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Case Study: JPEG Compression 



JPEG Compression: The Big Ideas

Low-frequency content is predominant in images of the real world 

The human visual system is: 

• Less sensitive to detail in chromaticity than in luminance 

• Less sensitive to high frequency sources of error 

Therefore, image compression of natural images can: 

• Reduce perceived error by localizing error into high frequencies, 
and in chromaticity 
 
 

Slide credit: Pat Hanrahan
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Y’CbCr Color Space

Y’CbCr color space 

• This is a perceptually-
motivated color space 
akin to L*a*b* that we 
discussed in the color 
lecture 

• Y’ is luma (lightness), Cb 
and Cr are chroma 
channels (blue-yellow and 
red-green difference 
from gray)  

Y’

Cb

Cr

Im
age credit: W

ikipedia*Omitting discussion of nonlinear gamma encoding in Y’ channel



Example Image

Original picture



Y’ Only (Luma)

Luma channel



Downsampled Y’

4x4 downsampled luma channel



CbCr Only (Chroma)

CbCr channels



Downsampled CbCr

4x4 downsampled CbCr channels



Example: Compression in Y’ Channel

4x4 downsampled Y’, full-resolution CbCr



Example: Compression in CbCr Channels

Full-resolution Y’, 4x4 down sampled CbCr



Original Image
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JPEG: Chroma Subsampling in Y’CbCr Space

Subsample chroma channels  
(e.g. to 4:2:2 or 4:2:0 format) 

4:2:2 representation: (retain 2/3 values) 

• Store Y’ at full resolution 

• Store Cb, Cr at half resolution in 
horizontal dimension 

4:2:0 representation: (retain 1/2 values) 

• Store Y’ at full resolution 

• Store Cb, Cr at half resolution in 
both dimensions 



JPEG: Discrete Cosine Transform (DCT)

i = 0

basis[i, j] = 

DCT computes projection of 
image onto 64 basis functions: 

basis[i, j]

DCT applied to 8x8 pixel blocks 
of Y’ channel, 16x16 pixel blocks 
of Cb, Cr (assuming 4:2:0)

i = 7
j = 0 j = 7

In JPEG, Apply discrete cosine 
transform (DCT) to each 8x8 
block of image values



JPEG Quantization: Prioritize Low Frequencies

Quantization Matrix

=

Slide credit: Wikipedia, Pat Hanrahan

Result of DCT 
(image encoded in cosine basis)

Quantization produces small values for coefficients (only a few 
bits needed per coefficient) 

Observe: quantization zeros out many coefficients

Changing JPEG quality setting in your favorite 
photo app modifies this matrix (“lower quality” = 
higher values for elements in quantization matrix) 



JPEG: Compression Artifacts

Low quality Medium quality 

Noticeable 8x8 pixel block boundaries 

Noticeable error near large color gradients

Low-frequency regions of image represented accurately even under high compression



JPEG: Compression Artifacts

Quality Level 1Quality Level 3

Original Image Quality Level 9 Quality Level 6

Why might JPEG 
compression not be a good 
compression scheme for line-
based illustrations or 
rasterized text?



Lossless Compression of Quantized DCT Values

Image credit: Wikipedia

Quantized DCT Values 

Reordering
Entropy encoding: (lossless) 

Reorder values 

Run-length encode (RLE) 0’s 

Huffman encode non-zero values

Basis functions
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JPEG Compression Summary

Convert image to Y’CbCr color space 
Downsample CbCr (to 4:2:2 or 4:2:0)	 (information loss occurs here) 
For each color channel (Y’, Cb, Cr): 

For each 8x8 block of values 
Compute DCT 
Quantize results                  	 (information loss occurs here) 
Reorder values 
Run-length encode 0-spans 
Huffman encode non-zero values 
 
 



Theme: Exploit Perception in Visual Computing

JPEG is an example of a general theme of exploiting 
characteristics of human perception to build efficient visual 
computing systems 
We are perceptually insensitive to color errors: 

• Separate luminance from chrominance in color 
representations (e.g, Y’CbCr) and compress chrominance 

We are less perceptually sensitive to high-frequency error  

• Use a frequency-based encoding (cosine transform) and 
compress high-frequency values 

We perceive lightness non-linearly (not discussed in this lecture) 

• Encode pixel values non-linearly to match perceived 
brightness using gamma curve



Basic Image Processing Operations



Example Image Processing Operations

Blur



Example Image Processing Operations

Sharpen



Edge Detection



A “Smarter” Blur (Preserves Crisp Edges)



