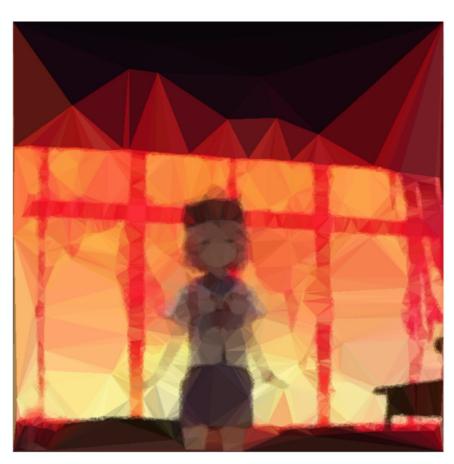
Radiometry and Monte Carlo Integration

CS 184 Summer 2020

Your creative fellow classmates



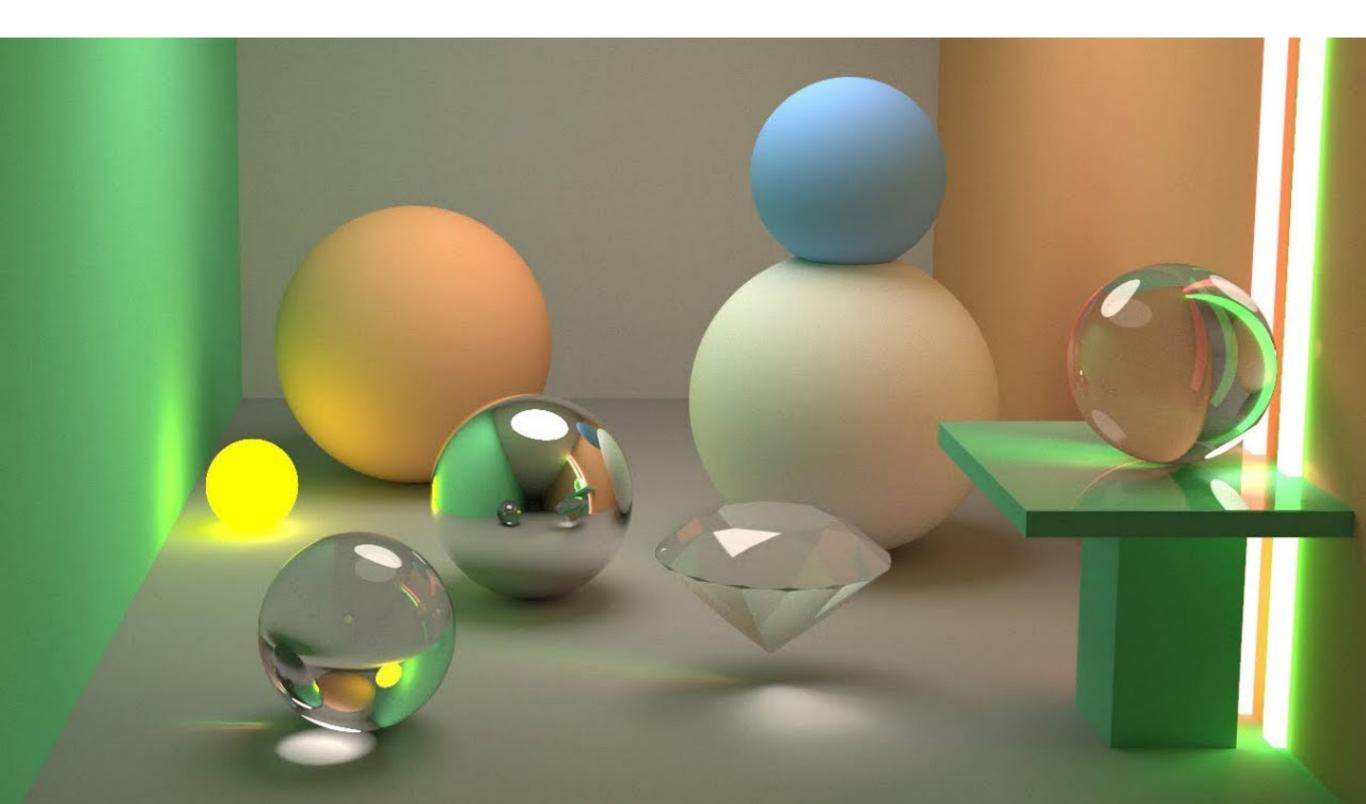
"My world's on fire, how 'bout yours? That's the way I like it and I'll never get bored." -- All Star. Smashmouth

