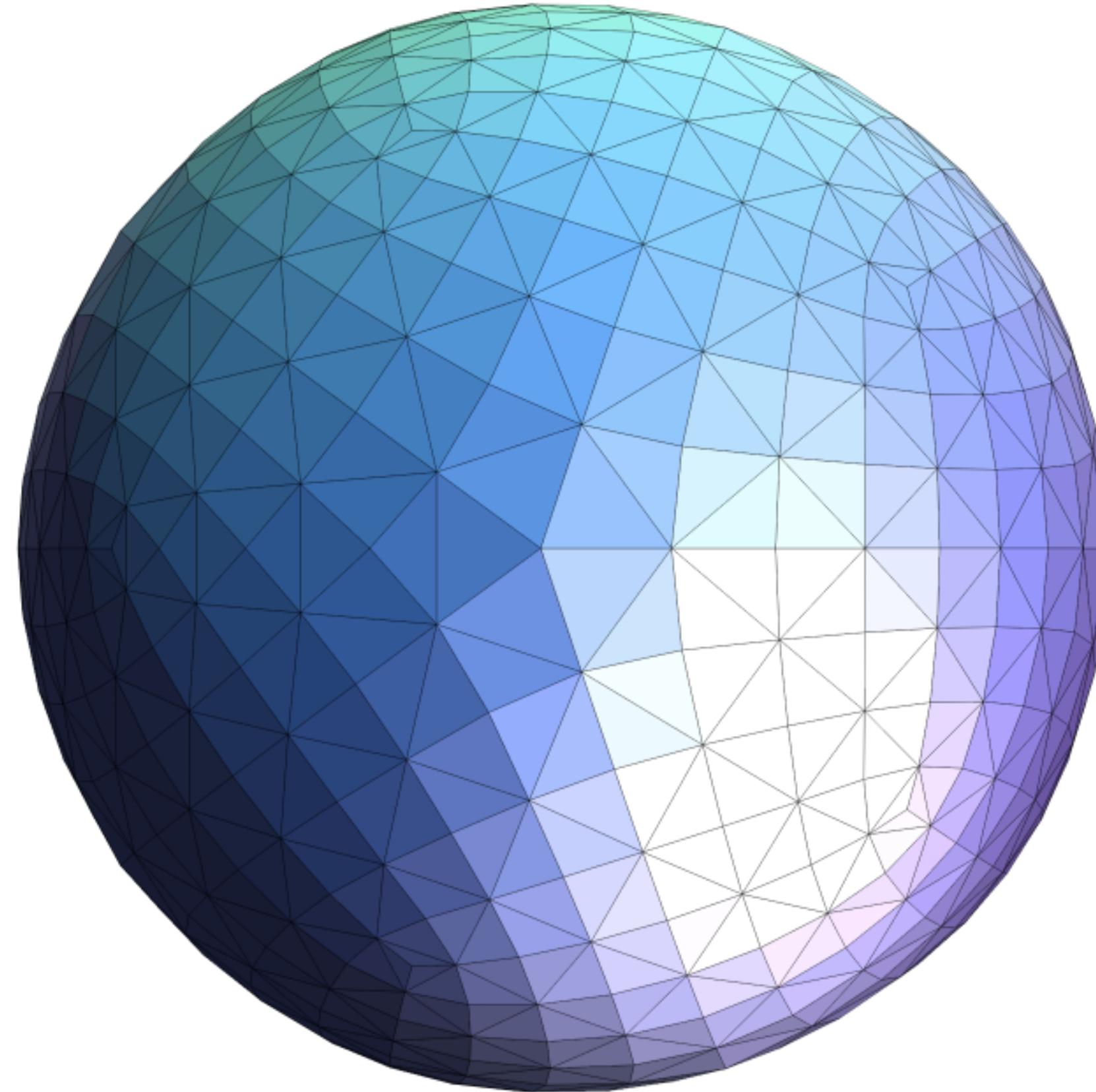


Lecture 2:

Digital Drawing

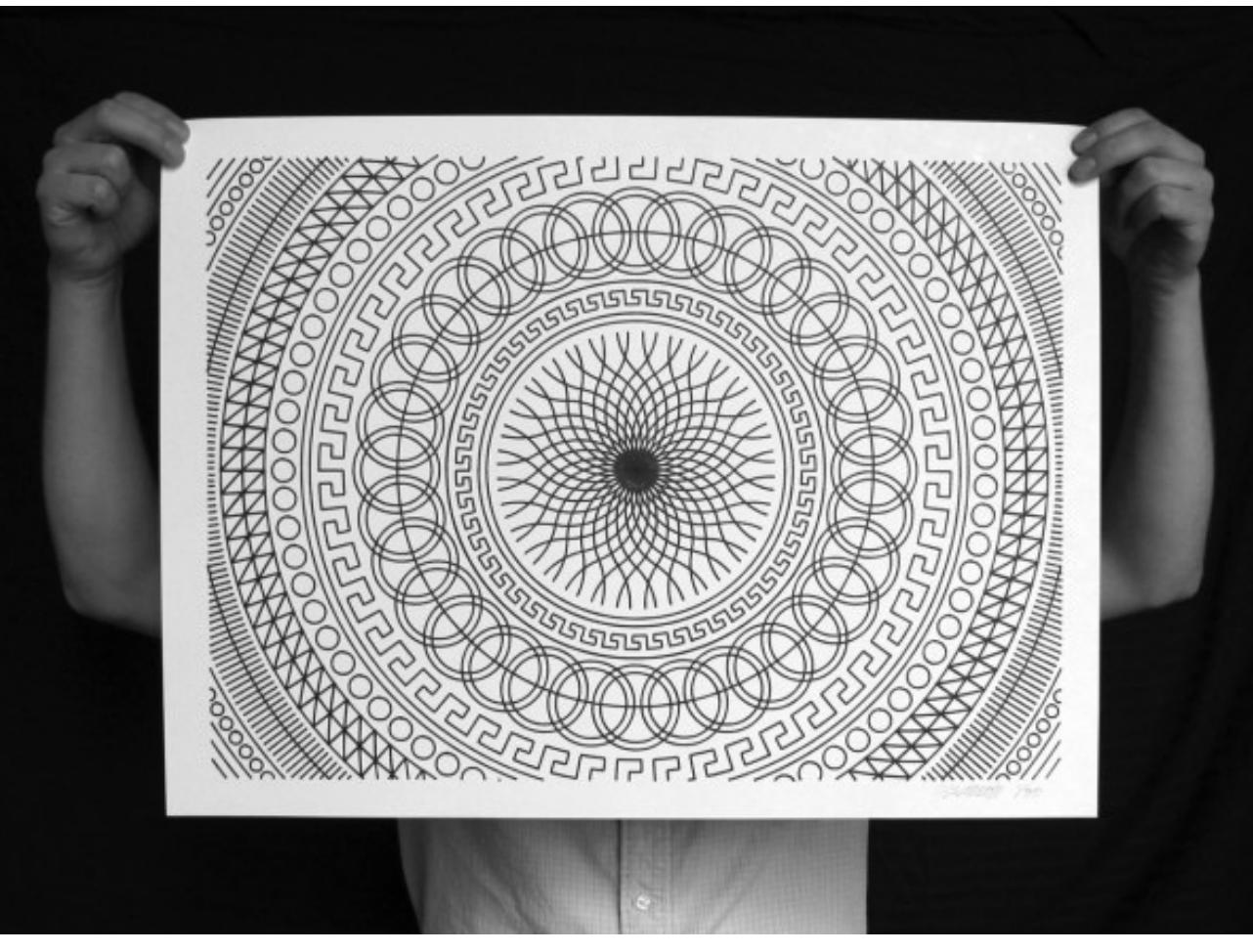
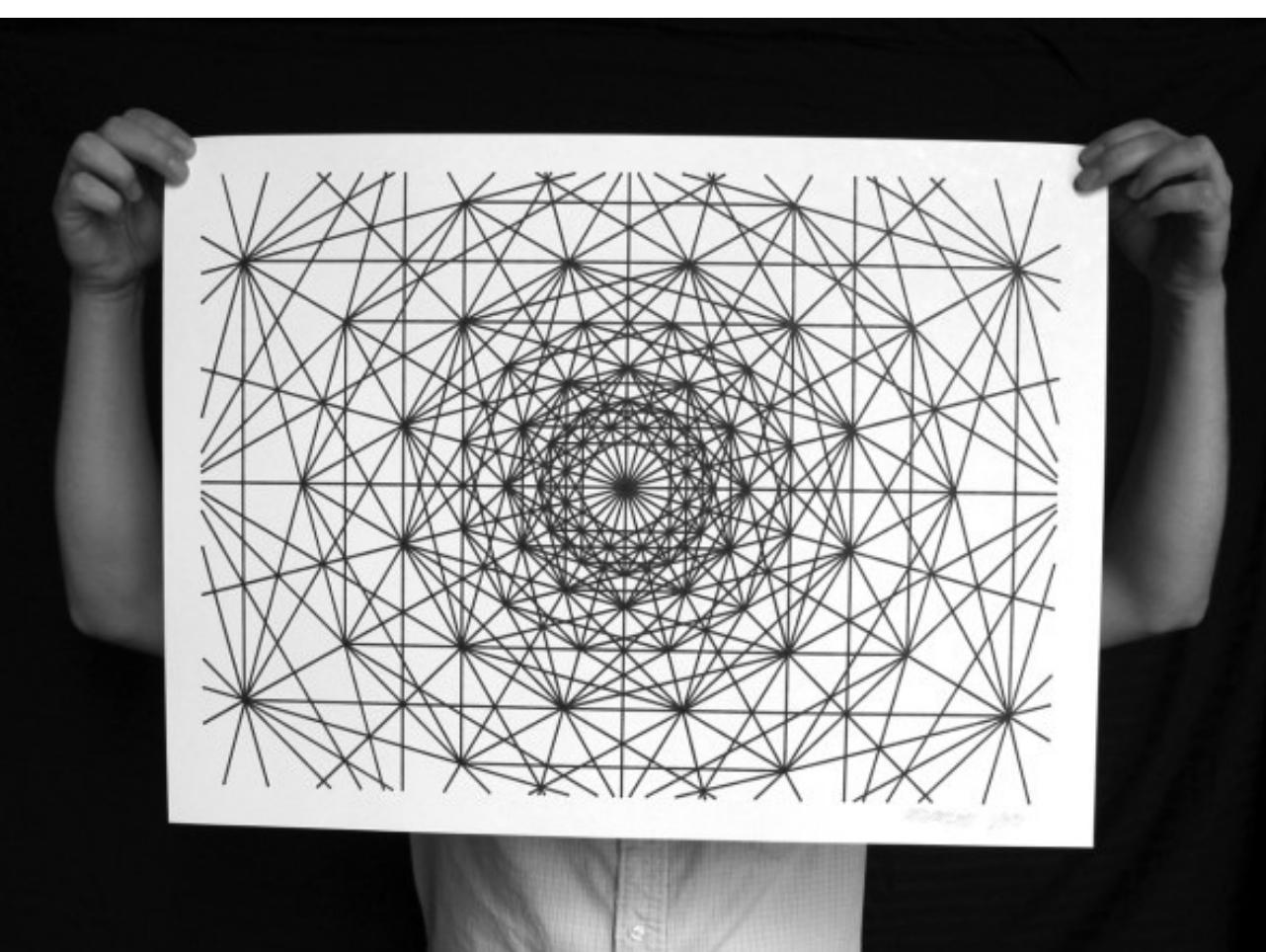
Computer Graphics and Imaging
UC Berkeley CS184/284

