Mesh Representations & Geometry Processing

Computer Graphics and Imaging UC Berkeley CS184

Announcements

Congratulations on finishing 1/4 of the class!

Week 1-2 Survey was released — please fill it out! Check Piazza for details.

Assignment 2 released and due Friday!

Today: Meshes & Geometry Processing review, demo via **Assignment 2!**

Tomorrow/This week: Raytracing!!!

A Small Triangle Mesh

8 vertices, 12 triangles

Geometry Processing Tasks: 3 Examples

Mesh Upsampling – Subdivision

Increase resolution via interpolation

Mesh Downsampling – Simplification

Decrease resolution; try to preserve shape/appearance

Mesh Regularization

Modify sample distribution to improve quality

Mesh Representations

List of Triangles

Lists of Points / Indexed Triangle

CS184/284A

How much data storage?

Topology vs Geometry

Which one has different topology from the first? Different geometry?

Triangle-Neighbor Data Structure

```
struct Tri {
   Vert
            * v[3];
   Tri * t[3];
```

```
struct Vert {
   Point
            pt;
   Tri *t;
```


Comparison

Triangles?

- + Simple
- Redundant information (In what way?)
- **Points + Triangles?**
 - + Sharing vertices reduces memory usage
 - + Ensure integrity of the mesh (how so?)
- **Topological Data Structures?**
 - + Access to neighbors (how?)
 - More complex

Topological Validity: Manifold

Definition: a 2D manifold is a surface that when cut with a small sphere always yields a disk.

If a mesh is manifold* we can rely on these useful properties:

- An edge connects exactly two faces
- An edge connects exactly two vertices
- A face consists of a ring of edges and vertices
- A vertex consists of a ring of edges and faces
- Euler's polyhedron formula holds: #f #e + #v = 2(for a surface topologically equivalent to a sphere) (Check for a cube: 6 - 12 + 8 = 2)
- * (without boundary)

- An edge connects exactly two faces
- An edge connects exactly two vertices
- A face consists of a ring of edges and vertices
- A vertex consists
 of a ring of edges
 and faces

Half-Edge Data Structure

struct Halfedge { Halfedge *twin, Halfedge *next; Vertex *vertex; Edge *edge; Face *face; struct Vertex { Point pt; Halfedge *halfedge; struct Edge { Halfedge *halfedge; struct Face { Halfedge *halfedge; CS184/284A

Half-Edge Facilitates Mesh Traversal

Use twin and next pointers to move around mesh

Process vertex, edge and/or face pointers

Example 1: process all vertices of a face

```
Halfedge* h = f->halfedge;
do {
 process(h->vertex);
 h = h - next;
```


Half-Edge Facilitates Mesh Traversal

Example 2: process all edges around a vertex

```
Halfedge* h = v->halfedge;
do {
    process(h->edge);
    h = h->twin->next;
```

}

Local Mesh Operations

Half-Edge – Local Mesh Editing

Basic operations for linked list: insert, delete

Basic ops for half-edge mesh: flip, split, collapse edges

Allocate / delete elements; reassign pointers (Care needed to preserve mesh manifold property) **CS184/284A**

Half-Edge – Edge Flip

- Long list of pointer reassignments
- However, no elements created/destroyed.

Half-Edge – Edge Split

 Insert midpoint m of edge (c,b), connect to get four triangles:

- This time have to add elements
- Again, many pointer reassignments

Half-Edge – Edge Collapse

• Replace edge (c,d) with a single vertex m:

- This time have to delete elements
- Again, many pointer reassignments

Loop Subdivision

Loop Subdivision Algorithm

• Split each triangle into four

• Assign new vertex positions according to weights:

New vertices

Old vertices

U

n: vertex degree

u: 3/16 if n=3, 3/(8n) otherwise

Loop Subdivision Algorithm

Simon Fuhrman

Semi-Regular Meshes

Most of the mesh has vertices with degree 6

But if the mesh is topologically equivalent to a sphere, then not all the vertices can have degree 6

Must have a few extraordinary points (degree not equal to 6)

Extraordinary point

Loop Subdivision via Edge Operations

First, split edges of original mesh in any order:

Next, flip new edges that touch a new & old vertex:

(Don't forget to update vertex positions!)

Images cribbed from Keenan Crane, cribbed from Denis Zorin

What About Sharp Creases?

Loop with Sharp Creases

Catmull-Clark with Sharp Creases

Figure from: Hakenberg et al. Volume Enclosed by Subdivision Surfaces with Sharp Creases

What Makes a "Good" Triangle Mesh?

One rule of thumb: triangle shape

More specific condition: Delaunay

"Circumcircle interiors contain no vertices."

Not always a good condition, but often*

- Good for simulation
- Not always best for shape approximation

***See Shewchuk, "What is a Good Linear Element"**

Acknowledgments

Thanks to Keenan Crane, Pat Hanrahan, and James O'Brien for presentation resources.

Many thanks to Ren Ng for use of lecture slides.