Mesh Representations \& Geometry Processing

Computer Graphics and Imaging UC Berkeley CS184

Announcements

Congratulations on finishing 1/4 of the class!

Week 1-2 Survey was released - please fill it out! Check Piazza for details.

Assignment 2 released and due Friday!

Today: Meshes \& Geometry Processing review, demo via Assignment 2!

Tomorrow/This week: Raytracing!!!

A Small Triangle Mesh

8 vertices, 12 triangles

Geometry Processing Tasks: 3 Examples

Mesh Upsampling - Subdivision

Increase resolution via interpolation

Mesh Downsampling - Simplification

Decrease resolution; try to preserve shape/appearance

Mesh Regularization

Modify sample distribution to improve quality

Mesh Representations

List of Triangles

CS184/284A

Lists of Points / Indexed Triangle

How much data storage?

Topology vs Geometry

Which one has different topology from the first?
Different geometry?

Triangle-Neighbor Data Structure

struct Tri \{
Vert * v[3];
Tri *t[3];
\}
struct Vert \{
Point pt;
Tri *t;
\}

Comparison

Triangles?

+ Simple
- Redundant information (In what way?)

Points + Triangles?

+ Sharing vertices reduces memory usage
+ Ensure integrity of the mesh (how so?)
Topological Data Structures?
+ Access to neighbors (how?)
- More complex

Topological Validity: Manifold

Definition: a 2D manifold is a surface that when cut with a small sphere always yields a disk.

If a mesh is manifold* we can rely on these useful properties:

- An edge connects exactly two faces
- An edge connects exactly two vertices
- A face consists of a ring of edges and vertices
- A vertex consists of a ring of edges and faces
- Euler's polyhedron formula holds: \#f - \#e + \#v = 2 (for a surface topologically equivalent to a sphere) (Check for a cube: 6-12+8=2)
* (without boundary)

CS184/284A

- An edge connects exactly two faces
- An edge connects exactly two vertices
- A face consists of a ring of edges and vertices
- A vertex consists of a ring of edges and faces

Half-Edge Data Structure

```
struct Halfedge {
    Halfedge *twin,
    Halfedge *next;
    Vertex *vertex;
    Edge *edge;
    Face *face;
}
struct Vertex {
    Point pt;
    Halfedge *halfedge;
}
struct Edge {
    Halfedge *halfedge;
}
struct Face {
    Halfedge *halfedge;
}
CS184/284A
```

Key idea: two half-edges act as
"glue" between mesh elements

Each vertex, edge and face points to one of its half edges

Half-Edge Facilitates Mesh Traversal

Use twin and next pointers to move around mesh Process vertex, edge and/or face pointers

Example 1: process all vertices of a face

Halfedge* $\mathrm{h}=\mathrm{f}->$ halfedge; do \{ process(h->vertex);
h = h->next;
\}

Half-Edge Facilitates Mesh Traversal

Example 2: process all edges around a vertex

Halfedge* $\mathrm{h}=\mathrm{v}$->halfedge;
do \{
process(h->edge);
h = h->twin->next;
\}

CS184/284A

Local Mesh Operations

Half-Edge - Local Mesh Editing

Basic operations for linked list: insert, delete Basic ops for half-edge mesh: flip, split, collapse edges

Allocate / delete elements; reassign pointers
(Care needed to preserve mesh manifold property)

Half-Edge - Edge Flip

- Triangles $(a, b, c),(b, d, c)$ become $(a, d, c),(a, b, d)$:

- Long list of pointer reassignments
- However, no elements created/destroyed.

Half-Edge - Edge Split

- Insert midpoint m of edge (c, b), connect to get four triangles:

- This time have to add elements
- Again, many pointer reassignments

Half-Edge - Edge Collapse

- Replace edge (c, d) with a single vertex m :

- This time have to delete elements
- Again, many pointer reassignments

Loop Subdivision

Loop Subdivision Algorithm

- Split each triangle into four

- Assign new vertex positions according to weights:

n : vertex degree $u: 3 / 16$ if $n=3,3 /(8 n)$ otherwise

New vertices
Old vertices

Loop Subdivision Algorithm

Simon Fuhrman

CS184/284A

Semi-Regular Meshes

Most of the mesh has vertices with degree 6

But if the mesh is topologically equivalent to a sphere, then not all the vertices can have degree 6
Must have a few extraordinary points (degree not equal to 6)

Extraordinary point

Loop Subdivision via Edge Operations

First, split edges of original mesh in any order:

Next, flip new edges that touch a new \& old vertex:

(Don't forget to update vertex positions!)

What About Sharp Creases?

Loop with Sharp Creases

Catmull-Clark with Sharp Creases

Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases
CS184/284A

What Makes a "Good" Triangle Mesh?

One rule of thumb: triangle shape

More specific condition: Delaunay

- "Circumcircle interiors contain no vertices."

Not always a good condition, but often*

- Good for simulation
- Not always best for shape approximation
*See Shewchuk, "What is a Good Linear Element"

Acknowledgments

Thanks to Keenan Crane, Pat Hanrahan, and James O'Brien for presentation resources.

Many thanks to Ren Ng for use of lecture slides.