Today: Drawing Triangles to the Screen by Sampling



Drawing Machines

CNC Sharpie Drawing Machine



Aaron Panone with Matt W. Moore

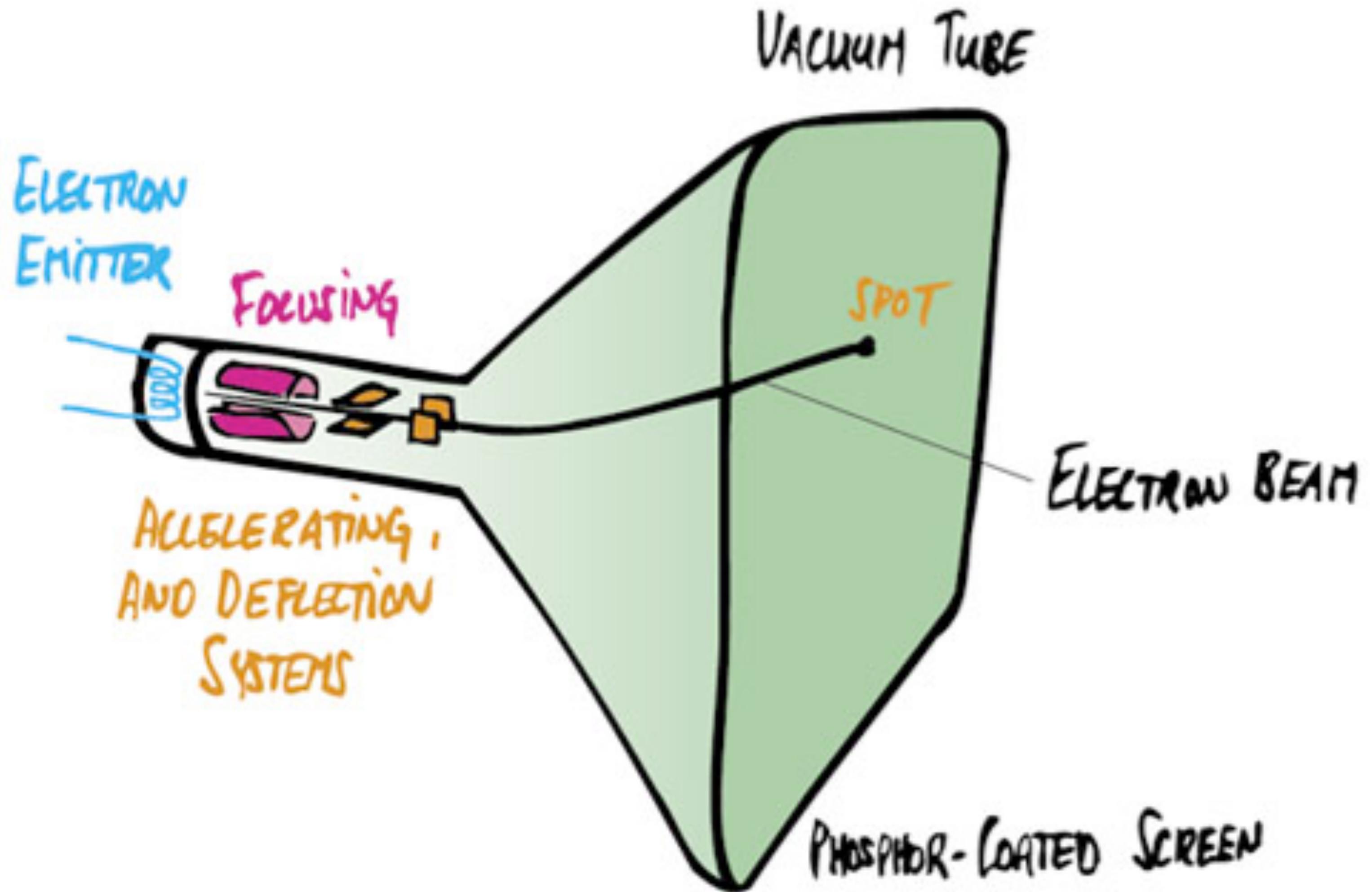
<http://44rn.com/projects/numerically-controlled-poster-series-with-matt-w-moore/>

