
Computer Graphics and Imaging
UC Berkeley CS184/284A

Lecture 9/10:
Intro to Ray-Tracing &
Accelerating Ray-Scene Intersection

Towards Photorealistic Rendering

Credit: Bertrand Benoit. “Sweet Feast,” 2009. [Blender /VRay]

Radiometry & Photometry
Monte Carlo Integration
Global Illumination & Path Tracing
Material Modeling

Rasterization
Transforms & Projection
Texture Mapping
Visibility, Shading, Overall Pipeline

Intro to Geometry
Curves and Surfaces
Geometry Processing
Ray-Tracing & Acceleration Today

Course Roadmap
Rasterization Pipeline

Geometric Modeling

Lighting & Materials

Cameras & Imaging

Core Concepts
• Splines, Bezier Curves
• Topological Mesh Representations
• Subdivision, Geometry Processing

Core Concepts
• Sampling
• Antialiasing
• Transforms

Core Concepts
• Measuring Light
• Unbiased Integral Estimation
• Light Transport & Materials

Basic Ray-Tracing Algorithm

Ng & O'BrienCS184/284A

Ray Casting

Appel 1968 - Ray casting
1. Generate an image by casting one ray per pixel
2. Check for shadows by sending a ray to the light

Ng & O'BrienCS184/284A

Pinhole Camera Model

Ray Casting - Generating Eye Rays

eye point

image plane

light source

eye ray  
(starts at eye and

goes through pixel)

closest scene  
intersection point

note: more
intersection points

Ng & O'BrienCS184/284A

Pinhole Camera Model

Ray Casting - Shading Pixels (Local Only)

eye point

image plane

light source

eye ray  
(starts at eye and

goes through pixel)

perform shading calculation
here to compute color of pixel

(e.g. Blinn Phong model)

Ng & O'BrienCS184/284A

Recursive Ray Tracing

“An improved Illumination
model for shaded display”
T. Whitted, CACM 1980

Time:

• VAX 11/780 (1979) 74m

• PC (2006) 6s

• GPU (2012) 1/30s

Spheres and Checkerboard, T. Whitted, 1979

Ng & O'BrienCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

Ng & O'BrienCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

Mirror ray
(specular reflection)

Ng & O'BrienCS184/284A

Recursive Ray Tracing

eye point

image plane

light source

 Refractive rays
(specular transmission)

Ng & O'BrienCS184/284A

Recursive Ray Tracing

eye point

image plane

light source
Shadow rays

Ng & O'BrienCS184/284A

Recursive Ray Tracing

• Trace secondary rays recursively until hit a non-specular surface (or max desired levels of recursion)
• At each hit point, trace shadow rays to test light visibility (no contribution if blocked)
• Final pixel color is weighted sum of contributions along rays, as shown
• Gives more sophisticated effects (e.g. specular reflection, refraction, shadows), but we will go much

further to derive a physically-based illumination model

eye point

image plane

light source

primary ray

secondary rays

shadow rays

Ng & O'BrienCS184/284A

Recursive Ray Tracing

Ray-Surface Intersection

Ng & O'BrienCS184/284A

Why?

• Rendering: visibility, shadows,
lighting …

• Geometry: inside/outside test
How to compute?
Let’s break this down:

• Simple idea: just intersect ray with each triangle

• Simple, but slow (study acceleration later)

• Note: can have 0, 1 or multiple intersections

Ray Intersection With Triangle Mesh

Ng & O'BrienCS184/284A

Ray Equation

unit directionorigin“time”point along ray

Ray equation:

0  t < 1

Example:

Ray is defined by its origin and a direction vector

Ng & O'BrienCS184/284A

Plane Equation

Plane is defined by normal vector and a point on plane

r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Example:

r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Plane Equation:

normal vectorpoint on plane all points on plane

Ng & O'BrienCS184/284A

Ray Intersection With Plane

r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Ray equation:

r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Plane equation: r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Solve for intersection

r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
(p0 � o) ·N

d ·N r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Check:

Ng & O'BrienCS184/284A

Ray Intersection With Triangle

Triangle is in a plane

• Ray-plane intersection

• Test if hit point is inside
triangle (Assignment 1!)

