Lecture 9/10: Intro to Ray-Tracing & Accelerating Ray-Scene Intersection

Computer Graphics and Imaging UC Berkeley CS184/284A

Towards Photorealistic Rendering

Credit: Bertrand Benoit. "Sweet Feast," 2009. [Blender /VRay]

Course Roadmap

Rasterization Pipeline

Core Concepts

- Sampling
- Antialiasing
- Transforms

Geometric Modeling

Core Concepts

- Splines, Bezier Curves
- Topological Mesh Representations
- Subdivision, Geometry Processing

Lighting & Materials

Core Concepts

- Measuring Light
- Unbiased Integral Estimation
- Light Transport & Materials

Cameras & Imaging

Rasterization Transforms & Projection Texture Mapping Intro to Geometry **Curves and Surfaces Geometry Processing** Monte Carlo Integration **Material Modeling**

- Visibility, Shading, Overall Pipeline
- **Ray-Tracing & Acceleration**

- **Radiometry & Photometry**
- **Global Illumination & Path Tracing**

Basic Ray-Tracing Algorithm

Ray Casting

Appel 1968 - Ray casting

- 1. Generate an image by casting one ray per pixel
- 2. Check for shadows by sending a ray to the light

CS184/284A

one ray per pixel a ray to the light

Ray Casting - Generating Eye Rays

Pinhole Camera Model

CS184/284A

Ray Casting - Shading Pixels (Local Only)

Pinhole Camera Model

CS184/284A

"An improved Illumination model for shaded display" T. Whitted, CACM 1980

Time:

- VAX 11/780 (1979) 74m
- PC (2006) 6s
- GPU (2012) 1/30s

CS184/284A

Spheres and Checkerboard, T. Whitted, 1979

CS184/284A

CS184/284A

or ray reflection)

CS184/284A

CS184/284A

- Trace secondary rays recursively until hit a non-specular surface (or max desired levels of recursion)
- At each hit point, trace shadow rays to test light visibility (no contribution if blocked)
- Final pixel color is weighted sum of contributions along rays, as shown
- Gives more sophisticated effects (e.g. specular reflection, refraction, shadows), but we will go much further to derive a physically-based illumination model

CS184/284A

CS184/284A

Ray-Surface Intersection

Ray Intersection With Triangle Mesh

Why?

- Rendering: visibility, shadows, lighting ...
- Geometry: inside/outside test

How to compute?

Let's break this down:

- Simple idea: just intersect ray with each triangle
- Simple, but slow (study acceleration later)
- Note: can have 0, 1 or multiple intersections

ith each triangle tion later) intersections

Ray Equation

Ray is defined by its origin and a direction vector

Ray equation:

Example:

CS184/284A

Plane Equation

CS184/284A

ax + by + cz + d = 0

Ray Intersection With Plane

Ray equation:

 $\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d}, \ 0 \le t < \infty$

Plane equation:

$$\mathbf{p}:(\mathbf{p}-\mathbf{p}')\cdot\mathbf{N}=0$$

Solve for intersection

Set $\mathbf{p} = \mathbf{r}(t)$ and solve for t $(\mathbf{p} - \mathbf{p}') \cdot \mathbf{N} = (\mathbf{o} + t \mathbf{d} - \mathbf{p}') \cdot \mathbf{N} = 0$ $= \frac{(\mathbf{p}' - \mathbf{o}) \cdot \mathbf{N}}{\mathbf{N}}$ t**Check:** $0 \le t < \infty$ $\mathbf{d} \cdot \mathbf{N}$

CS184/284A

Ray Intersection With Triangle

Triangle is in a plane

- Ray-plane intersection
- Test if hit point is inside triangle (Assignment 1!)
- Many ways to optimize...

Can Optimize: e.g. Möller Trumbore Algorithm

CS184/284A

Ray Intersection With Sphere

Ray:
$$\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d}, \ 0 \le t < \infty$$

Sphere: $\mathbf{p} : (\mathbf{p} - \mathbf{c})^2 - R^2 = 0$
Solve for intersection:
 $(\mathbf{o} + t \, \mathbf{d} - \mathbf{c})^2 - R^2 = 0$
 $a t^2 + b t + c = 0, \text{ where}$
 $a = \mathbf{d} \cdot \mathbf{d}$
 $b = 2(\mathbf{o} - \mathbf{c}) \cdot \mathbf{d}$
 $c = (\mathbf{o} - \mathbf{c}) \cdot (\mathbf{o} - \mathbf{c}) - R^2$

 $-b \pm \sqrt{}$ -4ac

2a

Ray Intersection With Implicit Surface

Ray: $r(t) = o + t d, \ 0 \le t < \infty$

General implicit surface: $\mathbf{p} : f(\mathbf{p}) = 0$

Substitute ray equation: $f(\mathbf{o} + t \mathbf{d}) = 0$ Solve for real, positive roots

CS184/284A

Accelerating Ray-Surface Intersection

Ray Tracing – Performance Challenges

Simple ray-scene intersection

Exhaustively test ray-intersection with every object

Problem:

- Exhaustive algorithm = #pixels × #objects
- Very slow!