Yifei Li Sergio Hidalgo Eunice Chan

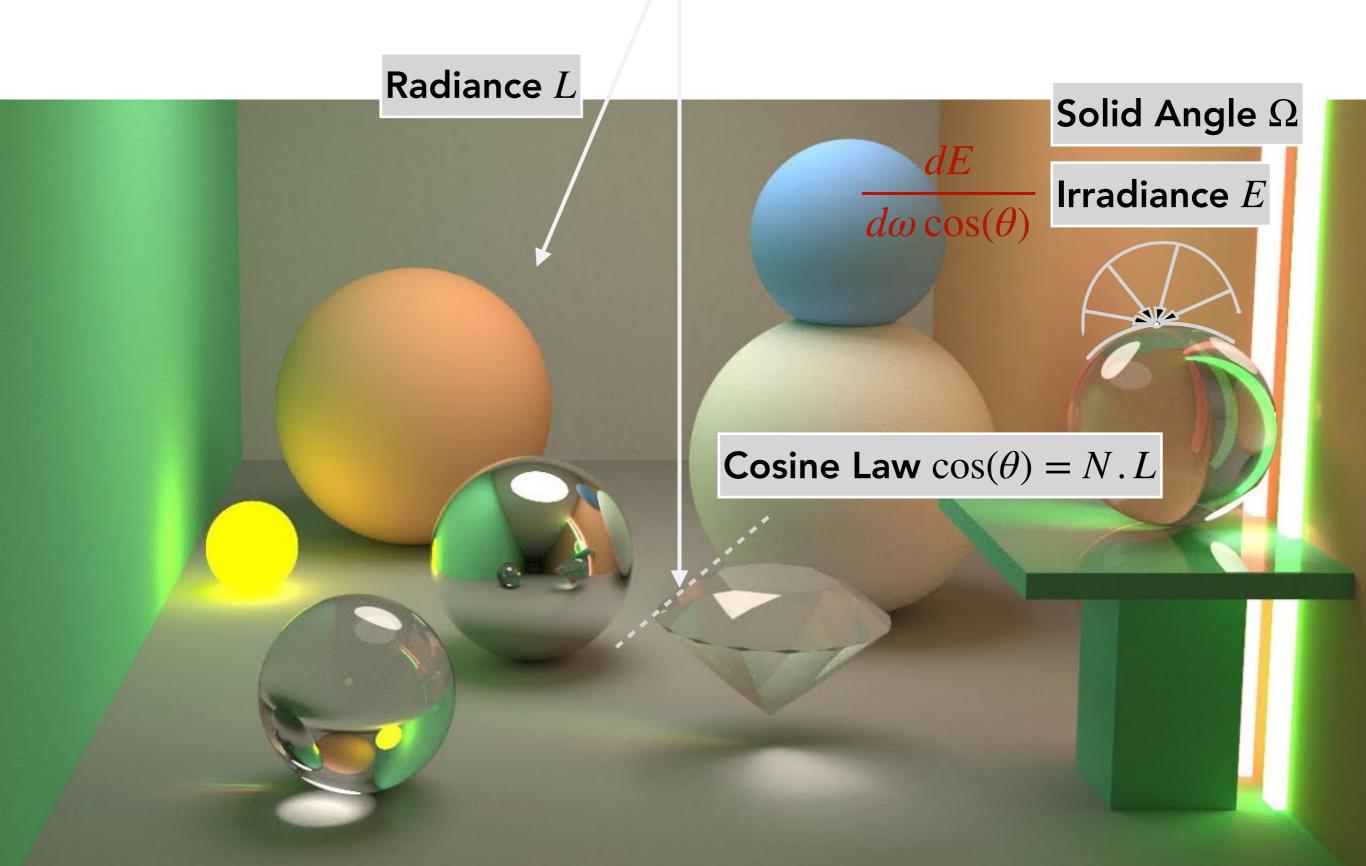
Agenda

- Radiance and Irradiance
 - Solid angle (steradian), cosine law
- Monte Carlo Estimator
 - O Biased, consistent
 - Reduce variance
 - Importance sampling
 - Stochastic, random sampling (inversion method)
- Demo

