
RASTERIZATION, SPLINES, AND CURVES 4
CS 184: FOUNDATIONS OF COMPUTER GRAPHICS

1 Graphics Pipeline — Lightning Round!

1. Name and describe the three terms in the Blinn-Phong Reflection Model.

Solution: Ambient, Diffuse, Specular lighting.

2. A light source shines on a tilted surface. Draw the light direction vector, l, and the
normal vector, n, at the given point.



Solution:

3. What is the light per unit area on this surface proportional to, according to Lambert’s
cosine law?

Solution: l · n = cos θ. Light intensity reflected off surface is proportional to cosine
of the angle between the light direction vector and surface normal vector.

4. Complete the following implementation of the Z-Buffer Algorithm in C++.

const int WIDTH = 800; // Width of framebuffer
const int HEIGHT = 600; // Height of framebuffer

struct Color {
float r, g, b;

};

struct Sample {
int x, y;
float z;
Color color;

};

struct Triangle {
std::vector<Sample> samples;

};
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void zBufferAlgorithm(const _______________________________________ triangles,
_______________________________________ framebuffer,
_______________________________________ zbuffer) {

for (const Triangle& T : triangles) {
for (const Sample& sample : T.samples) {

int x = sample.x;
int y = sample.y;
float z = sample.z;

if (x >= 0 && x < WIDTH && y >= 0 && y < HEIGHT) {
if (_______________________________________) {

framebuffer[x][y] = sample.color;
_______________________________________;

}
}

}
}

}

Solution:

This solution uses std::vector, but other C++ implementations of lists could also
work.

• std::vector<Triangle>&
• std::vector<std::vector<Color>>&
• std::vector<std::vector<float>>&
• z < zbuffer[x][y]
• zbuffer[x][y] = z

5. Prior to running this algorithm, what should the Z-buffer values be initialized to?

Solution:
std::numeric_limits<float>::infinity()

(Infinity.)
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2 A Polynomial Interpolation

Our goal is to fit a polynomial to given points and derivatives of a curve. We can solve
this problem by formulating it as a system of linear equations in the coefficients of the
polynomial.

1. List all degree 2 polynomials satisfying: f(0) = 1, f(1) = 2, f(2) = 5.

Solution: Let f(t) = at2 + bt + c be the degree 2 polynomial. The system of con-
straints we get is:

c = 1

a+ b+ c = 2

4a+ 2b+ c = 5

Solving the system yields a unique solution a = 1, b = 0, c = 1, so f(t) = t2 + 1 is
the only degree 2 polynomial.

2. How many degree 3 polynomials satisfy the given constraints?

Solution: There are infinitely many such polynomials. Intuitively, three constraints
on four coefficients (since a degree 3 polynomial has four coefficients) leave one
free parameter, so there must be infinitely many degree 3 solutions.

Detailed explanation (optional). We know from the first question that f(t) = t2+1
is the unique degree 2 polynomial satisfying

f(0) = 1, f(1) = 2, f(2) = 5.

Now let f(t) be a degree 3 polynomial. We can write

f(t) = (t2 + 1)︸ ︷︷ ︸
f1(t)

+
(
at3 + bt2 + ct+ d

)︸ ︷︷ ︸
f2(t)

,

where f1(t) already satisfies the constraints. Therefore, the polynomial

f2(t) := at3 + bt2 + ct+ d

must vanish at t = 0, 1, 2:

f2(0) = 0, f2(1) = 0, f2(2) = 0.

From f2(0) = 0, we get d = 0. From f2(1) = 0, a + b + c = 0. From f2(2) = 0,
8a+ 4b+ 2c = 0.
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To solve this system, subtract
(
1
2

)
f2(2) from f2(1)

(4a+ 2b+ c) − (a+ b+ c) = 0 =⇒ 3a+ b = 0 =⇒ b = −3a.

Next, substitute b = −3a into a+ b+ c = 0:

a− 3a+ c = 0 =⇒ −2a+ c = 0 =⇒ c = 2a.

Hence,
f2(t) = a (t3 − 3t2 + 2t).

Therefore, every degree-3 polynomial satisfying the original constraints can be
written as

f(t) = t2 + 1 + a (t3 − 3t2 + 2t),

for any real a. Since a is a free parameter that can take any real value, there are
infinitely many solutions.

3. Suppose we have a list of constraints:

f(0) = p0, f
′(0) = d0, f(1) = p1, f

′(1) = d1, . . . , f(k) = pk, f
′(k) = dk.

Since we have 2(k + 1) constraints (one function and one derivative condition per
point), the unique interpolating polynomial must have degree 2k + 1.

For a function f , what are the tradeoffs when either

• solving for a single degree 2k + 1 polynomial, versus

• taking the point and derivative constraints at i and i− 1 for i = 1, . . . , k and using
them to fit k cubic Hermite splines?

Solution: If we solve for a single high-degree polynomial, it will have infinitely
many continuous derivatives. However, it may exhibit unpredictable behavior
between the control points, and furthermore, changing a single constraint will
affect the entire curve.

If we solve for k cubic Hermite splines, then the resulting curve will be continuous
and have a continuous first derivative. The curve will have infinitely many con-
tinuous derivatives within each segment but may have a discontinuous second
derivative at the control points. However, changing a single constraint will only
affect two of the cubic splines: those that have the control point as an endpoint.

4. Consider a cubic polynomial f(t) = at3 + bt2 + ct + d that satisfies the following
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conditions:

f(0) = f0,

f(1) = f1,

f ′′(0) = f ′′
0 ,

f ′′(1) = f ′′
1 .