Ray Tracing – Performance Challenges

San Miguel Scene, 10.7M triangles

Ray Tracing – Performance Challenges

Plant Ecosystem, 20M triangles

Bounding Volumes

Bounding Volumes

Quick way to avoid intersections: bound complex object with a simple volume

- Object is fully contained in the volume
- If it doesn't hit the volume, it doesn't hit the object
- So test bvol first, then test object if it hits

CS184/284A

Ray-Intersection With Box

Could intersect with 6 faces individually Better way: box is the intersection of 3 slabs

CS184/284A

Ray Intersection with Axis-Aligned Box

2D example; 3D is the same! Compute intersections with slabs and take intersection of t_{min}/t_{max} intervals

Optimize Ray-Plane Intersection For Axis-Aligned Planes?

Perpendicular to x-axis

CS184/284A

$t = \frac{(\mathbf{p}' - \mathbf{o}) \cdot \mathbf{N}}{\mathbf{d} \cdot \mathbf{N}}$

3 subtractions, 6 multiplies, 1 division

$t = \frac{\mathbf{p'}_x - \mathbf{o}_x}{\mathbf{d}_x}$

1 subtraction, 1 division

Uniform Spatial Partitions (Grids)

Preprocess – Build Acceleration Grid

CS184/284A

1. Find bounding box

Preprocess – Build Acceleration Grid

CS184/284A

Find bounding box Create grid

Preprocess – Build Acceleration Grid

1. Find bounding box

2. Create grid

3. Store each object in overlapping cells
Ray-Scene Intersection

Step through grid in ray traversal order (3D line - 3D DDA)

For each grid cell Test intersection with all objects stored at that cell

Grid Resolution?

CS184/284A

One cellNo speedup

Grid Resolution?

Too many cells

Inefficiency due to extraneous grid traversal

Grid Resolution?

CS184/284A

Heuristic:

• #cells = C * #objs

• C ≈ 27 in 3D

Careful! Objects Overlapping Multiple Cells

- What goes wrong here?
 - First intersection found (red) is not the nearest!
- Solution?
 - Check intersection point is inside cell
- Optimize
 - Cache intersection to avoid re-testing (mailboxing)

Uniform Grids – When They Work Well

Grids work well on large collections of objects that are distributed evenly in size and space

CS184/284A

Uniform Grids – When They Fail

"Teapot in a stadium" problem

CS184/284A

Non-Uniform Spatial Partitions: Spatial Hierarchies

CS184/284A

CS184/284A

CS184/284A

CS184/284A

CS184/284A

Spatial Partitioning Variants

Oct-Tree

KD-Tree

Note: you could have these in both 2D and 3D. In lecture we will illustrate principles in 2D, but for assignment you will implement 3D versions.

CS184/284A

BSP-Tree

KD-Trees

Internal nodes store

- split axis: x-, y-, or z-axis
- split position: coordinate of split plane along axis
- children: reference to child nodes

Leaf nodes store

- list of objects
- mailbox information

KD-Tree Pre-Processing

CS184/284A

• Find bounding box

- Recursively split cells, axis-aligned planes
- Until termination criteria met (e.g. max #splits or min #objs)
- Store obj references with each leaf node

KD-Tree Pre-Processing

CS184/284A

Only leaf nodes store references to geometry

KD-Tree Pre-Processing

Choosing the split plane

- Simple: midpoint, median split
- Ideal: split to minimize expected cost of ray intersection
- **Termination criteria?**
 - Simple: common to prescribe maximum tree depth $(empirical 8 + 1.3 \log N, N = #objs)$ [PBRT]
 - Ideal: stop when splitting does not reduce expected cost of ray intersection

Simple Hierarchy Construction

Split at midpoint

Split at median

CS184/284A

Top-Down Recursive In-Order Traversal

CS184/284A

Internal node: split

Top-Down Recursive In-Order Traversal

CS184/284A

Leaf node: intersect all objects

CS184/284A

Internal node: split

CS184/284A

Leaf node: intersect all objects

CS184/284A

Internal node: split

CS184/284A

Leaf node: intersect all objects

CS184/284A

Intersection found

KD-Trees Traversal – Recursive Step

W.L.O.G. consider x-axis split with ray moving right

CS184/284A

ray moving right d_x

 $t_{\rm split} < t_{\rm min}$

Intersect(R,tmin,tmax)

Object Partitions & Bounding Volume Hierarchy (BVH)

Spatial vs Object Partitions

Spatial partition (e.g.KD-tree)

- Partition space into nonoverlapping regions
- Objects can be contained in multiple regions