Big Picture



Big Picture

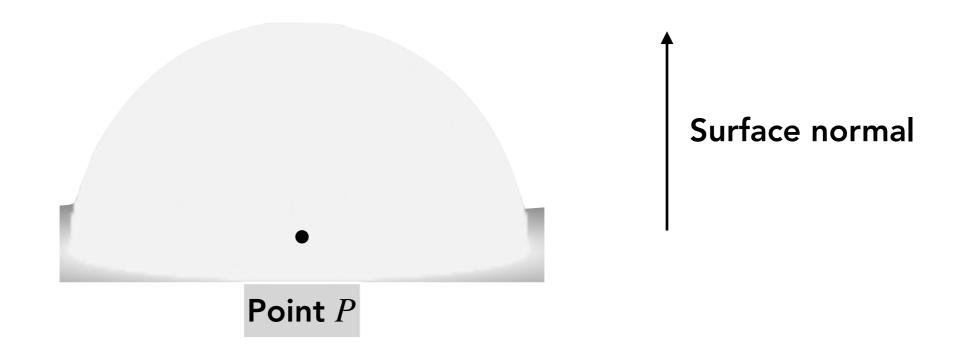


Big Picture

- Incident Radiance & Exiting Radiance Not the Same
 - Different materials respond to light in different ways
- Exiting Radiance Not Only for Light Sources
 - Objects can also been seen as light sources. Not because they emit light though but because they reflect light.
- Direct Illumination: only one bounce
 - VS. Indirect Illumination: multiple bounces Global illumination (e.g. surface not exposed to light is not completely black)

Computing Radiance $\int_{\Omega} L$

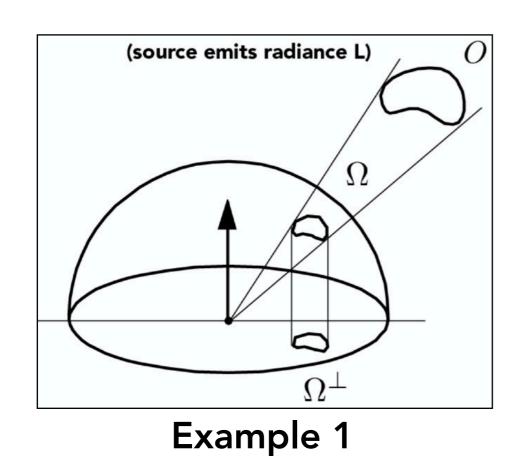
- What: Contribution to Irradiance at Point P
- How:
 - Analytical Closed-Form Solution
 - Approximation Monte Carlo Methods



Computing Radiance

The analytical way

ullet Query position P, Solid Angle Ω subtend by the light source L

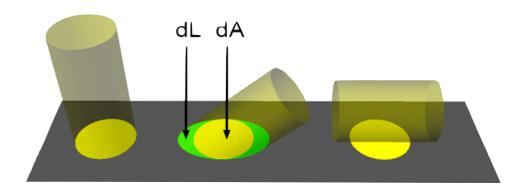


Example 2

 $\sin \alpha$

h

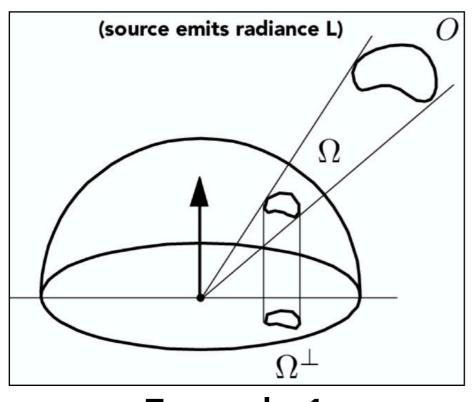
Computing Radiance



The analytical way

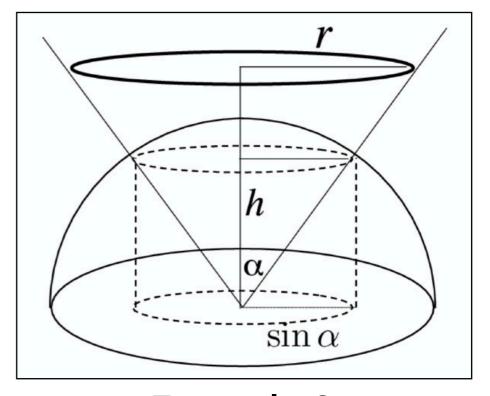
• $\int_{H^2} L(p,\omega) \cos\theta d\omega$ — Projected area to the <u>unit sphere</u> and