Write the matrix that, when inverted and applied to the vector (f0, f1, f ′′
0 , f

′′
1 )

T , allows
you to recover the coefficients a, b, c, and d of the polynomial.

Solution: 
a
b
c
d

 =


0 0 0 1
1 1 1 1
0 2 0 0
6 2 0 0


−1

f0
f1
f ′′
0

f ′′
1



5. Given the numerical inverse of the matrix:


a
b
c
d

 =


0 0 −1/6 1/6
0 0 1/2 0
−1 1 −1/3 −1/6
1 0 0 0



f0
f1
f ′′
0

f ′′
1


what are the basis polynomials that allow expressing f(t) in terms of f0, f1, f ′′

0 ,, f ′′
1 ?

Solution:

The basis polynomials for this problem are:

G0(t) = −t+ 1, G1(t) = t, G2(t) = −t3

6
+

t2

2
− t

3
, G3(t) =

t3

6
− t

6
.

Here’s a plot of these functions:
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These basis polynomials form a set of functions that allow us to express any cubic
polynomial satisfying the given constraints. The interpolating function is given
by:

f(t) = f0G0(t) + f1G1(t) + f ′′
0G2(t) + f ′′

1G3(t).

f(t) matches the given function values and second derivatives at t = 0 and t = 1.
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3 de Casteljau’s algorithm

Given k + 1 points p0, . . . ,pk, create a new set of k points p′
0, . . . ,p

′
k−1 by computing

p′
i = lerp(pi,pi+1, t), where lerp(pi,pi+1, t) = (1− t)pi + tpi+1.

Perform k times to yield a single point, f(t).

1. Use de Casteljau’s algorithm to construct f(1/2) with the given control points.

p0

p1

p2

p3

Solution:
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p0

p1

p2

p3

f(1/2)

2. Use de Casteljau’s algorithm to construct f(1/3) with the given control points.

p0

p1

p2

p3

Solution:
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p0

p1

p2

p3

f(1/3)

3. Show that the point with parameter t on the Bézier curve with control points p0,p1,p2,p3

is given by s3p0 + 3s2tp1 + 3st2p2 + t3p3, where s = 1− t. (Hint: apply de Casteljau’s
algorithm algebraically to the control points. With this setup, linear interpolation be-
tween two points q0 and q1 looks like sq0 + tq1.)

Solution:

Level 0: p0,p1,p2,p3

Level 1: b1
0(t) = sp0 + tp1

b1
1(t) = sp1 + tp2

b1
2(t) = sp2 + tp3

Level 2: b2
0(t) = s(sp0 + tp1) + t(sp1 + tp2) = s2p0 + 2stp1 + t2p2

b2
1(t) = s(sp1 + tp2) + t(sp2 + tp3) = s2p1 + 2stp2 + t2p3

Level 3: b3
0(t) = s(s2p0 + 2stp1 + t2p2) + t(s2p1 + 2stp2 + t2p3)

= s3p0 + 3s2tp1 + 3st2p2 + t3p3

4. What is this matrix product? (Hint: don’t expand it. Instead, think about what each
matrix in the product does. How are they related to de Casteljau’s algorithm?)

(
s t

)(s t 0
0 s t

)s t 0 0
0 s t 0
0 0 s t
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Solution: Without doing any additional computation, the matrix product must
be

(
s3 3s2t 3st2 t3

)
.

The rest of the solution assumes that s = 1 − t, but the same logic applies to
any s (in Question 3, we made no assumptions on s). Let’s consider the result of
applying this matrix product to a set of points,

pT
0

pT
1

pT
2

pT
3

 .

Starting from the right, the first matrix maps this input to the three points that
result in applying one iteration of de Casteljau’s algorithm,spT

0 + tpT
1

spT
1 + tpT

2

spT
2 + tpT

3

 =

b1
0(s, t)

T

b1
1(s, t)

T

b1
2(s, t)

T

 .

The other two matrices perform the remaining 2 iterations of the algorithm. As
we saw in Question 3, applying this matrix product is equivalent to the map

pT
0

pT
1

pT
2

pT
3

 7→ s3pT
0 + 3s2tpT

1 + 3st2pT
2 + t3pT

3 .

Hence, the matrix product must be
(
s3 3s2t 3st2 t3

)
.

Alternatively, you could just do the computation... but why would you do that?

(
s t

)(s t 0
0 s t

)s t 0 0
0 s t 0
0 0 s t


=

(
s2 2st t2

)s t 0 0
0 s t 0
0 0 s t


=

(
s3 3s2t 3st2 t3

)
5. For a Bézier curve defined by 3 control points, what is the degree of the polynomial

that results from de Casteljau’s algorithm? What about for k points?
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Solution: Three points yields a quadratic polynomial, and k points yields a poly-
nomial of degree k − 1.1

In Question 3, we saw that

b3
0(t) =

(
3

0

)
(1− t)3p0 +

(
3

1

)
(1− t)2tp1 +

(
3

2

)
(1− t)t2p2 +

(
3

3

)
t3p3.

More generally, we can define Bézier curves in Bernstein form, i.e.

bn
0 (t) =

n∑
j=0

pj

(
n

i

)
(1− t)n−iti.

This is a polynomial with degree n. If we have 3 points, then n = 2, and the poly-
nomial is quadratic in t. If we have k points, then n = k − 1, and the polynomial
has degree k.

1Here, we consider the control points pj to be variables and the resulting function to be a polynomial in t. If you can fix pj ’s, it is
possible to obtain a polynomial with lower degree. For example, if every pj = 0, then the resulting polynomial is 0.
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