Laser Cutters

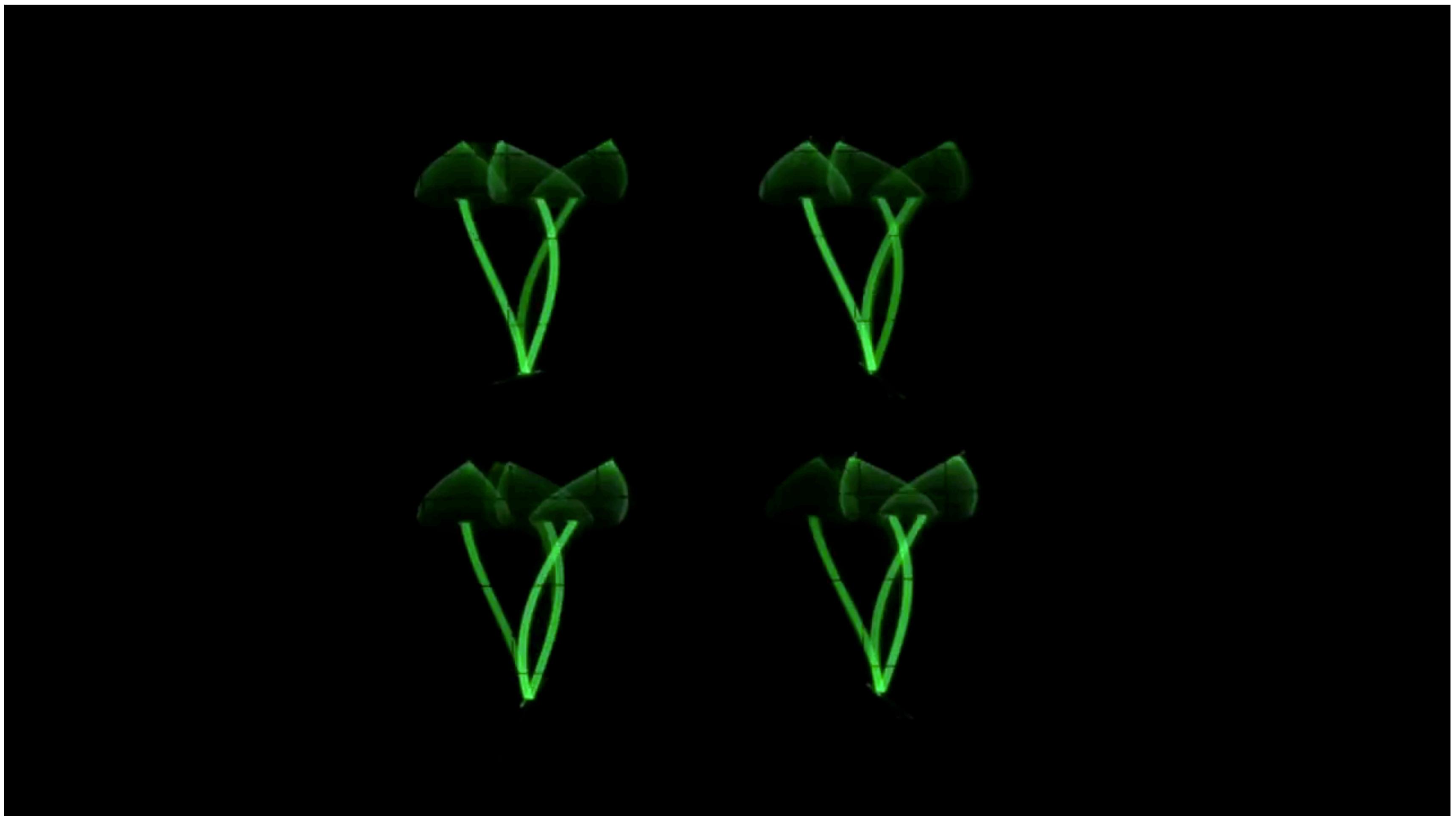


Oscilloscope

Cathode Ray Tube



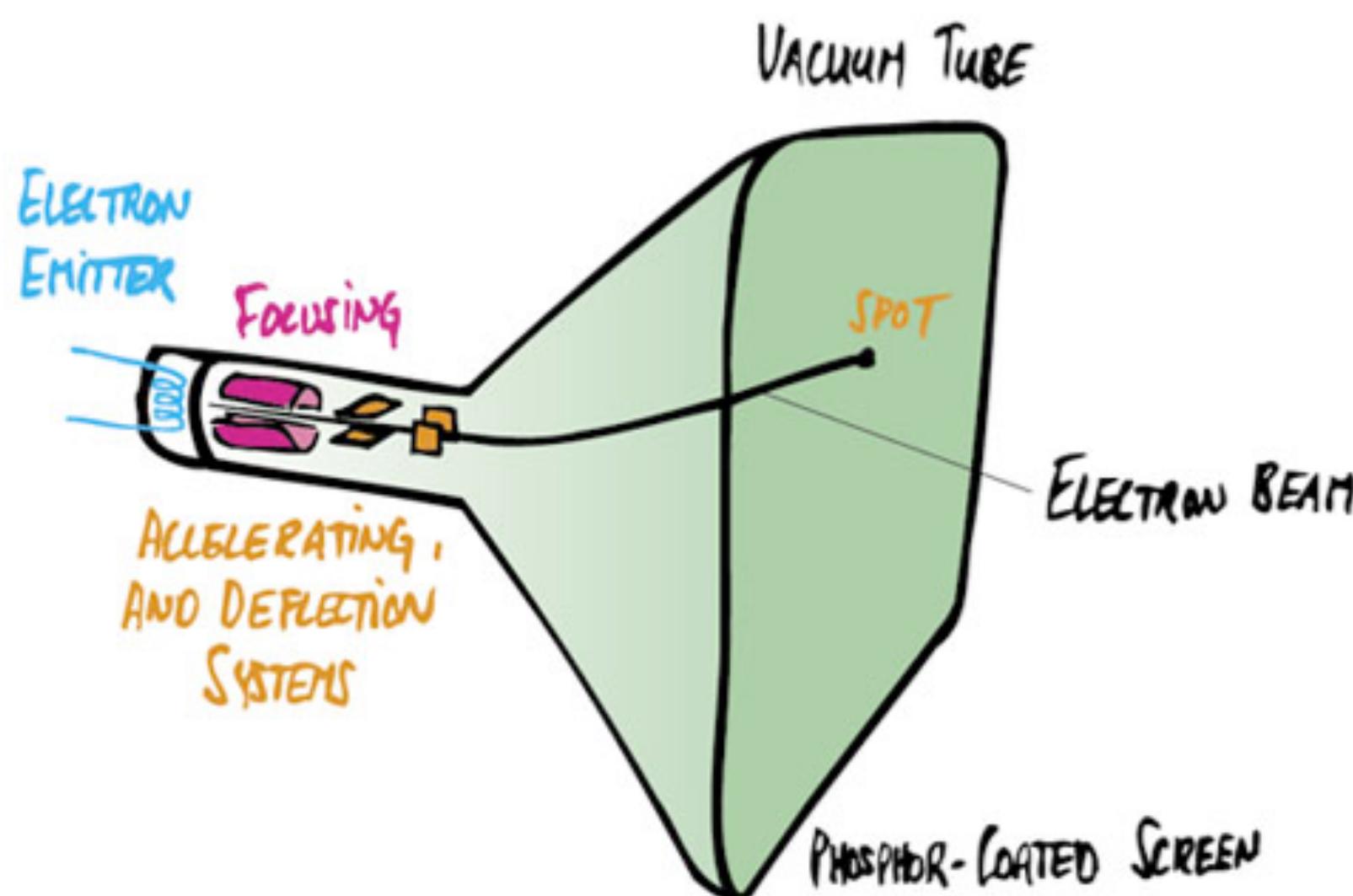
Oscilloscope Art



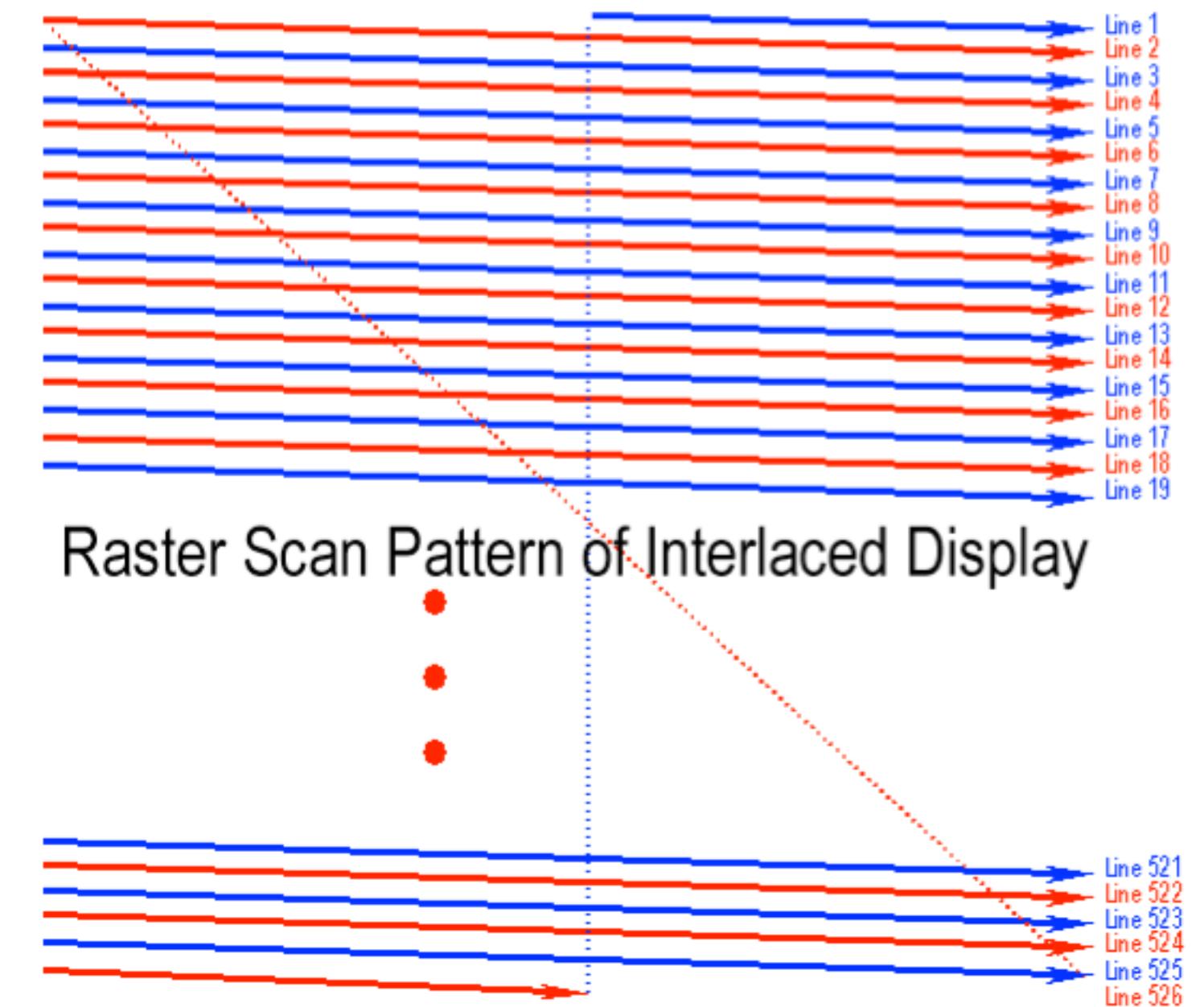
Jerobeam Fenderson

<https://www.youtube.com/watch?v=rtR63-ecUNo>

Television - Raster Display CRT



Cathode Ray Tube



Raster Scan
(modulate intensity)