then to the ground



Example 1

$$\int_0^{2\pi} \int_0^{\alpha} \cos\theta \sin\theta d\theta d\phi$$

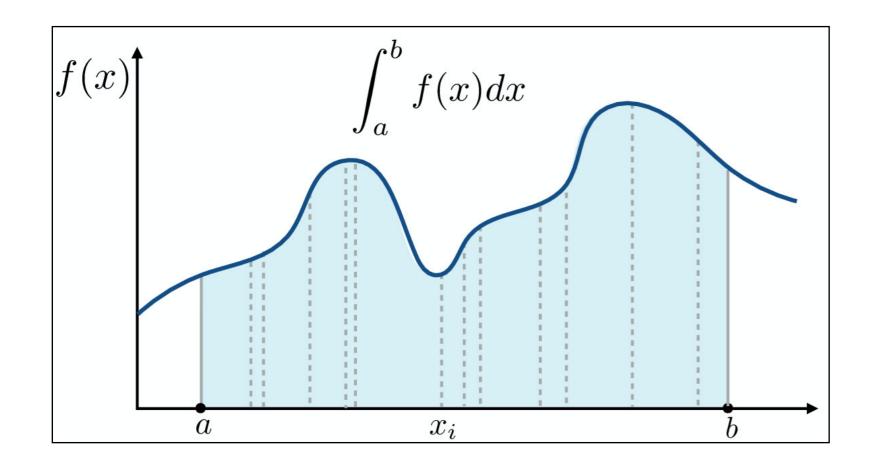


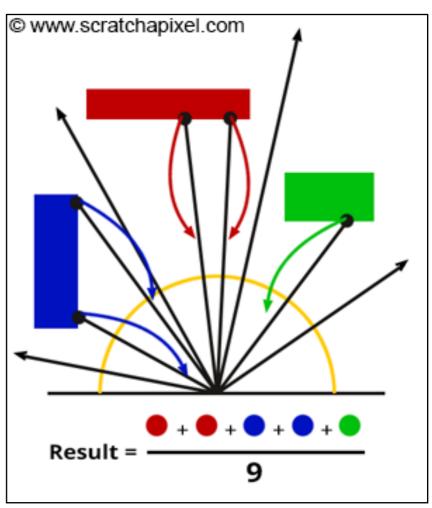
Example 2

Computing Radiance

The practical way

- Scenes Are Usually Too Complicated Too Be Analytically Represented
- ullet We Can Only Compute an Approximation to: L

