
Computer Graphics and Imaging
UC Berkeley CS184/284

Lecture 2:

Digital Drawing

Ren NgCS184/284A

Today: Drawing Triangles to the Screen by Sampling

Drawing Machines

CNC Sharpie Drawing Machine

Aaron Panone with Matt W. Moore
http://44rn.com/projects/numerically-controlled-poster-series-with-matt-w-moore/

Laser Cutters

Oscilloscope

Ren NgCS184/284A

Cathode Ray Tube

Oscilloscope Art

Jerobeam Fenderson
https://www.youtube.com/watch?v=rtR63-ecUNo

Ren NgCS184/284A

Television - Raster Display CRT

Cathode Ray Tube Raster Scan
(modulate intensity)

Ren NgCS184/284A

Frame Buffer: Memory for a Raster Display

A Sampling of Different
Raster Displays

Ren NgCS184/284A

LED Array Display

Light emitting diode array

Ren NgCS184/284A

LED Array Display

BAMPFA display in Berkeley

Ren NgCS184/284A

Flat Panel Displays

B.Woods, Android Pit

Low-Res LCD Display

Color LCD, OLED, …

Ren NgCS184/284A

Flat Panel Displays

Smartphone screen pixels under microscope

iPhone 6S Galaxy S5

Ren NgCS184/284A

LCD vs OLED Displays

LCD pixels filter (block) light from uniform backlight; OLED pixels emit light

C
orning

Liquid Crystal Display Organic Light Emitting Diode Display

Ren NgCS184/284A

Digital Micromirror Device (DMD/DLP)

Texas Instruments

Larry Hornbeck

John Jackson, University of Rochester

http://www2.optics.rochester.edu/workgroups/cml/opt307/spr05/john/

Ren NgCS184/284A

Digital Micromirror Device (DMD/DLP)

Texas Instruments

Ren NgCS184/284A

Electrophoretic (Electronic Ink) Display

[W
ik

im
ed

ia
 C

om
m

on
s

—
Se

na
rc

le
ns

]

http://commons.wikimedia.org/wiki/User:Senarclens

Drawing to Raster Displays

Ren NgCS184/284A

Polygon Meshes

Life of Pi (2012)

Ren NgCS184/284A

Triangle Meshes

Ren NgCS184/284A

Triangle Meshes

Shape Primitives

Example shape primitives (OpenGL)

3dgep.com

Ren NgCS184/284A

Graphics Pipeline = Abstract Drawing Machine

Ren NgCS184/284A

Triangles - Fundamental Area Primitive

Why triangles?

• Most basic polygon

• Break up other polygons

• Optimize one implementation

• Triangles have unique properties

• Guaranteed to be planar

• Well-defined interior

• Well-defined method for interpolating values at
vertices over triangle (barycentric interpolation)

Drawing a Triangle
To The Framebuffer

(“Rasterization”)

Ren NgCS184/284A

What Pixel Values Approximate a Triangle?

Input: position of triangle
vertices projected on screen

Output: set of pixel values
approximating triangle

?
(2.2, 1.3)

(4.4, 11.0)
(15.3, 8.6)

Today, Let’s Start With
A Simple Approach: Sampling

Ren NgCS184/284A

Sampling a Function

Evaluating a function at a point is sampling.
We can discretize a function by periodic sampling.

for(int x = 0; x < xmax; x++)
 output[x] = f(x);

Sampling is a core idea in graphics. We’ll sample
time (1D), area (2D), angle (2D), volume (3D) …
We’ll sample N-dimensional functions, even infinite
dimensional functions.

Ren NgCS184/284A

Let’s Try Rasterization As 2D Sampling

Ren NgCS184/284A

Sample If Each Pixel Center Is Inside Triangle

Ren NgCS184/284A

Sample If Each Pixel Center Is Inside Triangle

Define Binary Function: inside(tri,x,y)

inside(t,x,y) =
1

0

(x,y) in triangle t

otherwise

Ren NgCS184/284A

Rasterization = Sampling A 2D Indicator Function

for(int x = 0; x < xmax; x++)
 for(int y = 0; y < ymax; y++)
 Image[x][y] = f(x + 0.5, y + 0.5);

Rasterize triangle tri by sampling the function
f(x,y) = inside(tri,x,y)

Ren NgCS184/284A

Implementation Detail: Sample Locations

(0,0) (w,0)

(0,h) (w,h)

Sample location for pixel (x,y)

(x+1/2,y+1/2)

Evaluating inside(tri,x,y)

Ren NgCS184/284A

Triangle = Intersection of Three Half Planes

P0

P1

P2

Ren NgCS184/284A

Each Line Defines Two Half-Planes

Implicit line equation
• L(x,y) = Ax + By + C

• On line: L(x,y) = 0
• Above line: L(x,y) > 0
• Below line: L(x,y) < 0

> 0

< 0

= 0

Ren NgCS184/284A

Line Equation Derivation

P0

P1
T

T = P1 � P0 = (x1 � x0, y1 � y0)

Line Tangent Vector

Ren NgCS184/284A

Line Equation Derivation

(x,y)

(-y,x)

Perp(x, y) = (�y, x)

General Perpendicular
Vector in 2D

Ren NgCS184/284A

Line Equation Derivation

P0

P1
T

N

N = Perp(T) = (�(y1 � y0), x1 � x0)

Line Normal Vector

Ren NgCS184/284A

Line Equation Derivation

P0

P1

N

P = (x, y)