Many ways to optimize…

Ng & O'BrienCS184/284A

Can Optimize: e.g. Möller Trumbore Algorithm

Ng & O'BrienCS184/284A

Ray Intersection With Sphere

r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Ray:

p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

Sphere: p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

Solve for intersection:
p : (p� c)2 �R2 = 0

(o+ td� c)2 �R2 = 0

a t2 + b t+ c = 0, where

a = d · d
b = 2(o� c) · d
c = (o� c) · (o� c)�R2

t =
�b±

p
b2 � 4ac

2a

Ng & O'BrienCS184/284A

Ray Intersection With Implicit Surface

r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

Ray:

General implicit surface: p : f(p) = 0

f(o+ td) = 0
Substitute ray equation:

p : f(p) = 0

f(o+ td) = 0

Solve for real, positive roots

Accelerating Ray-Surface
Intersection

Ng & O'BrienCS184/284A

Ray Tracing – Performance Challenges

Simple ray-scene intersection

• Exhaustively test ray-intersection with every object

Problem:

• Exhaustive algorithm = #pixels ⨉ #objects

• Very slow!

Ray Tracing – Performance Challenges

San Miguel Scene, 10.7M triangles

Jun Yan, Tracy Renderer

Ray Tracing – Performance Challenges

Plant Ecosystem, 20M triangles
Deussen et al; Pharr & Humphreys, PBRT

Bounding Volumes

Ng & O'BrienCS184/284A

Bounding Volumes

Quick way to avoid intersections: bound complex
object with a simple volume

• Object is fully contained in the volume

• If it doesn’t hit the volume, it doesn’t hit the object

• So test bvol first, then test object if it hits

Ng & O'BrienCS184/284A

Ray-Intersection With Box

Could intersect with 6 faces individually
Better way: box is the intersection of 3 slabs

2D example; 3D is the same! Compute intersections with
slabs and take intersection of tmin/tmax intervals

Ray Intersection with Axis-Aligned Box

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Note: tmin < 0

Intersections with y planes Intersections with x planes

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Final intersection result

How do we know when the ray misses the box?

Ng & O'BrienCS184/284A

Optimize Ray-Plane Intersection For Axis-Aligned Planes?

r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N

r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
(p0 � o) ·N

d ·N

3 subtractions, 6 multiplies, 1 division

t =
(p0 � o) ·N

d ·N =) t =
p0

x � ox

dx

r(t) = o+ td, 0  t < 1
p : (p� p0) ·N = 0

ax+ by + cz + d = 0

Set p = r(t) and solve for t

(p� p0) ·N = (o+ td� p0) ·N = 0

t =
p0 � o) ·N

d ·N
1 subtraction, 1 division

General

Perpendicular
to x-axis

Uniform Spatial Partitions (Grids)

Ng & O'BrienCS184/284A

Preprocess – Build Acceleration Grid

1. Find bounding box

Ng & O'BrienCS184/284A

Preprocess – Build Acceleration Grid

1. Find bounding box
2. Create grid

Ng & O'BrienCS184/284A

Preprocess – Build Acceleration Grid

1. Find bounding box
2. Create grid
3. Store each object

in overlapping
cells

Ng & O'BrienCS184/284A

Ray-Scene Intersection

Step through grid in
ray traversal order
(3D line - 3D DDA)
For each grid cell
 Test intersection
 with all objects
 stored at that cell

Ng & O'BrienCS184/284A

Grid Resolution?

One cell

• No speedup

Ng & O'BrienCS184/284A

Grid Resolution?

Too many cells

• Inefficiency due to
extraneous grid
traversal

Ng & O'BrienCS184/284A

Grid Resolution?

Heuristic:

• #cells = C * #objs

• C ≈ 27 in 3D

Ng & O'BrienCS184/284A

Careful! Objects Overlapping Multiple Cells

What goes wrong here?

• First intersection
found (red) is not
the nearest!

Solution?

• Check intersection
point is inside cell

Optimize

• Cache intersection
to avoid re-testing
(mailboxing)

Ng & O'BrienCS184/284A

Uniform Grids – When They Work Well

Deussen et al; Pharr & Humphreys, PBRT

Grids work well on large collections of objects
that are distributed evenly in size and space

Ng & O'BrienCS184/284A

Jun Yan, Tracy Renderer

Uniform Grids – When They Fail

“Teapot in a stadium” problem

Non-Uniform Spatial Partitions:
Spatial Hierarchies

Ng & O'BrienCS184/284A

Spatial Hierarchies

A

A

Ng & O'BrienCS184/284A

B

A

Spatial Hierarchies

A

B

Ng & O'BrienCS184/284A

C

Spatial Hierarchies

A

BC

B

A

Ng & O'BrienCS184/284A

D

C

Spatial Hierarchies

A

BC

D

B

A

Ng & O'BrienCS184/284A

4 5

D 3

2 C

Spatial Hierarchies

A

BC

D

1

2

3
4

5

1 B

A

Ng & O'BrienCS184/284A

Spatial Partitioning Variants

BSP-TreeKD-Tree

Note: you could have these in both 2D and 3D. In lecture we will illustrate
principles in 2D, but for assignment you will implement 3D versions.