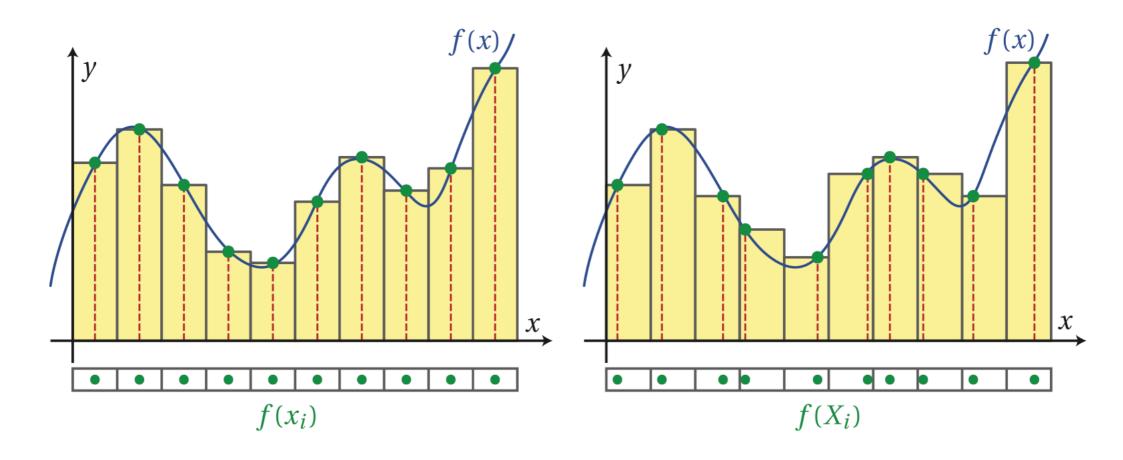




Monte Carlo Methods

A numerical method of solving problems by random sampling

Comparison to Deterministic Method — Recall Riemann Sum

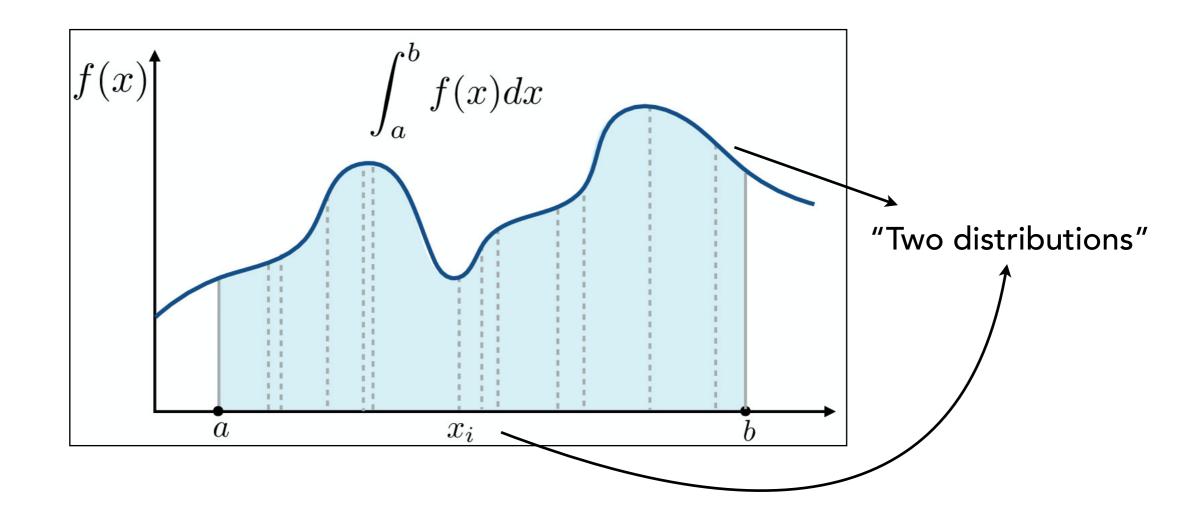


Riemann sum

Stratified Monte Carlo integration

A numerical method of solving problems by random sampling

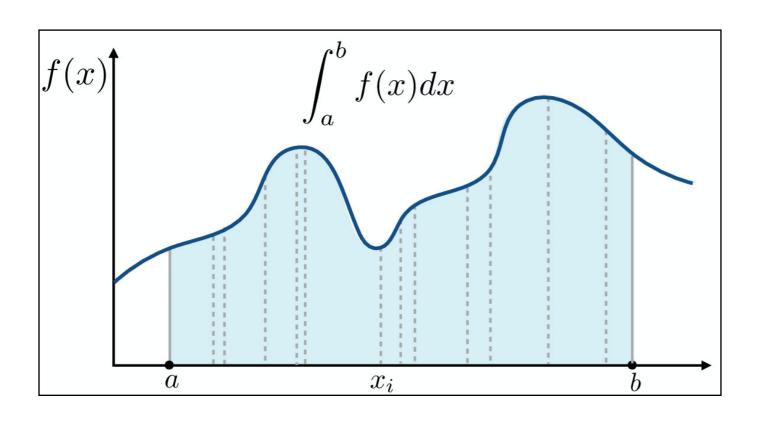
- Error Not Dependent on the Dimension of the Integral
- Approximation Error Not Dependent on the Smoothness of the Functions

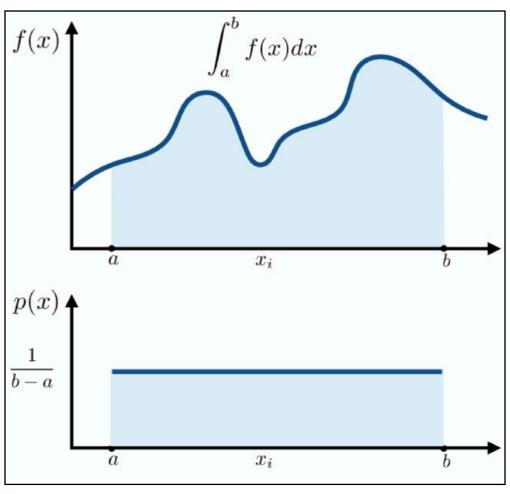


The Distribution of the Function

$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{p(X_i)}$$

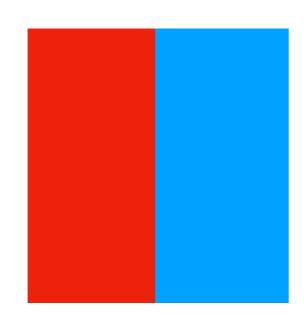
• The Distribution of Random Variable for Sampling

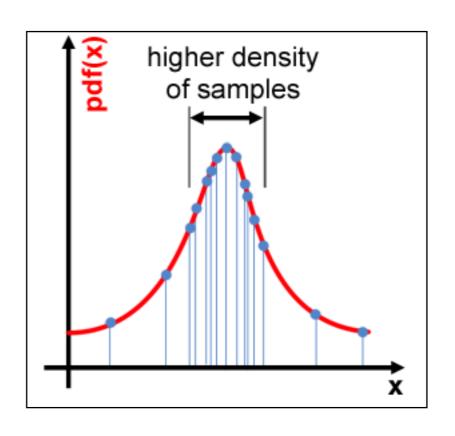




$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}$$
 or $F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{pdf(X_i)}$

Why dividing by pdf?



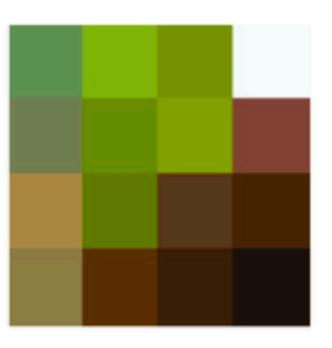


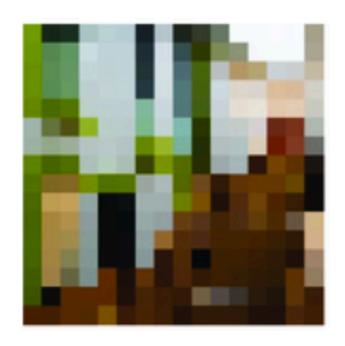
Bias and Consistency

- For any given estimator, is it consistent? Is it biased?
- Consistency: "converges to the correct answer"
- Unbiased: "estimate is correct on average"

Biased? Consistent?

