
Computer Graphics and Imaging
UC Berkeley CS184

Mesh Representations &
Geometry Processing

CS184/284A

Announcements

Congratulations on finishing 1/4 of the class!

Week 1-2 Survey was released — please fill it out! Check
Piazza for details.

Assignment 2 released and due Friday!

Today: Meshes & Geometry Processing review, demo via
Assignment 2!
Tomorrow/This week: Raytracing!!!

CS184/284A

A Small Triangle Mesh

8 vertices, 12 triangles

Geometry Processing
Tasks: 3 Examples

CS184/284A

Mesh Upsampling – Subdivision

Increase resolution via interpolation

CS184/284A

Mesh Downsampling – Simplification

Decrease resolution; try to preserve shape/appearance

CS184/284A

Mesh Regularization

Modify sample distribution to improve quality

Mesh Representations

CS184/284A

List of Triangles

CS184/284A

Lists of Points / Indexed Triangle

How much data storage?

CS184/284A

Which one has different topology from the first?
Different geometry?

Topology vs Geometry

Ren NgCS184/284A

Triangle-Neighbor Data Structure

struct Tri {
Vert * v[3];
Tri * t[3];

}

struct Vert {
Point pt;
Tri *t;

}

t[0]

t[1]t[2]

v[0]

v[1]

v[2]

CS184/284A

Comparison

Triangles?
 + Simple
 – Redundant information (In what way?)
Points + Triangles?
 + Sharing vertices reduces memory usage
 + Ensure integrity of the mesh (how so?)
Topological Data Structures?

+ Access to neighbors (how?)
– More complex

CS184/284A

Topological Validity: Manifold

Definition: a 2D manifold is a surface that when cut with a small
sphere always yields a disk.

If a mesh is manifold* we can rely on these useful properties:

• An edge connects exactly two faces

• An edge connects exactly two vertices

• A face consists of a ring of edges and vertices

• A vertex consists of a ring of edges and faces

• Euler’s polyhedron formula holds: #f – #e + #v = 2
(for a surface topologically equivalent to a sphere)
(Check for a cube: 6 – 12 + 8 = 2)

* (without boundary)

CS184/284A

• An edge connects
exactly two faces

• An edge connects
exactly two
vertices

• A face consists of
a ring of edges
and vertices

• A vertex consists
of a ring of edges
and faces

H
a
l
f
e
d
g
e

twin

e
d
g
e

next

vertex

face

ha
lf
ed
ge

twin

twin

next

next
Vertex

CS184/284A

Half-Edge Data Structure

H
a
l
f
e
d
g
e

twin

e
d
g
e

next

vertex

face

struct Halfedge {
 Halfedge *twin,
 Halfedge *next;
 Vertex *vertex;
 Edge *edge;
 Face *face;
}

Key idea: two half-edges act as
“glue” between mesh elements

Each vertex, edge and face points
to one of its half edges

struct Vertex {
 Point pt;
 Halfedge *halfedge;
}
struct Edge {
 Halfedge *halfedge;
}
struct Face {
 Halfedge *halfedge;
}

CS184/284A

Half-Edge Facilitates Mesh Traversal

Use twin and next pointers to move around mesh
Process vertex, edge and/or face pointers

ha
lf
ed
ge

next

next

Face
Halfedge* h = f->halfedge;
do {
 process(h->vertex);
 h = h->next;
}

Example 1: process all vertices of a face

CS184/284A

Half-Edge Facilitates Mesh Traversal

Example 2: process all edges around a vertex

Halfedge* h = v->halfedge;
do {
 process(h->edge);
 h = h->twin->next;
}

ha
lf
ed
ge

twin

twin

next

next
Vertex

Local Mesh Operations

CS184/284A

Half-Edge – Local Mesh Editing

Basic operations for linked list: insert, delete
Basic ops for half-edge mesh: flip, split, collapse edges

b

c

a d

b

c

a d

!ip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

Allocate / delete elements; reassign pointers
(Care needed to preserve mesh manifold property)

CS184/284A

Half-Edge – Edge Flip

• Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

b

c

a d

b

c

a d

!ip

• Long list of pointer reassignments

• However, no elements created/destroyed.

CS184/284A

Half-Edge – Edge Split

• Insert midpoint m of edge (c,b), connect to get
four triangles:

• This time have to add elements

• Again, many pointer reassignments

b

m

c

a d

b

c

a d

split

CS184/284A

Half-Edge – Edge Collapse

• Replace edge (c,d) with a single vertex m:

• This time have to delete elements

• Again, many pointer reassignments

a

b

c d

a

b

m

collapse

Loop Subdivision

Loop Subdivision Algorithm

• Split each triangle into four

1/8

1/8

3/83/8

New vertices

u u

u u

u u1 – n*u

n: vertex degree

u: 3/16 if n=3, 3/(8n) otherwise

Old vertices

• Assign new vertex positions according to weights:

CS184/284A

Loop Subdivision Algorithm

Simon Fuhrman

CS184/284A

Semi-Regular Meshes

Most of the mesh has
vertices with degree 6
But if the mesh is
topologically equivalent to
a sphere, then not all the
vertices can have degree 6
Must have a few
extraordinary points
(degree not equal to 6)

Extraordinary point

Loop Subdivision via Edge Operations

Images cribbed from Keenan Crane, cribbed from Denis Zorin

(Don’t forget to update vertex positions!)

split

First, split edges of original mesh in any order:

flip

Next, flip new edges that touch a new & old vertex:

CS184/284A

What About Sharp Creases?

Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases

One rule of thumb: triangle shape

More specific condition: Delaunay
• “Circumcircle interiors contain no vertices.”

Not always a good condition, but often*
• Good for simulation
• Not always best for shape approximation

What Makes a “Good” Triangle Mesh?

“GOOD” “BAD”

*See Shewchuk, “What is a Good Linear Element”

CS184/284A

Acknowledgments

Thanks to Keenan Crane, Pat Hanrahan, and James
O’Brien for presentation resources.

Many thanks to Ren Ng for use of lecture slides.