V

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)

Ren NgCS184/284A

Line Equation

P0

P1

N

P = (x, y)

V

V = P � P0 = (x� x0, y � y0)

L(x, y) = V ·N = �(x� x0)(y1 � y0) + (y � y0)(x1 � x0)

Ren NgCS184/284A

Line Equation Tests

P0

P1

N

P

V

L(x, y) = V ·N > 0

Ren NgCS184/284A

L(x, y) = V ·N = 0

Line Equation Tests

P0

P1

N

P
V

Ren NgCS184/284A

L(x, y) = V ·N < 0

Line Equation Tests

P0

P1

N

P
V

Ren NgCS184/284A

Point-in-Triangle Test: Three Line Tests

P0

P1

P2

Compute line equations from pairs of vertices

Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y) = –(x - Xi) dYi + (y - Yi) dXi

 = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 < 0 : outside edge
 > 0 : inside edge

Ren NgCS184/284A

Point-in-Triangle Test: Three Line Tests

P0

P1

P2

L0(x, y) > 0

Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y) = –(x - Xi) dYi + (y - Yi) dXi

 = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 < 0 : outside edge
 > 0 : inside edge

Ren NgCS184/284A

Point-in-Triangle Test: Three Line Tests

P0

P1

P2

L1(x, y) > 0

Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y) = –(x - Xi) dYi + (y - Yi) dXi

 = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 < 0 : outside edge
 > 0 : inside edge

Ren NgCS184/284A

Point-in-Triangle Test: Three Line Tests

P0

P1

P2

L2(x, y) > 0

Pi = (Xi, Yi)

dXi = Xi+1 - Xi

dYi = Yi+1 - Yi

Li (x, y) = –(x - Xi) dYi + (y - Yi) dXi

 = Ai x + Bi y + Ci

Li (x, y) = 0 : point on edge
 < 0 : outside edge
 > 0 : inside edge

Ren NgCS184/284A

Point-in-Triangle Test: Three Line Tests

Sample point s = (sx, sy) is inside
the triangle if it is inside all three
lines.

inside(sx, sy) =
L0 (sx, sy) > 0 &&
L1 (sx, sy) > 0 &&
L2 (sx, sy) > 0;

P0

P1

P2

Note: actual implementation of
inside(sx,sy) involves ≤ checks
based on edge rules

Some Details

Ren NgCS184/284A

Edge Cases (Literally)

Is this sample point covered by triangle 1, triangle 2,
or both?

1

2

Ren NgCS184/284A

OpenGL/Direct3D Edge Rules

When sample point falls on an edge, the sample is classified as
within triangle if the edge is a “top edge” or “left edge”

Source: Direct3D Programming Guide, Microsoft

Top edge: horizontal edge that is
above all other edges

Left edge: an edge that is not
exactly horizontal and is on the left
side of the triangle. (triangle can
have one or two left edges)

Ren NgCS184/284A

Incremental Triangle Traversal (Faster?)

P0

P1

P2

Ren NgCS184/284A

Modern Approach: Tiled Triangle Traversal

P0

P1

P2Traverse triangle in blocks

Test all samples in block in parallel

All modern GPUs have special-purpose hardware for efficient point-in-triangle tests

Advantages:
- Simplicity of wide parallel

execution overcomes cost of extra
point-in-triangle tests (most
triangles cover many samples,
especially when super-sampling)

- Can skip sample testing work:
entire block not in triangle (“early
out”), entire block entirely within
triangle (“early in”)

Signal Reconstruction on
Real Displays

Ren NgCS184/284A

Real LCD Screen Pixels (Closeup)

iPhone 6S Galaxy S5
iphonearena.com iphonearena.com

Notice R,G,B pixel geometry! But in this class, we will assume a colored square full-color pixel.

Ren NgCS184/284A

Aside: What About Other Display Methods?

Color print: observe half-tone pattern

Assume Display Pixels Emit Square of Light

LCD pixel
on laptop

Each image sample sent to
the display is converted
into a little square of light
of the appropriate color:
(a pixel = picture element)

* LCD pixels do not actually
emit light in a square of
uniform color, but this
approximation suffices for
our current discussion

Ren NgCS184/284A

So, If We Send The Display This Sampled Signal

Ren NgCS184/284A

The Display Physically Emits This Signal

Ren NgCS184/284A

Compare: The Continuous Triangle Function

Ren NgCS184/284A

What’s Wrong With This Picture?

Jaggies!

Ren NgCS184/284A

Jaggies (Staircase Pattern)

Is this the best we can do?

Ren NgCS184/284A

Discussion: What Value Should a Pixel Have?

Potential topics for your
pair discussion:

• Ideas for “higher
quality” pixel formula?

• What are all the
relevant factors?

• What’s right/wrong
about point sampling?

• Why do jaggies look
“wrong”?

Ren NgCS184/284A

Things to Remember

Drawing machines

• Many possibilities

• Why framebuffers and raster displays?

• Why triangles?
We posed rasterization as a 2D sampling process

• Test a binary function inside(triangle,x,y)

• Evaluate triangle coverage by 3 point-in-edge tests

• Finite sampling rate causes “jaggies” artifact
(next time we will analyze in more detail)

Ren NgCS184/284A

Acknowledgments

Thanks to Kayvon Fatahalian, Pat Hanrahan, Mark
Pauly and Steve Marschner for slide resources.