Denoising

Denoised

Original



Review: Convolution

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(y � x)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(y � x)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

VEC: Small: Collaborative Research: The Visual Computing Database: A
Platform for Visual Data Processing and Analysis at Internet Scale

(f ⇤ g)(x) =
Z 1

�1
f(y)g(x� y)dy

f(x) =

⇢
1 |x|  0.5
0 otherwise

(f ⇤ g)(x) =
Z 0.5

�0.5
g(x� y)dy

-0.5 0.5

1Example: convolution with “box” function: 

output signal filter input signal

f * g is a “smoothed” version of g

* In this gif f and g are swapped



Discrete 2D Convolution

(f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j)

Consider                   that is nonzero only when:  (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:

(f ⇤ g)(x, y) =
1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values. 

These values are often called “filter weights” or the “kernel”.

output image filter input image

(f ⇤ I)
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Simple 3x3 Box Blur
float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9}; 

for (int j=0; j<HEIGHT; j++) { 
   for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<3; jj++) 
         for (int ii=0; ii<3; ii++) 
            tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 
      output[j*WIDTH + i] = tmp; 
  } 
}

Will ignore boundary pixels 
today and assume output 
image is smaller than input 
(makes convolution loop 
bounds much simpler to write) 



7x7 Box Blur
Original

Blurred
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Gaussian Blur

Obtain filter coefficients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

▪ Produces weighted sum of neighboring pixels 
(contribution falls off with distance) 

-Truncate filter beyond certain distance



7x7 Gaussian Blur
Original

Blurred



Compare: 7x7 Box Blur
Original

Blurred
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What Does Convolution with this Filter Do?

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Sharpens image!



3x3 Sharpen Filter
Original

Sharpened



What Does Convolution with these Filters Do?

Extracts horizontal 
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical 
gradients



Gradient Detection Filters
Horizontal gradients

Vertical gradients
Note: you can think of a filter as a 
“detector” of a pattern, and the 
magnitude of a pixel in the output 
image as the “response” of the 
filter to the region surrounding 
each pixel in the input image (this 
is a common interpretation in 
computer vision)



Sobel Edge Detection

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

▪ Find pixels with large gradients

G =
q

Gx
2 +Gy

2

Pixel-wise operation on images

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

Gx
2 +Gy

2



Algorithmic Cost of  
Convolution-Based Image Processing
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Cost of Convolution with N x N Filter?
float input[(WIDTH+2) * (HEIGHT+2)]; 

float output[WIDTH * HEIGHT]; 

float weights[] = {1./9, 1./9, 1./9, 

                   1./9, 1./9, 1./9, 

                   1./9, 1./9, 1./9}; 

for (int j=0; j<HEIGHT; j++) { 

   for (int i=0; i<WIDTH; i++) { 

      float tmp = 0.f; 

      for (int jj=0; jj<3; jj++) 

         for (int ii=0; ii<3; ii++) 

            tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 

      output[j*WIDTH + i] = tmp; 

  } 

}

In this 3x3 box blur example: 
Total work per image = 9 x WIDTH x HEIGHT

For N x N filter:  N2 x WIDTH x HEIGHT



Separable Filters

A filter is separable if is the product of two other filters 

• Examples: a 2D box blur 

• Exercise: write 2D gaussian and vertical/horizontal gradient 
detection filters as product of 1D filters (they are separable!) 

1

9

2

4
1 1 1
1 1 1
1 1 1

3

5 =
1

3

2

4
1
1
1

3

5 ⇤ 1

3

⇥
1 1 1

⇤

Key property: 2D convolution with separable filter can be 
written as two 1D convolutions!



Fast 2D Box Blur via Two 1D Convolutions 
int WIDTH = 1024 

int HEIGHT = 1024; 

float input[(WIDTH+2) * (HEIGHT+2)]; 

float tmp_buf[WIDTH * (HEIGHT+2)]; 

float output[WIDTH * HEIGHT]; 

float weights[] = {1./3, 1./3, 1./3}; 

for (int j=0; j<(HEIGHT+2); j++) 

  for (int i=0; i<WIDTH; i++) { 

    float tmp = 0.f; 

    for (int ii=0; ii<3; ii++) 

      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; 

    tmp_buf[j*WIDTH + i] = tmp; 

  } 

for (int j=0; j<HEIGHT; j++) { 

  for (int i=0; i<WIDTH; i++) { 

    float tmp = 0.f; 

    for (int jj=0; jj<3; jj++) 

      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 

    output[j*WIDTH + i] = tmp; 

  } 

}

For NxN filter:  2N x WIDTH x HEIGHT

Total work per image = 6 x WIDTH x HEIGHT

Extra cost of this approach?