Frame Buffer: Memory for a Raster Display

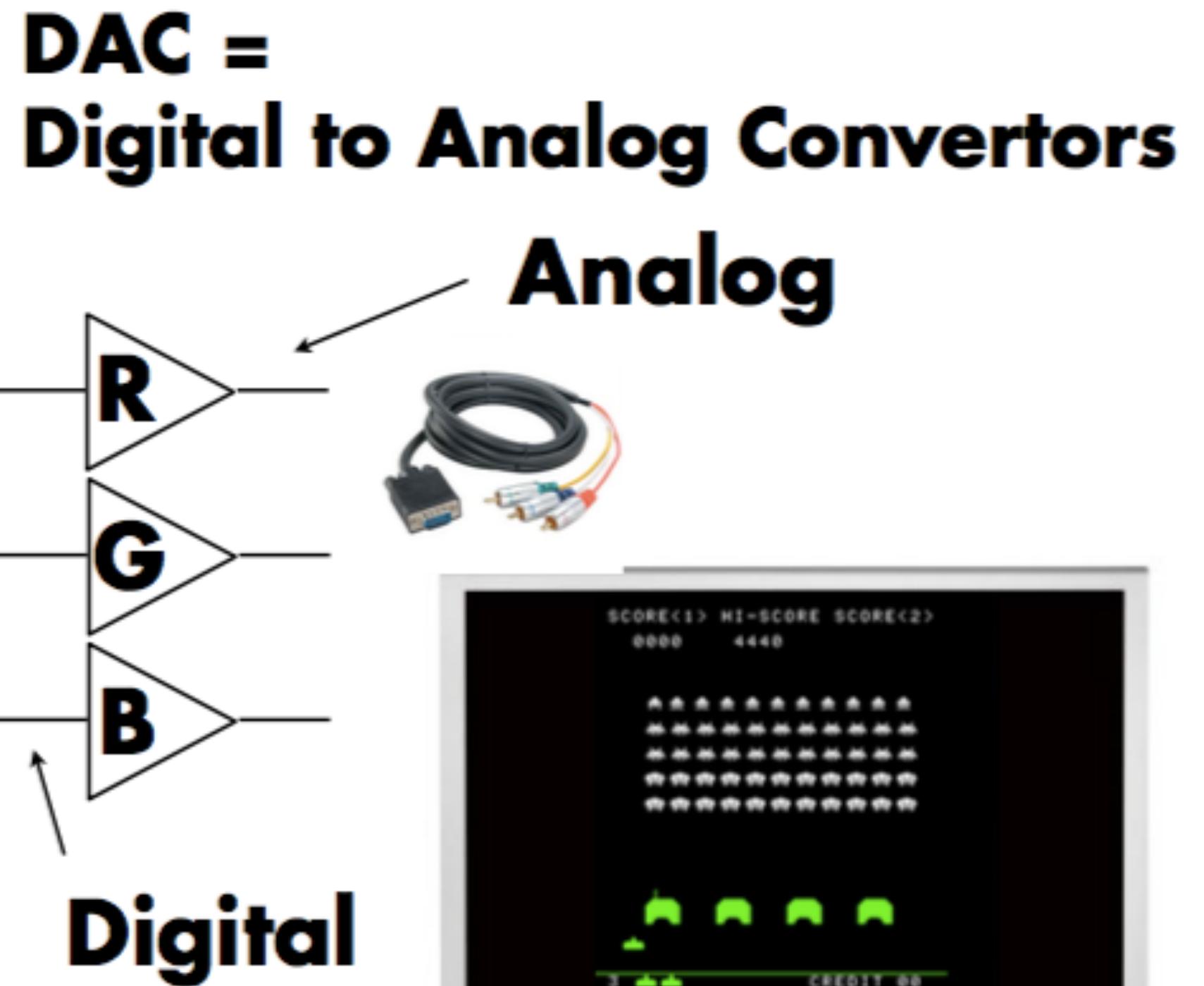


Image = 2D array of colors

A Sampling of Different Raster Displays

LED Array Display

LED Array Display

Flat Panel Displays

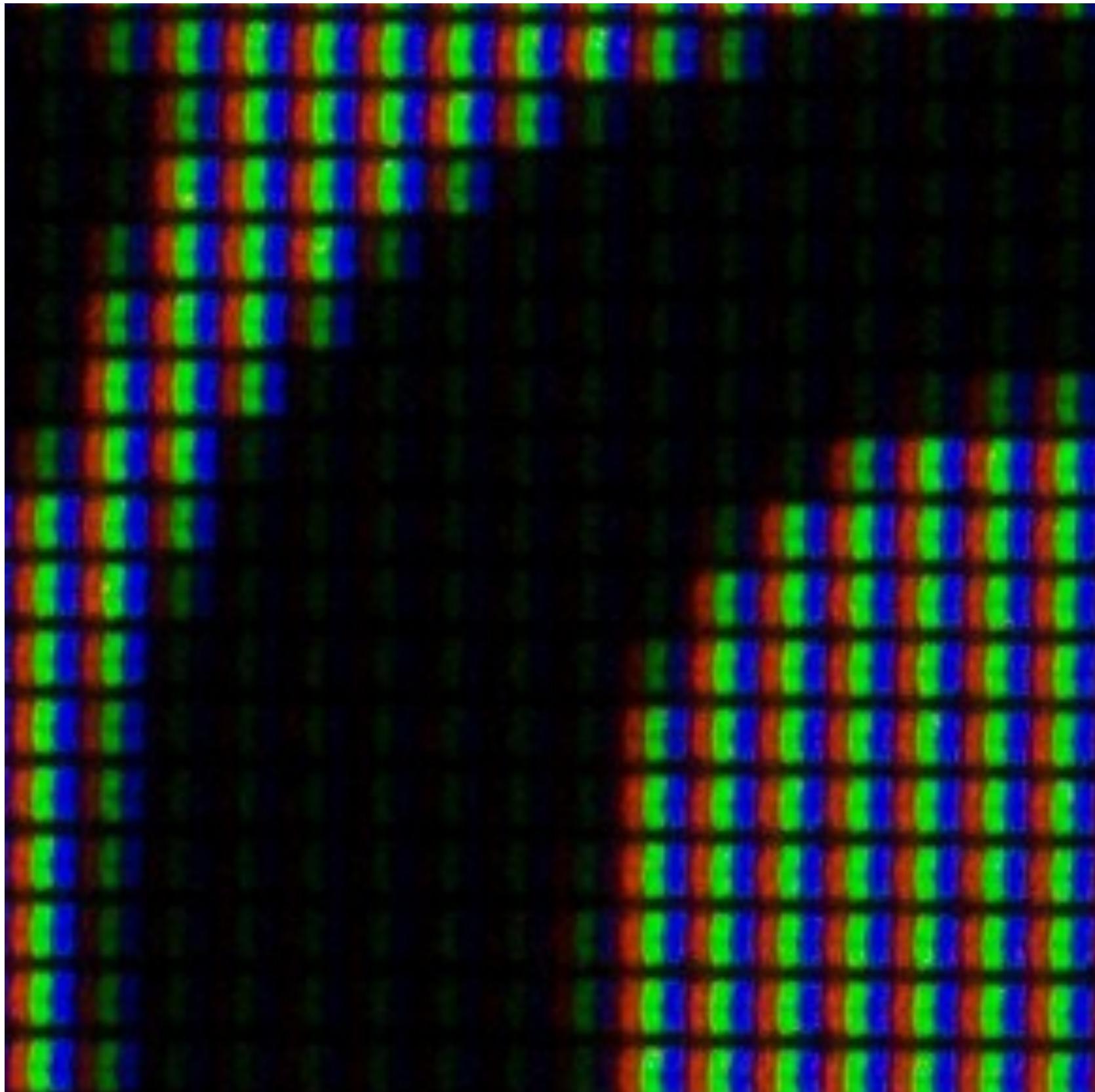
Low-Res LCD Display

CS184/284A

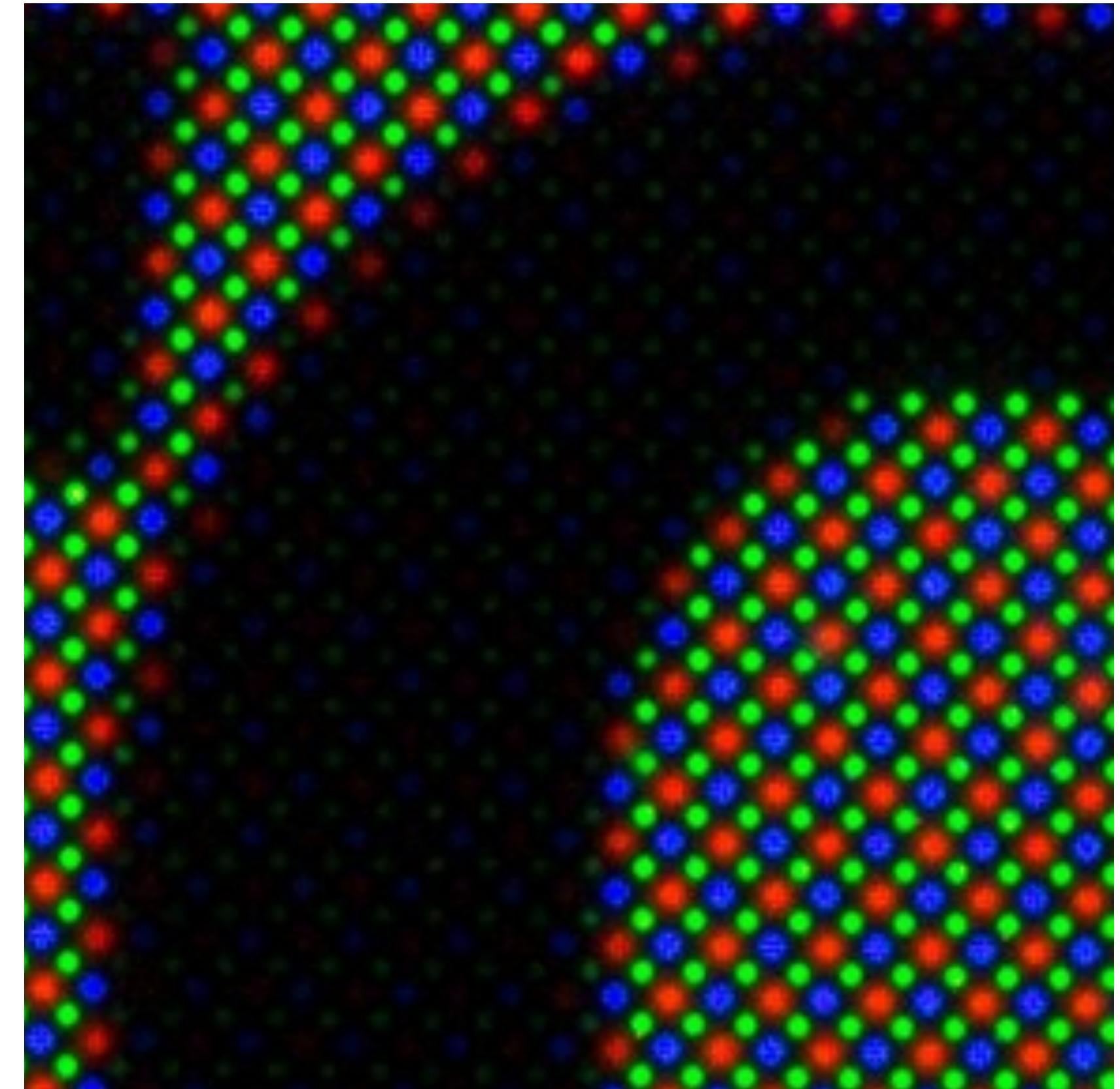
Color LCD, OLED, ...