Oct-Tree

Ng & O'BrienCS184/284A

KD-Trees

Internal nodes store

• split axis: x-, y-, or z-axis

• split position: coordinate of split plane along axis

• children: reference to child nodes
Leaf nodes store

• list of objects

• mailbox information

Ng & O'BrienCS184/284A

KD-Tree Pre-Processing

A

BC

D

• Find bounding box

• Recursively split cells,
axis-aligned planes

• Until termination
criteria met (e.g. max
#splits or min #objs)

• Store obj references
with each leaf node

Ng & O'BrienCS184/284A

4 5

D 3

2 C

KD-Tree Pre-Processing

A

BC

D

1 B

A Root

Internal Nodes

Leaf Nodes

Only leaf nodes store
references to geometry

1

2

3
4

5

Ng & O'BrienCS184/284A

KD-Tree Pre-Processing

Choosing the split plane

• Simple: midpoint, median split

• Ideal: split to minimize expected cost of ray
intersection

Termination criteria?

• Simple: common to prescribe maximum tree depth
(empirical 8 + 1.3 log N, N = #objs) [PBRT]

• Ideal: stop when splitting does not reduce
expected cost of ray intersection

Ng & O'BrienCS184/284A

Simple Hierarchy Construction

Split at midpoint Split at median

Ng & O'BrienCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

A

BC

D

1 B

A

Ng & O'BrienCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

A

BC

1 B

A

tmin

tmax

tsplit

Internal node: split

D

Ng & O'BrienCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

1 B

A

tmin

tmax

Leaf node: intersect
all objects

D

A

Ng & O'BrienCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

1 B

A
tmin

tmax

tsplit

Internal node: split

D

A

Ng & O'BrienCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

1 B

A
tmin

tmax

Leaf node: intersect
all objects

D

A

Ng & O'BrienCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

1 B

A

tmin

tmax

tsplit

Internal node: split

D

A

Ng & O'BrienCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

1 B

A

tmin

tmax

A
Leaf node: intersect
all objects

D

Ng & O'BrienCS184/284A

4 5

D 3

2 C

Top-Down Recursive In-Order Traversal

BC

D

1 B

A

thit

Intersection found
A

Ng & O'BrienCS184/284A

KD-Trees Traversal – Recursive Step

W.L.O.G. consider x-axis split with ray moving right

tsplit = (xsplit � ox)/dx

tsplit = (xsplit � ox)/dx

tsplit = (xsplit � ox)/dx

tsplit = (xsplit � ox)/dx

tsplit = (xsplit � ox)/dx

tmax < tsplit tmin < tsplit < tmax tsplit < tmin
Intersect(L,tmin,tmax) Intersect(L,tmin,tsplit)

Intersect(R,tsplit,tmax)
Intersect(R,tmin,tmax)

Object Partitions &

Bounding Volume Hierarchy (BVH)

Ng & O'BrienCS184/284A

Spatial vs Object Partitions

Spatial partition (e.g.KD-tree)
• Partition space into non-

overlapping regions
• Objects can be contained

in multiple regions

Object partition (e.g. BVH)
• Partition set of objects

into disjoint subsets
• Bounding boxes for each

set may overlap in space

Ng & O'BrienCS184/284A

Bounding Volume Hierarchy (BVH)

Root

Ng & O'BrienCS184/284A

Bounding Volume Hierarchy (BVH)

Ng & O'BrienCS184/284A

Bounding Volume Hierarchy (BVH)

Ng & O'BrienCS184/284A

C D

B

Bounding Volume Hierarchy (BVH)

A

A
B

C

D

Ng & O'BrienCS184/284A

Bounding Volume Hierarchy (BVH)

Internal nodes store

• Bounding box

• Children: reference to child nodes
Leaf nodes store

• Bounding box

• List of objects
Nodes represent subset of primitives in scene

• All objects in subtree

Ng & O'BrienCS184/284A

BVH Pre-Processing

• Find bounding box

• Recursively split set of
objects in two subsets

• Stop when there are
just a few objects in
each set

• Store obj reference(s)
in each leaf node

Ng & O'BrienCS184/284A

BVH Pre-Processing

Choosing the set partition

• Choose a spatial dimension to partition over (e.g. x,y,z)

• Simple #1: Split objects around spatial midpoint

• Simple #2: Split at location of median object

• Ideal: split to minimize expected cost of ray
intersection

Termination criteria?

