Mesh Representations &
Geometry Processing

Computer Graphics and Imaging
UC Berkeley CS184

Announcements

Congratulations on finishing 1/4 of the class!

Week 1-2 Survey was released — please fill it out! Check
Piazza for details.

Assighment 2 released and due Friday!

Today: Meshes & Geometry Processing review, demo via
Assignment 2!

Tomorrow/This week: Raytracing!!!

CS184/284A

A Small Triangle Mesh

8 vertices, 12 triangles

CS184/284A

Geometry Processing
Tasks: 3 Examples

Mesh Upsampling - Subdivision

l\..'””"?'.'.‘.‘.:" '
h"“ ""“”__-']l I('l I’l
3 ”
\ r

3 { N",“(“H“ i /',,
. l““t“'l”l“”,‘ll v
N T ""'111;7 W
C. A ’
g h“(l)*.(. '? ¥

'
X ¥ fl
XLV T ey

JI5
N L

*

x
O, '
X f‘f. S AL ‘

»

PRI ¥ /:’"' +’
- : X r
e e e
e AR R R A
AT AN r A A A1
NIV I AN A1
,”//III:;:I:f
‘. by ,’f'[" P s re” s
X t" (I_I_l P ’; /

: «} B it
% >

s

| ,"‘l'l'l‘o"':,
A A
Ay ‘I s
!"".‘ Oll,_
' Coer”d
A o) ""'oo;:"}
a watir, el TP
‘.‘b . ';"‘ ::Olnfr
“awun ¢ S
NN a2 VY :"I/’{"
\‘\\."‘."",-. 4 ’rs
- L

N A LA

Increase resolution via interpolation

CS184/284A

Mesh Downsampling - Simplification

. -
A

A
1‘6»‘7? {7
At

ey,
‘:o\%v'::AVAv
N

Decrease resolution; try to preserve shape/appearance

CS184/284A

Mesh Regularization

Modify sample distribution to improve quality

CS184/284A

Mesh Representations

List of Triangles

tris|
tris|

0] [1] [<]

1 X0/ Y0 Zo X2:¥2:22 X1.Y1: 21
1 X0 Yoo X3:Y3:43 X2. Y214

CS184/284A

Lists of Points / Indexed Triangle

verts[O]
verts|1)]

X0 Yo 20
X1: Y121
X2 Y212)
X3,Y3:43

tInd[O
tInd[1.

0,21
0,3,2

CS184/284A

® Ps

@ P;

® P9

]
) Ps
TO
?
0P
47"‘*1
\ T] / ®
\ i."".‘ p7
! ®Pio
® P3

How much data storage?

Topology vs Geometry

Which one has different topology from the first?

Different geometry?

CS184/284A

Triangle-Neighbor Data Structure

struct Tri {
Vert * v[3];
Tri * t[3];

}

struct Vert {
Point pt;
Tri *t;

CS184/284A Ren Ng

Comparison

Triangles?
+ Simple

— Redundant information (In what way?)

Points + Triangles?
+ Sharing vertices reduces memory usage

+ Ensure integrity of the mesh (how so?)

Topological Data Structures?

+ Access to neighbors (how?)

— More complex

CS184/284A

Topological Validity: Manifold

Definition: a 2D manifold is a surface that when cut with a small
sphere always yields a disk.

x If a mesh is manifold* we can rely on these useful properties:
| o An edge connects exactly two faces

® An edge connects exactly two vertices

e A face consists of a ring of edges and vertices

® A vertex consists of a ring of edges and faces

® Euler's polyhedron formula holds: #f — #e + #v = 2

(for a surface topologically equivalent to a sphere)
(Check for a cube 6 — 12 + 8 2)

* (W|thout boundary)