- We try to estimate the integral of an image by:
 - Taking m by m samples at fixed grid position
 - Sum each sample together





m = 16

m=64

 $m=\infty$

Properties of Monte Carlo Estimator

$$\hat{F}_N = \frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{pdf(X_i)}$$

Monte Carlo Estimate

$$F = \int_{\Omega} f(x)dx$$

True integral

- It's stochastic —> reduce variance!
- A Monte Carlo estimator is unbiased and consistent
- Monte Carlo estimation converges to the function expected value, as the sample size approaches infinity "the law of large number"
- Easily extended to multi-dimension integral
- Parallel Nature: each processor of a parallel computer can be assigned the task of making a random trial

— Integration over a Hemisphere

Irradiance from Uniform Hemispherical Light

$$E(\mathbf{p}) = \int_{H^2} L \cos\theta \, \mathrm{d}\omega$$

$$= L \int_0^{2\pi} \int_0^{\frac{\pi}{2}} \cos\theta \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi$$

$$= L \pi$$
 Note: integral of cosine over hemisphere is only 1/2 the area of the hemisphere.

CS184/284A

$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{pdf(X_i)}$$

Uniform sampling over hemisphere:

$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{L(p, \omega_i) \cos \theta_i}{?}$$

— Integration over a Hemisphere

$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{L(p, \omega_i) \cos \theta_i}{\frac{1}{2\pi}}$$

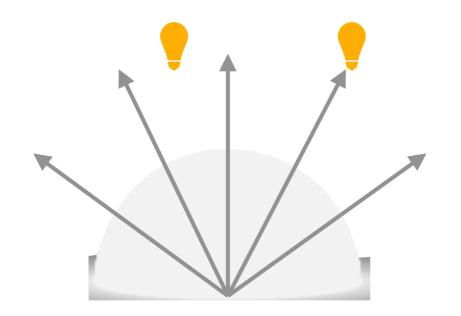
```
for i in 0...N:
    w_i = get_sample_from_hemisphere
    cos_theta = f(w_i, normal)
    L_i = L(p, w_i)
    E += cos_theta * L_i / N * pdf_of_sample
```

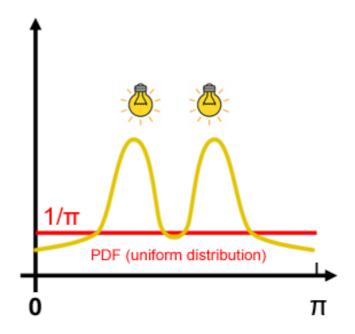
Where to sample more?

Hall of Mammals (by Oliksiy Yakovlyev)

Importance Sampling

We easily missed some portion of light that contributes a lot





- The goal of Monte Carlo Estimator is to have ____ variance
- If pdf(x) is a function proportional to f(x), then the variance of the Monte Carlo integral will be ____

$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{pdf(X_i)}$$

Importance Sampling

- Inversion method generate X from U(0,1)
- Probability Density Function: PDF
- Cumulative Density Function: CDF

Sampling Continuous Probability Distributions

Called the "inversion method"

Cumulative probability distribution function

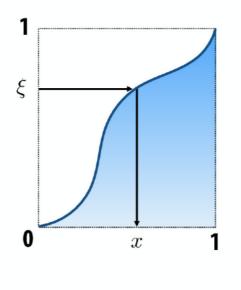
$$P(x) = \Pr(X < x)$$

Construction of samples:

Solve for
$$x = P^{-1}(\xi)$$

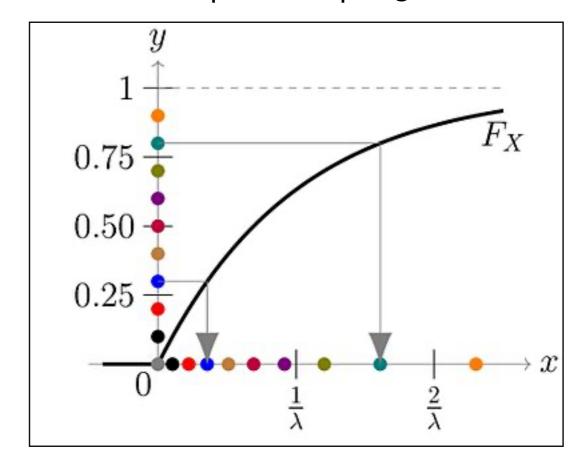
Must know the formula for:

- 1. The integral of p(x)
- 2. The inverse function $P^{-1}(x)$



Ren Ng

What's the shape of the pdf given this cdf?