• Simple: stop when node contains few elements (e.g. 5)

• Ideal: stop when splitting does not reduce expected
cost of ray intersection

Ng & O'BrienCS184/284A

BVH Recursive Traversal

Intersect (Ray ray, BVH node)
 if (ray misses node.bbox) return;
 if (node is a leaf node)
 test intersection with all objs;
 return closest intersection;
 hit1 = Intersect (ray, node.child1);
 hit2 = Intersect (ray, node.child2);
 return closer of hit1, hit2;

node

child1 child2

Optimizing Hierarchical Partitions
(How to Split?)

Ng & O'BrienCS184/284A

How to Split into Two Sets? (BVH)

Ng & O'BrienCS184/284A

How to Split into Two Sets? (BVH)

Ng & O'BrienCS184/284A

How to Split into Two Sets? (BVH)

Split at median element?
Child nodes have equal numbers of elements

Ng & O'BrienCS184/284A

How to Split into Two Sets? (BVH)

A better split?
Smaller bounding boxes, avoid overlap and empty space

Ng & O'BrienCS184/284A

Which Hierarchy Is Fastest?

Key insight: a good partition minimizes the average
cost of tracing a ray

Ng & O'BrienCS184/284A

Which Hierarchy Is Fastest?

What is the average cost of tracing a ray?

For leaf node:

 Cost(node) = cost of intersecting all triangles
 = C_isect * TriCount(node)

 C_isect = cost of intersecting a triangle
 TriCount(node) = number of triangles in node

Ng & O'BrienCS184/284A

Which Hierarchy Is Fastest?

What is the average cost of tracing a ray?

For internal node:

 Cost(node) = C_trav
 + Prob(hit L)*Cost(L)
 + Prob(hit R)*Cost(R)

 C_trav = cost of traversing a cell
 Cost(L) = cost of traversing left child
 Cost(R) = cost of traversing right child

Optimizing Hierarchical Partitions
Example: Surface Area Heuristic

Algorithm

Ng & O'BrienCS184/284A

Ray Intersection Probability

The probability of a random ray hitting a convex shape
A enclosed by another convex shape B is the ratio of
their surface areas, SA / SB.

SA

SB

P (hitA|hitB) =
SA

SB

Ng & O'BrienCS184/284A

Estimating Cost with Surface Area Heuristic (SAH)

Probabilities of ray intersecting a node

• If assume uniform ray distribution, no occlusions, then
probability is proportional to node’s surface area

Cost of processing a node

• Common approximation is #triangles in node’s subtree

Cost(cell) = C_trav + SA(L)*TriCount(L) + SA(R)*TriCount(R)

SA(node) = surface area of bbox of node
C_trav = ratio of cost to traverse vs. cost to intersect tri
 C_trav = 1:8 in PBRT [Pharr & Humphreys]
 C_trav = 1:1.5 in a highly optimized version

Partition Implementation

Constrain search to axis-aligned spatial partitions
• Choose an axis
• Choose a split plane on that axis
• Partition objects into two halves by centroid
• 2N–2 candidate split planes for node with N primitives. (Why?)

Partition Implementation (Efficient)
Efficient modern approximation: split spatial extent of
primitives into B buckets (B is typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z:
 initialize buckets
 For each object p in node:
 b = compute_bucket(p.centroid)
 b.bbox.union(p.bbox);
 b.prim_count++;
 For each of the B–1 possible partitioning planes evaluate SAH
Execute lowest cost partitioning found (or make node a leaf)

Ng & O'BrienCS184/284A

Cost-Optimization Applies to Spatial Partitions Too

• Discussed optimization of BVH construction

• But principles are general and apply to spatial
partitions as well

• E.g. to optimize KD-Tree construction

• Goal is to minimize average cost of intersecting
ray with tree

• Can still apply Surface Area Heuristic

• Note that surface areas and number of nodes in
children differ from BVH

Ng & O'BrienCS184/284A

Things to Remember

Ray-geometry intersection as solution of ray-equation
substituted into implicit geometry function
Linear vs logarithmic ray-intersection techniques
Many techniques for accelerating ray-intersection

• Spatial partitions: Grids and KD-Trees

• Object partitions: Bounding Volume Hierarchies
Optimize hierarchy construction based on minimizing
cost of intersecting ray against hierarchy

• Leads to Surface Area Heuristic for best partition

Ng & O'BrienCS184/284A

Acknowledgments

Thanks to Pat Hanrahan, Kayvon Fatahalian, Mark
Pauly and Steve Marschner for lecture resources.