3 s

CS184/284A

® An edge connects
exactly two faces

® An edge connects
exactly two
vertices

vertex

e A face consists of
a ring of edges
and vertices

® A vertex consists
of a ring of edges
and faces

CS184/284A

Half-Edge Data Structure

struct Halfedge { Key idea: two half-edges act as

Halfedge "twin, “glue” between mesh elements
Halfedge *next;

Vertex *vertex;
Edge *edge;
Face *face;

} ol o
struct Vertex { 3| & |twin
Point pt; = 7
Halfedge *halfedge; &

}
struct Edge {

Halfedge *halfedge;

1 vertex

struct Face { Each vertex, edge and face points
Halfedge "halfedge; to one of its half edges

}
CS184/284A

Half-Edge Facilitates Mesh Traversal

Use twin and next pointers to move around mesh

Process vertex, edge and/or face pointers

Example 1: process all vertices of a face

%

Halfedge* h = f->halfedge; o
do { Face 8
“:.
process(h->vertex); next ©
h = h->hext;
}

CS184/284A

Half-Edge Facilitates Mesh Traversal

Example 2: process all edges around a vertex

Halfedge* h = v->halfedge;
do {

process(h->edge);

h = h->twin->nhext;

}

CS184/284A

Local Mesh Operations

Half-Edge - Local Mesh Editing

Basic operations for linked list: insert, delete

Basic ops for half-edge mesh: flip, split, collapse edges

Allocate / delete elements; reassign pointers

(Care needed to preserve mesh manifold property)

CS184/284A

Half-Edge - Edge Flip

® Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

C C

T

a d a

b b

® | ong list of pointer reassignments

® However, no elements created/destroyed.

CS184/284A

Half-Edge - Edge Split

® |[nsert midpoint m of edge (c,b), connect to get
four triangles:

< split

b b

® This time have to add elements

® Again, many pointer reassignments

CS184/284A

Half-Edge — Edge Collapse

® Replace edge (c,d) with a single vertex m:

a a

collapse

T

b b

® This time have to delete elements

® Again, many pointer reassignments

CS184/284A

Loop Subdivision

Loop Subdivision Algorithm

® Split each triangle into four

® Assigh new vertex positions according to weights:

1/8

3/8 3/8

n: vertex degree

u: 3/16 if n=3, 3/(8n) otherwise

1/8

New vertices Old vertices

Loop Subdivision Algorithm

Simon Fuhrman

CS184/284A

Semi-Regular Meshes

t

inary poin

Extraord

Most of the mesh has

ith degree 6

vertices w

HON

\
N\

.....
\ S

'
J

N

s

A

W .m.' . .. , .
...x _. ,Lf_,%&km.:__
y

i

RS
ARV

._w O
()
£ £ o —
L el 6
b"g o
O o O 2.
2 = O c X
w 35 0 o ‘A ©
OCcC > 3233
S 0 s ® O on
O >0~ = >0
-
c=<c c O g
Cc+ o ¢ c O
0.2~V >.= C
coo?2 0w ©0 o
Y 00 O L o o0
- c V o o =
._LOp._L w = O)
Upsr 5 += QO
0 eMXd

CS184/284A

Loop Subdivision via Edge Operations

First, split edges of original mesh in any order:

spllt

Next, flip new edges that touch a new & old vertex:

fllp

(Don't forget to update vertex positions!)

Images cribbed from Keenan Crane, cribbed from Denis Zorin

What About Sharp Creases?

Loop with Sharp Creases

Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases

CS184/284A

What Makes a “Good"” Triangle Mesh?

One rule of thumb: triangle shape /\

More specific condition: Delaunay “GOOD” “BAD”

 “Circumcircle interiors contain no vertices.” ,_

Not always a good condition, but often*

e Good for simulation

* Not always best for shape approximation

*See Shewchuk, "What is a Good Linear Element”

Acknowledgments

Thanks to Keenan Crane, Pat Hanrahan, and James
O’Brien for presentation resources.

Many thanks to Ren Ng for use of lecture slides.

CS184/284A