CS184/284A

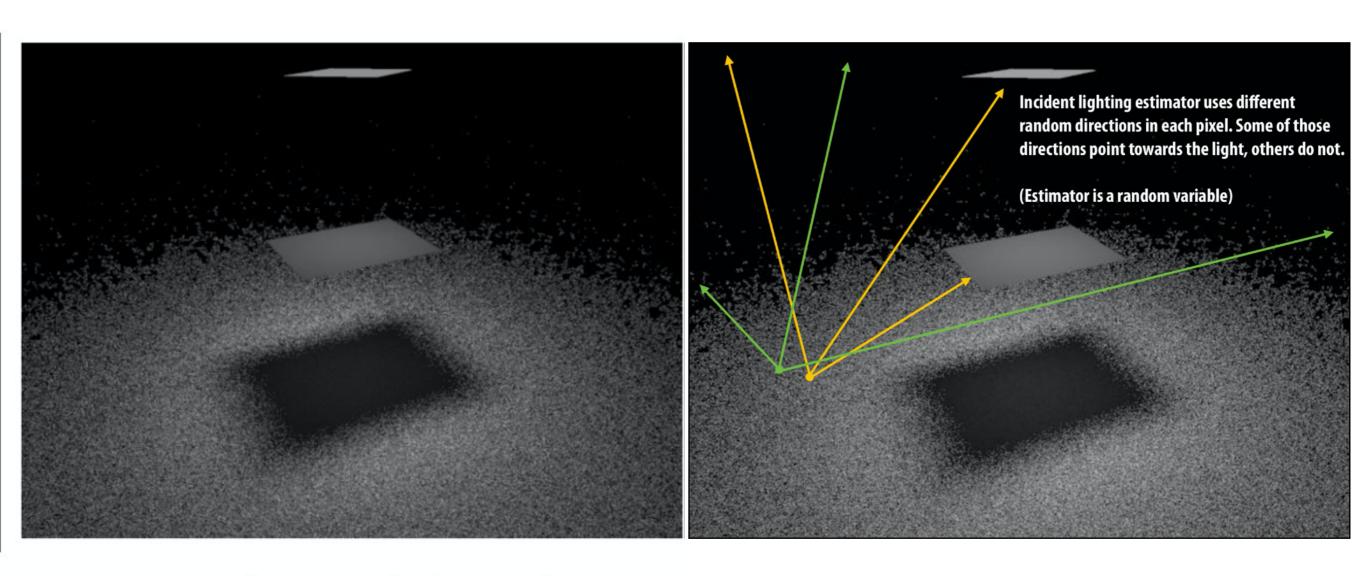
Importance Sampling

 Where in this code is different if sampling from different distributions

```
for i in 0...N:
    w_i = get_sample_from_hemisphere
    cos_theta = f(w_i, normal)
    L_i = L(p, w_i)
    E += cos_theta * L_i / N * pdf_of_sample
```