S26 - O'Brien

Flat Panel Displays



iPhone 6S



Galaxy S5

LCD vs OLED Displays

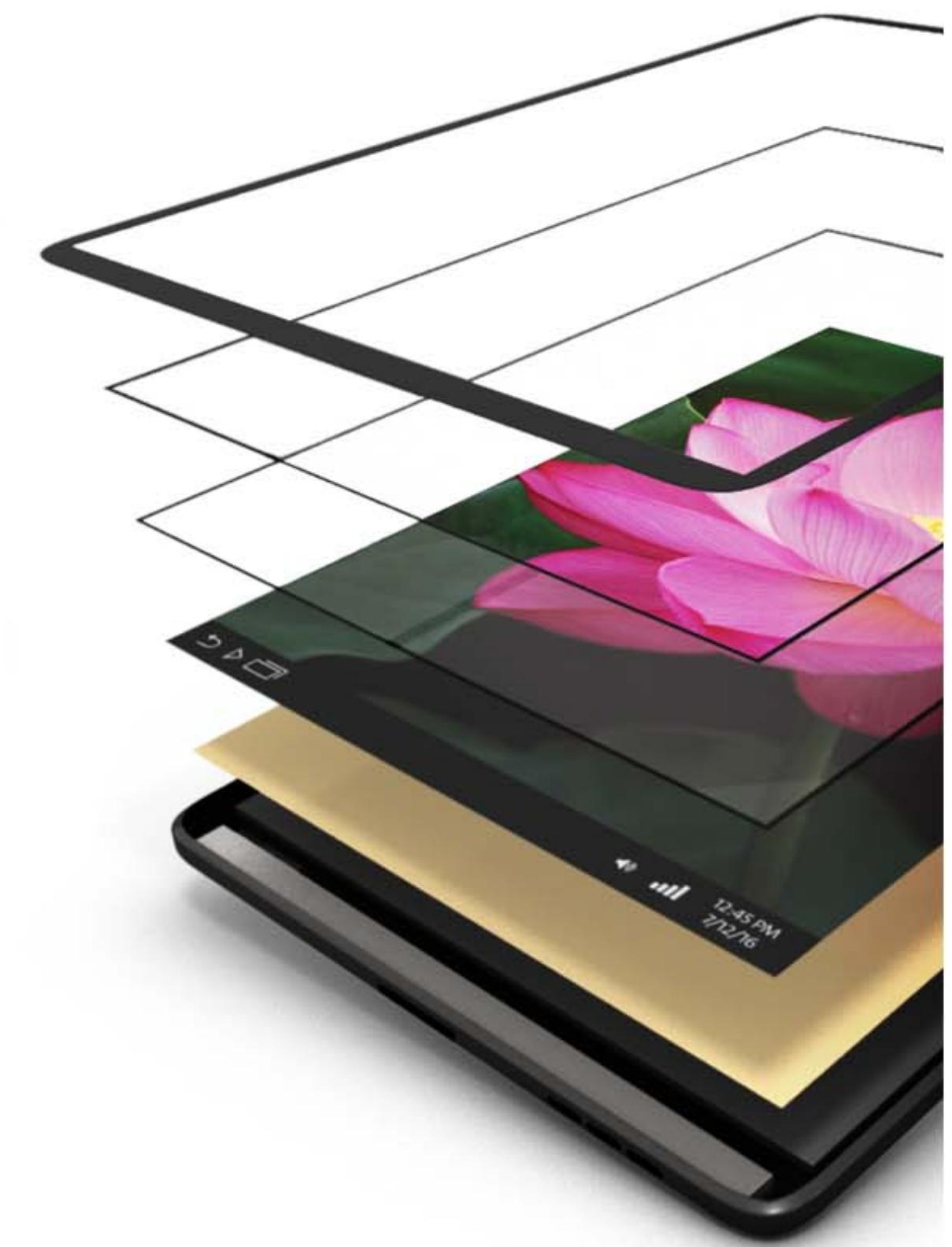
LCD

Cover Glass
Linear Polarizer
Color Filter Glass
Liquid crystal
Glass TFT Backplane
Linear Polarizer
Backlight

Liquid Crystal Display

OLED

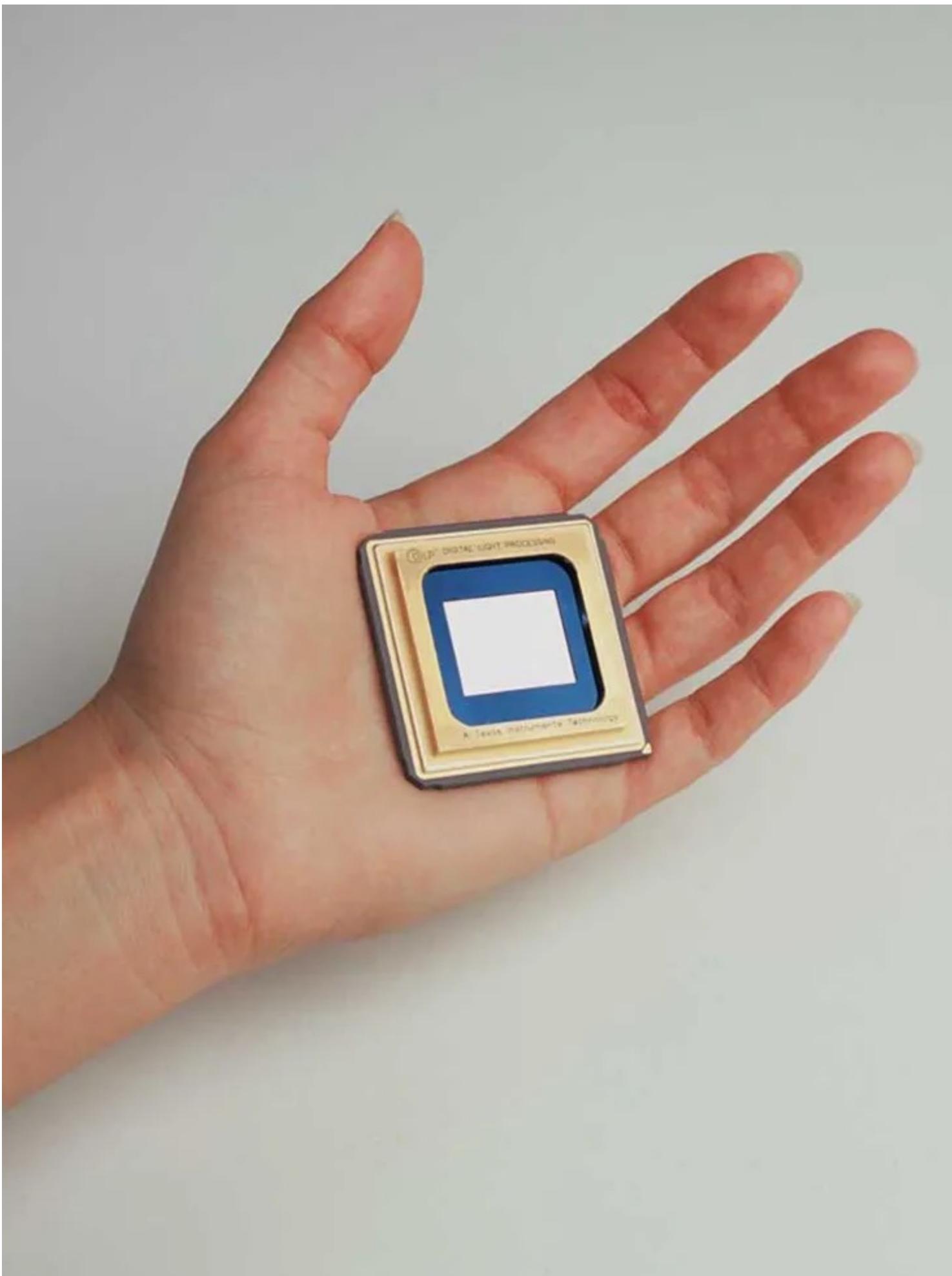
Cover Glass
Circular Polarizer
Encapsulated Glass
Glass TFT Backplane with OLED
Heat Sink