Object partition (e.g. BVH)

- Partition set of objects into disjoint subsets
- Bounding boxes for each set may overlap in space

CS184/284A

CS184/284A

CS184/284A

Internal nodes store

- Bounding box
- Children: reference to child nodes
- Leaf nodes store
 - Bounding box
 - List of objects

Nodes represent subset of primitives in scene

• All objects in subtree

BVH Pre-Processing

CS184/284A

• Find bounding box

- Recursively split set of objects in two subsets
- Stop when there are just a few objects in each set
- Store obj reference(s) in each leaf node
BVH Pre-Processing

Choosing the set partition

- Choose a spatial dimension to partition over (e.g. x,y,z)
- Simple #1: Split objects around spatial midpoint
- Simple #2: Split at location of median object
- Ideal: split to minimize expected cost of ray intersection
- **Termination criteria?**
 - Simple: stop when node contains few elements (e.g. 5)
 - Ideal: stop when splitting does not reduce expected cost of ray intersection

CS184/284A

tition over (e.g. x,y,z) atial midpoint dian object cost of rav

few elements (e.g. 5) t reduce expected

BVH Recursive Traversal

Intersect (Ray ray, BVH node)

- if (ray misses node.bbox) return;
- if (node is a leaf node)

test intersection with all objs;

return closest intersection;

hit1 = Intersect (ray, node.child1);

hit2 = Intersect (ray, node.child2);

return closer of hit1, hit2;

Optimizing Hierarchical Partitions (How to Split?)

CS184/284A

CS184/284A

Split at median element? Child nodes have equal numbers of elements

CS184/284A

A better split? Smaller bounding boxes, avoid overlap and empty space

CS184/284A

Which Hierarchy Is Fastest?

Key insight: a good partition minimizes the average <u>cost</u> of tracing a ray

CS184/284A

Which Hierarchy Is Fastest?

What is the average cost of tracing a ray?

For leaf node:

- Cost(node) = cost of intersecting all triangles = C_isect * TriCount(node)
 - TriCount(node) = number of triangles in node

C_isect = cost of intersecting a triangle

Which Hierarchy Is Fastest?

What is the average cost of tracing a ray?

For internal node:

Cost(node) = C_trav

+ Prob(hit L)*Cost(L)

+ Prob(hit R)*Cost(R)

- C_trav = cost of traversing a cell
- Cost(L) = cost of traversing left child
- Cost(R) = cost of traversing right child

Optimizing Hierarchical Partitions Example: Surface Area Heuristic Algorithm

Ray Intersection Probability

The probability of a random ray hitting a convex shape A enclosed by another convex shape B is the ratio of their surface areas, S_A / S_B .

$P(\operatorname{hit} A | \operatorname{hit} B) = \frac{S_A}{S_B}$

Estimating Cost with Surface Area Heuristic (SAH)

Probabilities of ray intersecting a node

- If assume uniform ray distribution, no occlusions, then probability is proportional to node's surface area
- Cost of processing a node
 - Common approximation is #triangles in node's subtree

Cost(cell) = C_trav + SA(L)*TriCount(L) + SA(R)*TriCount(R)

SA(node) = surface area of bbox of node C_trav = ratio of cost to traverse vs. cost to intersect tri C_trav = 1:8 in PBRT [Pharr & Humphreys] C_trav = 1:1.5 in a highly optimized version

Partition Implementation

Constrain search to axis-aligned spatial partitions

- Choose an axis
- Choose a split plane on that axis
- Partition objects into two halves by centroid
- 2N–2 candidate split planes for node with N primitives. (Why?)

For each axis: x,y,z: initialize buckets For each object p in node: b = compute_bucket(p.centroid) b.bbox.union(p.bbox); b.prim_count++; For each of the B-1 possible partitioning planes evaluate SAH

Execute lowest cost partitioning found (or make node a leaf)

Cost-Optimization Applies to Spatial Partitions Too

- Discussed optimization of BVH construction
- But principles are general and apply to spatial partitions as well
- E.g. to optimize KD-Tree construction
 - Goal is to minimize average cost of intersecting ray with tree
 - Can still apply Surface Area Heuristic
 - Note that surface areas and number of nodes in children differ from BVH

Things to Remember

- Ray-geometry intersection as solution of ray-equation substituted into implicit geometry function
- Linear vs logarithmic ray-intersection techniques
- Many techniques for accelerating ray-intersection
 - Spatial partitions: Grids and KD-Trees
 - Object partitions: Bounding Volume Hierarchies
- **Optimize hierarchy construction based on minimizing** cost of intersecting ray against hierarchy
 - Leads to Surface Area Heuristic for best partition

Acknowledgments

Thanks to Pat Hanrahan, Kayvon Fatahalian, Mark Pauly and Steve Marschner for lecture resources.

CS184/284A