Storage! 
Challenge: can you achieve this work 
complexity without incurring this cost? 
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Recall: Convolution Theorem

* =

x =

Spatial 
Domain

Frequency 
Domain

Fourier 
Transform

Inv. Fourier 
Transform
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Efficiency?

When is it faster to implement a filter by convolution 
in the spatial domain? 

When is it faster to implement a filter by multiplication 
in the frequency domain?



Data-Dependent Filters



Median Filter

uint8 input[(WIDTH+2) * (HEIGHT+2)]; 

uint8 output[WIDTH * HEIGHT]; 

for (int j=0; j<HEIGHT; j++)  

   for (int i=0; i<WIDTH; i++)  

      output[j*WIDTH + i] = 

           // compute median of pixels 

           // in surrounding 5x5 pixel window  

▪ Replace pixel with median of its neighbors 
- Useful noise reduction filter: unlike 

gaussian blur, one bright pixel doesn’t 
drag up the average for entire region 

▪ Not linear, not separable 
- Filter weights are 1 or 0 

(depending on image content)



Bilateral Filter

Example use of bilateral filter: removing noise while preserving image edges
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Intuition

Isotropic filtering Anisotopic, data dependent filtering



Bilateral Filter

▪ Value of output pixel (x,y) is the weighted sum of all pixels in the support 
region of a truncated gaussian kernel 

▪ But weight is combination of both spatial distance and intensity difference. 
(another non-linear, data-dependent filter) 

▪ The bilateral filter is an “edge preserving” filter: down-weight contribution of 
pixels on the other side of strong edges.  f (x) defines what “strong edge 
means” 

▪ Spatial distance weight term f (x) could itself be a gaussian 

- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Re-weight based on difference 
in input image pixel values

For all pixels in support 
region of Gaussian kernel

BF[I](x, y) =
X

i,j

f(kI(x� i, y � j)� I(x, y)k)G(i, j)I(x� i, y � j)

Gaussian blur kernel Input image



Bilateral Filter
Input pixel p

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Input image G(): gaussian about input pixel p f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Pixels with significantly different 
intensity relative to p contribute little to 
filtered result (they are on the “other 
side of the edge”)

Test your 
understanding:  

What would change 
on this slide if pixel p 

were on the lower 
side of the edge? 



Bilateral Filter: Kernel Depends on Image Content 

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.



Data-Driven Image Processing: 
“Image Manipulation by Example”



Texture Synthesis

Input: low-resolution texture image 
Desired output: high-resolution texture that appears “like” the input

Source texture 
(low resolution)

High-resolution texture generated by 
naive tiling of low-resolution texture



Algorithm: Non-Parametric Texture Synthesis

Main idea: For a given pixel p, find a probability distribution 
function for possible values of p, based on its neighboring pixels.   

Define neighborhood Np to be the NxN pixels around p   

p

[Efros and Leung 99]

To synthesize each pixel p: 

1. Find other N x N patches (Nq) in the image that are most similar to Np 

2. Center pixels of the closest patches are candidates for p 

3. Randomly sample from candidates weighted by distance d(Np,Nq) 

Np

Candidate Nq  
neighborhoods

Source Growing synthesized texture



Non-Parametric Texture Synthesis

Increasing size of neighborhood search window: w(p)

So
ur

ce
 te

xt
ur

es

Synthesized Textures

5x5 11x11 15x15 23x23

[Efros and Leung 99]



More Texture Synthesis Examples
Synthesized TexturesSource textures

Naive tiling solution

[Efros and Leung 99]



Image Completion Example

Original Image

Masked Region

Completion Result

Image credit: [Barnes et al. 2009]

See PatchMatch algorithm [Barnes 2009] 
for a fast randomized algorithm for 
finding similar patches

Goal: fill in masked region with 
“plausible” pixel values.
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Things to Remember

JPEG as an example of exploiting perception in visual systems 

• Chroma subsampling and DCT transform 

Image processing via convolution 

• Different operations by changing filter kernel weights 

• Fast separable filter implementation: multiple 1D filters 

Data-dependent image processing techniques 

• Bilateral filtering, Efros-Leung texture synthesis 

To learn more: consider CS194-26 “Computational Photography”
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