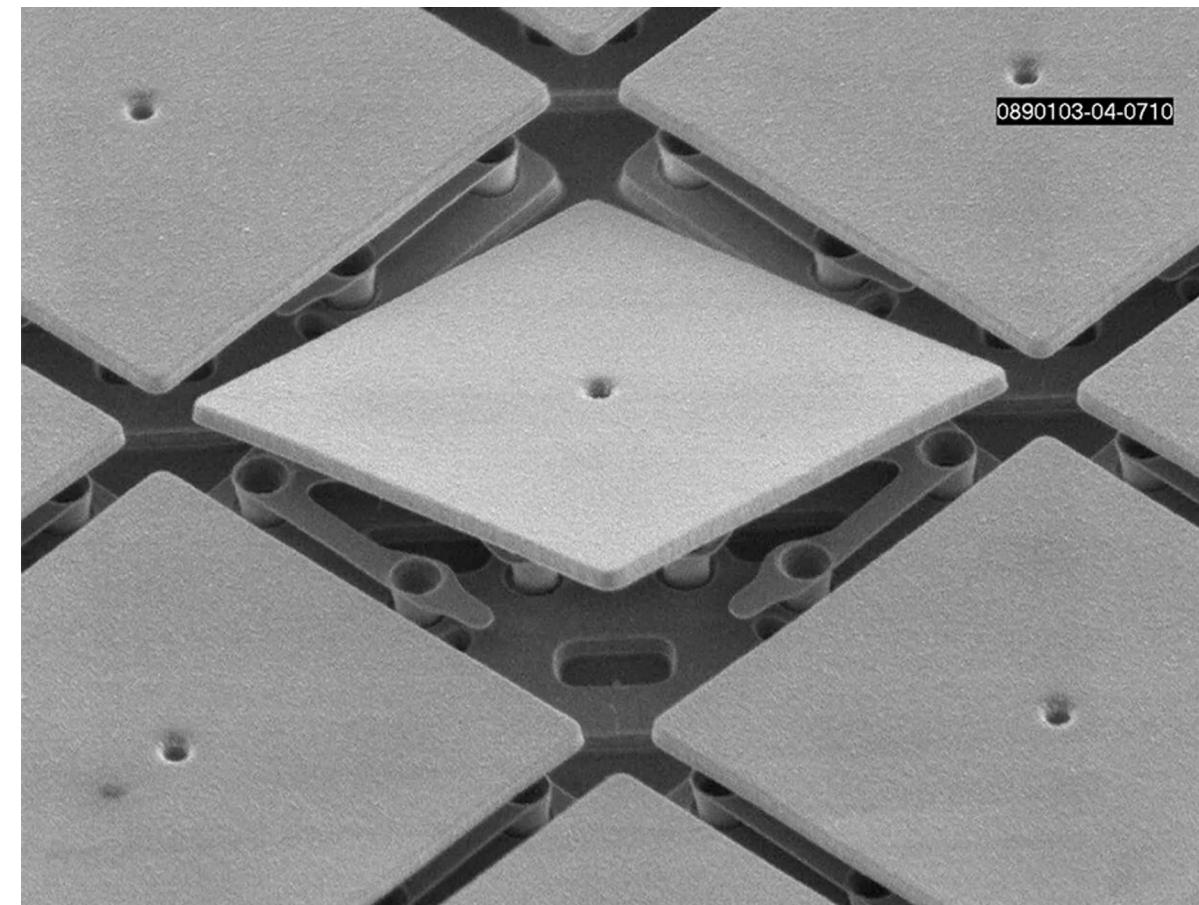
Organic Light Emitting Diode Display

LCD pixels filter (block) light from uniform backlight; OLED pixels emit light

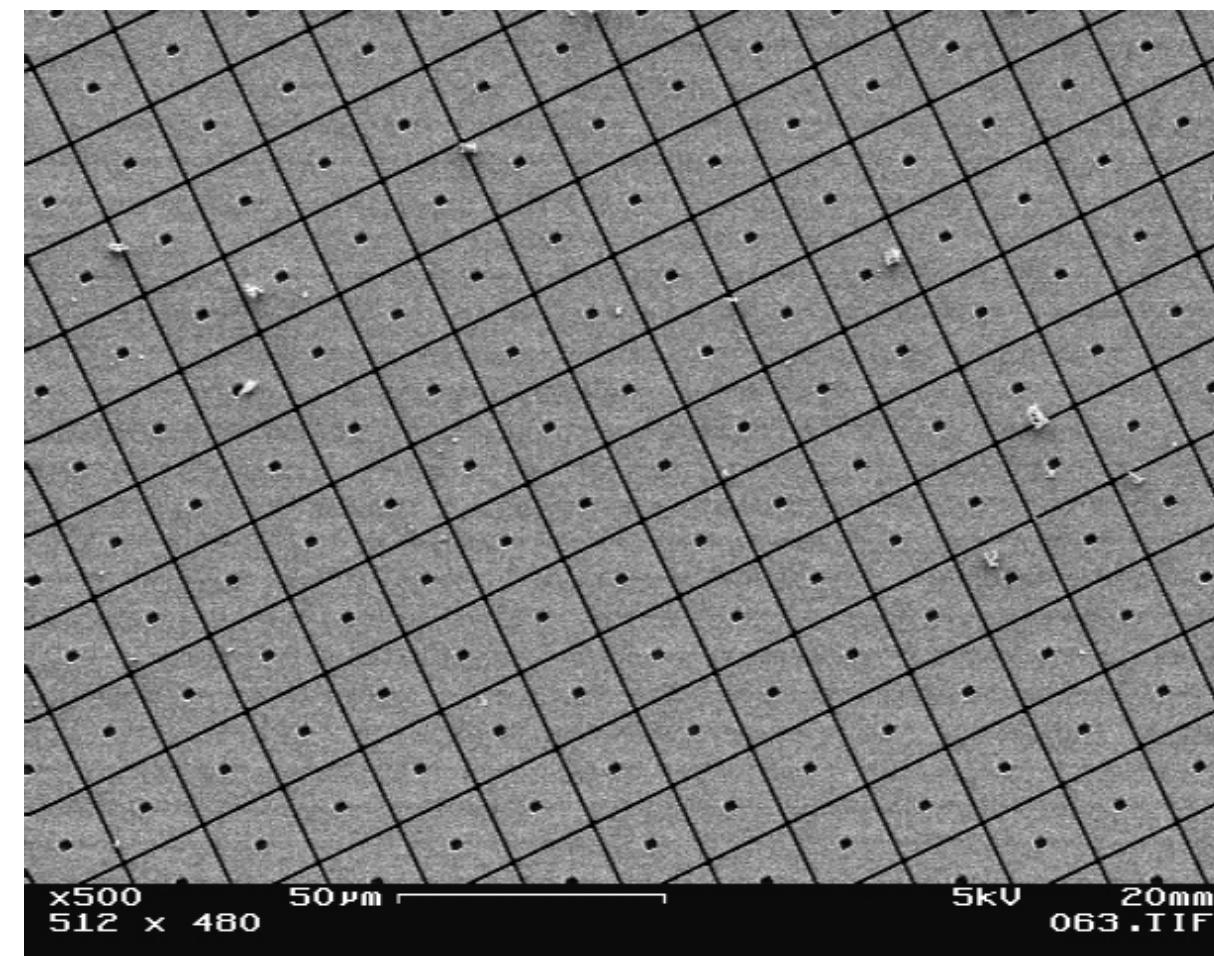
Digital Micromirror Device (DMD/DLP)