Demo

Without Importance Sampling

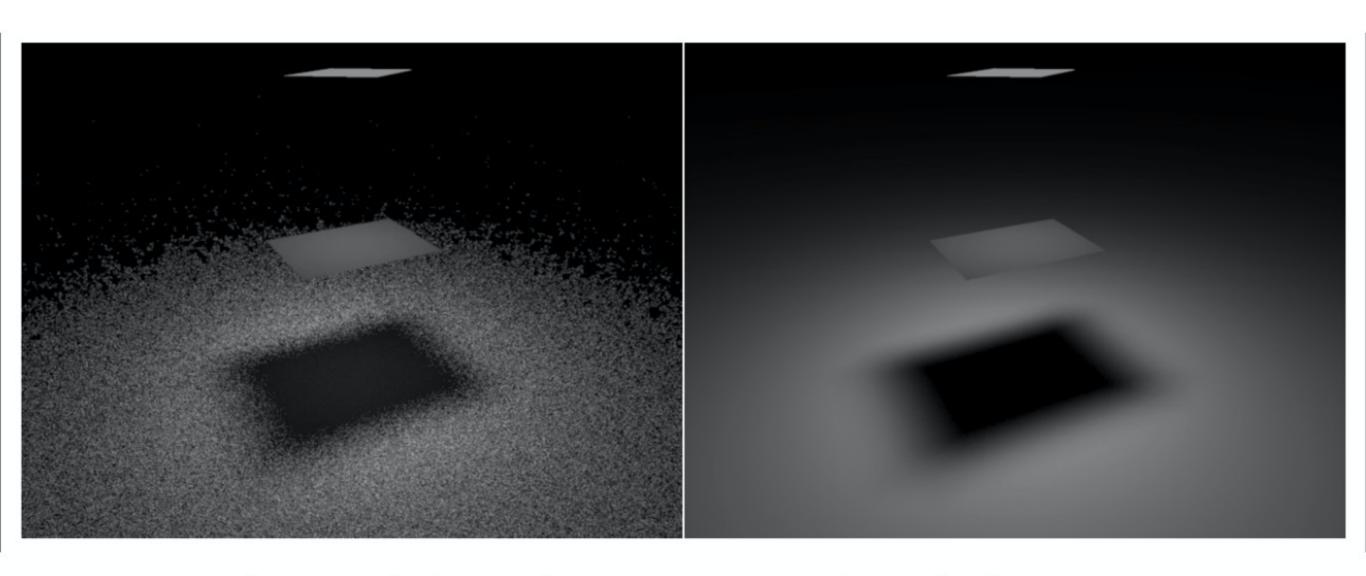


Sampling solid angle

100 random directions on hemisphere

CS184/284A

With Importance Sampling



Sampling solid angle

100 random directions on hemisphere

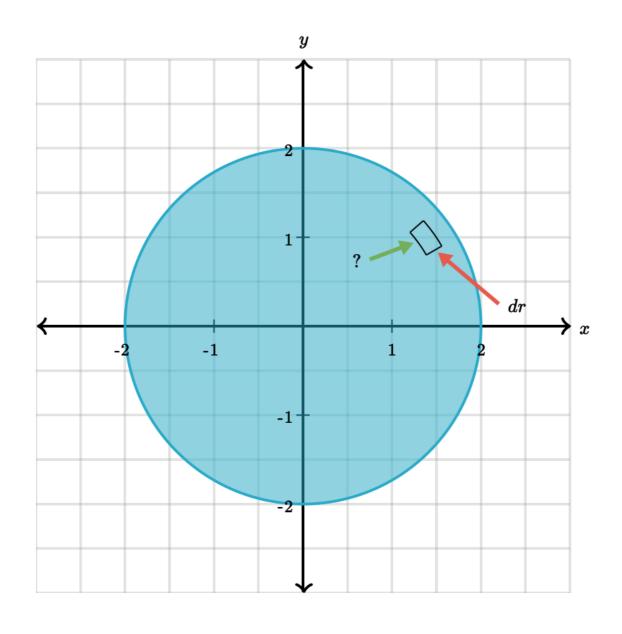
Sampling light source area

100 random points on area of light source

CS184/284A Ren Ng

Sampling Random Variables

Uniform Sampling of a Unit Disk



Sampling Random Variables

Uniform Sampling of a Unit Disk

1. (requirement) PDF is constant with respect to area:

$$p(x,y) = \frac{1}{\pi} \quad \Longrightarrow \quad p(r,\theta) = r \cdot p(x,y) = \frac{r}{\pi}$$

2. Marginal Density
$$p(r) = \int_0^{2\pi} p(r,\theta)d\theta = 2r$$
 \blacktriangleright $P(r) = r^2$

3. Conditional Density
$$p_{\theta}(\theta) = \frac{p(r,\theta)}{p(r)} = \frac{1}{2\pi}$$
 \blacktriangleright $P_{\theta}(\theta \mid r) = \frac{\theta}{2\pi}$

What's the assumption of this step? (r and θ independent)

4. Inversion

$$P(r) = r^{2} \qquad \longrightarrow \qquad r = \sqrt{\xi_{1}}$$

$$P_{\theta}(\theta \mid r) = \frac{\theta}{2} \qquad \longrightarrow \qquad \theta = 2\pi \xi_{2}$$

$$P_{\theta}(\theta \mid r) = \frac{\theta}{2\pi} \qquad \longrightarrow \qquad \theta = 2\pi \xi_2$$

generate less samples for smaller radii

Transforming Between Distributions

Example (polar coordinates):

- sample (r, θ) with density $p(r, \theta)$
- $x = r \cos \theta$ and $y = r \sin \theta$

$$J(x) = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix} \text{ and its determinant } |J(x)| = r$$

Monte Carlo Path Tracing

- Indirect illumination
- Forward and backward tracing

$$L_{o}(\mathbf{p},\omega_{o}) = L_{e}(\mathbf{p},\omega_{o}) + \int_{\mathcal{H}^{2}} f_{r}(\mathbf{p},\omega_{i}
ightarrow \omega_{o}) L_{i}(\mathbf{p},\omega_{i}) \cos \theta \ d\omega_{i}$$

Demo