth

• Collapse edges less than 4/5ths mean edge length

• Flip edges to improve vertex degree

• Center vertices tangentially

*Based on Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”

CS184/284A Ren Ng

Things to Remember

Triangle mesh representations

• Triangles vs points+triangles

• Half-edge structure for mesh traversal and editing
Geometry processing basics

• Local operations: flip, split, and collapse edges

• Upsampling by subdivision (Loop, Catmull-Clark)

• Downsampling by simplification (Quadric error)

• Regularization by isotropic remeshing

Ren NgCS184/284A

Acknowledgments

This slide set contain contributions from:

• Kayvon Fatahalian

• David Forsyth

• Pat Hanrahan

• Angjoo Kanazawa

• Steve Marschner

• Ren Ng

• James O’Brien

• Mark Pauly

