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Announcements

Congratulations on finishing 1/4 of the class! 

Week 1-2 Survey was released — please fill it out! Check 
Piazza for details.  

Assignment 2 released and due Friday! 

Today: Meshes & Geometry Processing review, demo via 
Assignment 2! 
Tomorrow/This week: Raytracing!!!
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A Small Triangle Mesh

8 vertices, 12 triangles



Geometry Processing  
Tasks: 3 Examples
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Mesh Upsampling – Subdivision

Increase resolution via interpolation
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Mesh Downsampling – Simplification

Decrease resolution; try to preserve shape/appearance
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Mesh Regularization

Modify sample distribution to improve quality



Mesh Representations
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List of Triangles
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Lists of Points / Indexed Triangle

How much data storage?
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Which one has different topology from the first? 
Different geometry? 

Topology vs Geometry



Ren NgCS184/284A

Triangle-Neighbor Data Structure

struct Tri { 
Vert * v[3];
Tri * t[3]; 

} 

struct Vert { 
Point pt;
Tri *t;

} 
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Comparison

Triangles? 
 + Simple 
 – Redundant information (In what way?) 
Points + Triangles? 
 + Sharing vertices reduces memory usage  
 + Ensure integrity of the mesh (how so?)  
Topological Data Structures? 

+ Access to neighbors (how?) 
– More complex
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Topological Validity: Manifold

Definition: a 2D manifold is a surface that when cut with a small 
sphere always yields a disk. 

If a mesh is manifold* we can rely on these useful properties:  

• An edge connects exactly two faces  

• An edge connects exactly two vertices  

• A face consists of a ring of edges and vertices  

• A vertex consists of a ring of edges and faces  

• Euler’s polyhedron formula holds: #f – #e + #v = 2  
(for a surface topologically equivalent to a sphere)  
(Check for a cube: 6 – 12 + 8 = 2) 

* (without boundary)
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• An edge connects 
exactly two faces  

• An edge connects 
exactly two 
vertices  

• A face consists of 
a ring of edges 
and vertices  

• A vertex consists 
of a ring of edges 
and faces 
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Half-Edge Data Structure
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struct Halfedge {
   Halfedge *twin,
   Halfedge *next;
   Vertex *vertex;
   Edge *edge;
   Face *face;
}

Key idea: two half-edges act as 
“glue” between mesh elements

Each vertex, edge and face points 
to one of its half edges

struct Vertex {
   Point pt;
   Halfedge *halfedge;
}
struct Edge {
   Halfedge *halfedge; 
}
struct Face {
   Halfedge *halfedge; 
}
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Half-Edge Facilitates Mesh Traversal

Use twin and next pointers to move around mesh 
Process vertex, edge and/or face pointers 
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Halfedge* h = f->halfedge;
do {
   process(h->vertex);
   h = h->next;
}

Example 1: process all vertices of a face
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Half-Edge Facilitates Mesh Traversal

Example 2: process all edges around a vertex

Halfedge* h = v->halfedge;
do {
   process(h->edge);
   h = h->twin->next;
}
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Local Mesh Operations
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Half-Edge – Local Mesh Editing

Basic operations for linked list: insert, delete 
Basic ops for half-edge mesh: flip, split, collapse edges
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Allocate / delete elements; reassign pointers 
(Care needed to preserve mesh manifold property)
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Half-Edge – Edge Flip

• Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):
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• Long list of pointer reassignments  

• However, no elements created/destroyed.
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Half-Edge – Edge Split

• Insert midpoint m of edge (c,b), connect to get 
four triangles:

• This time have to add elements 

• Again, many pointer reassignments
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Half-Edge – Edge Collapse

• Replace edge (c,d) with a single vertex m:

• This time have to delete elements 

• Again, many pointer reassignments
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Loop Subdivision



Loop Subdivision Algorithm

• Split each triangle into four

1/8

1/8

3/83/8

New vertices

u u

u u

u u1 – n*u

n: vertex degree

u: 3/16 if n=3, 3/(8n) otherwise

Old vertices

• Assign new vertex positions according to weights:
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Loop Subdivision Algorithm

Simon Fuhrman
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Semi-Regular Meshes

Most of the mesh has 
vertices with degree 6 
But if the mesh is 
topologically equivalent to 
a sphere, then not all the 
vertices can have degree 6 
Must have a few 
extraordinary points 
(degree not equal to 6)

Extraordinary point 



Loop Subdivision via Edge Operations

Images cribbed from Keenan Crane, cribbed from Denis Zorin

(Don’t forget to update vertex positions!)

split

First, split edges of original mesh in any order:

flip

Next, flip new edges that touch a new & old vertex:
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What About Sharp Creases?

Figure from:  Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases



One rule of thumb: triangle shape

More specific condition: Delaunay 
• “Circumcircle interiors contain no vertices.” 

Not always a good condition, but often* 
• Good for simulation 
• Not always best for shape approximation

What Makes a “Good” Triangle Mesh?

“GOOD” “BAD”

*See Shewchuk, “What is a Good Linear Element”
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