Texas Instruments

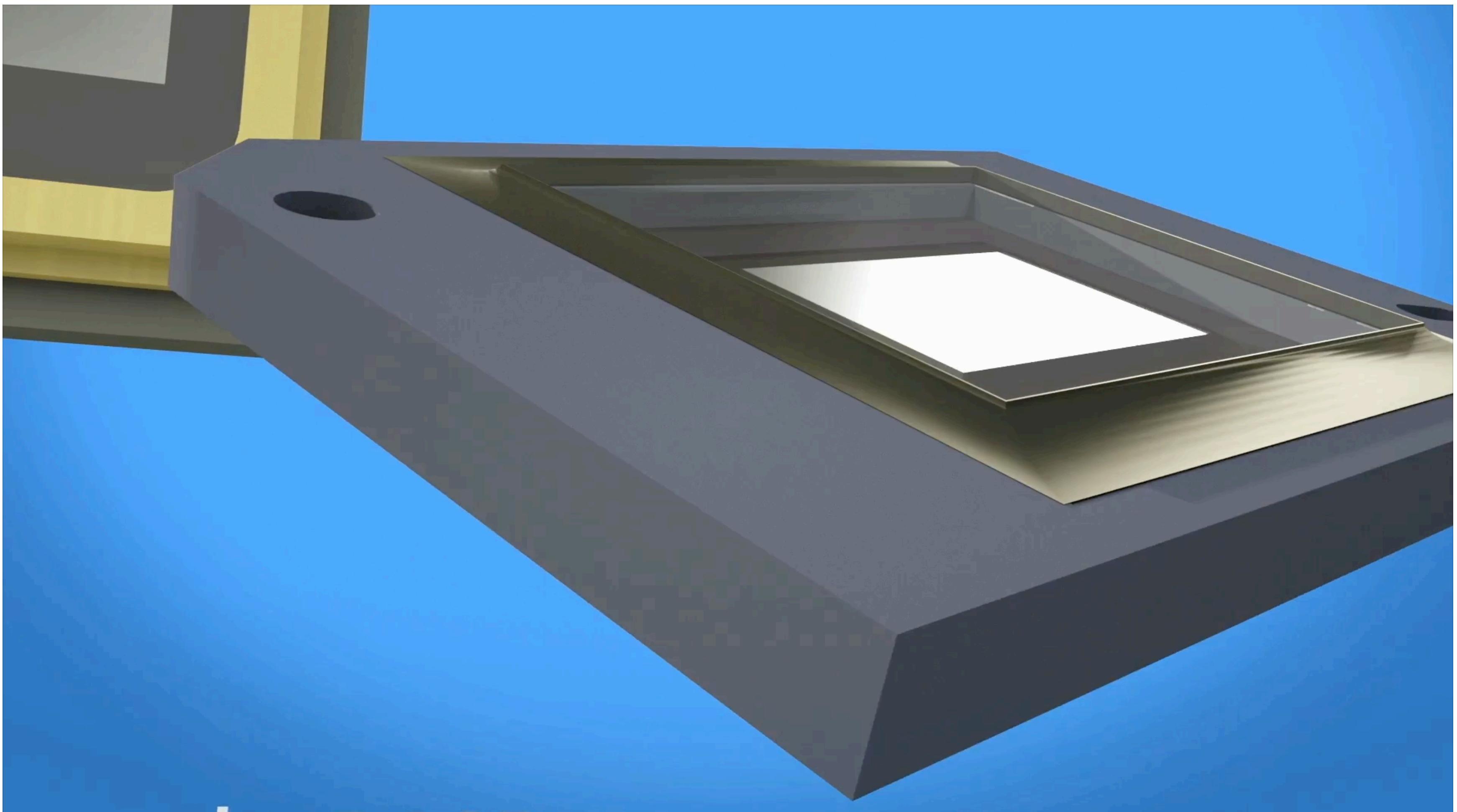


Larry Hornbeck



John Jackson, University of Rochester

Digital Micromirror Device (DMD/DLP)

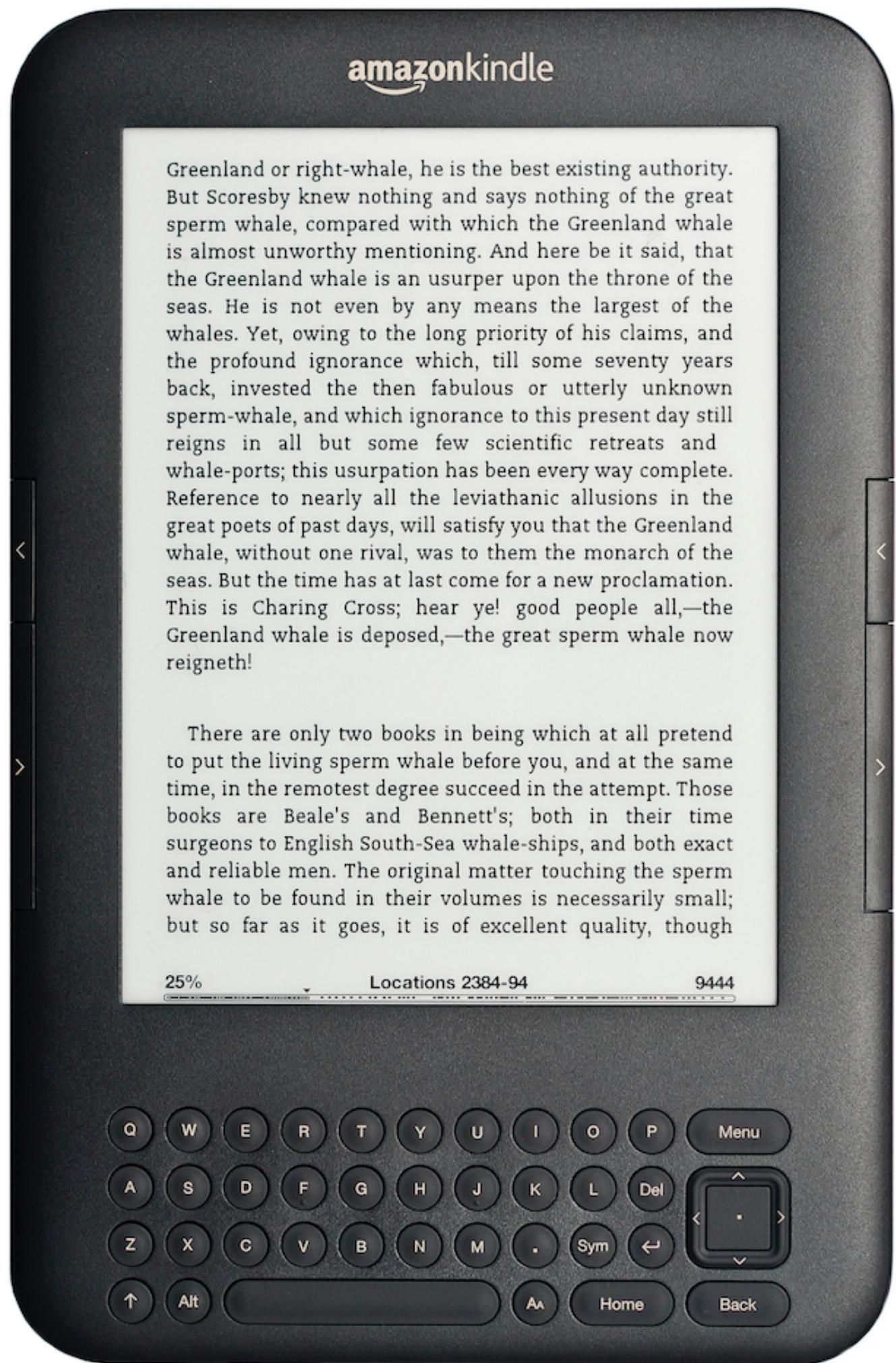
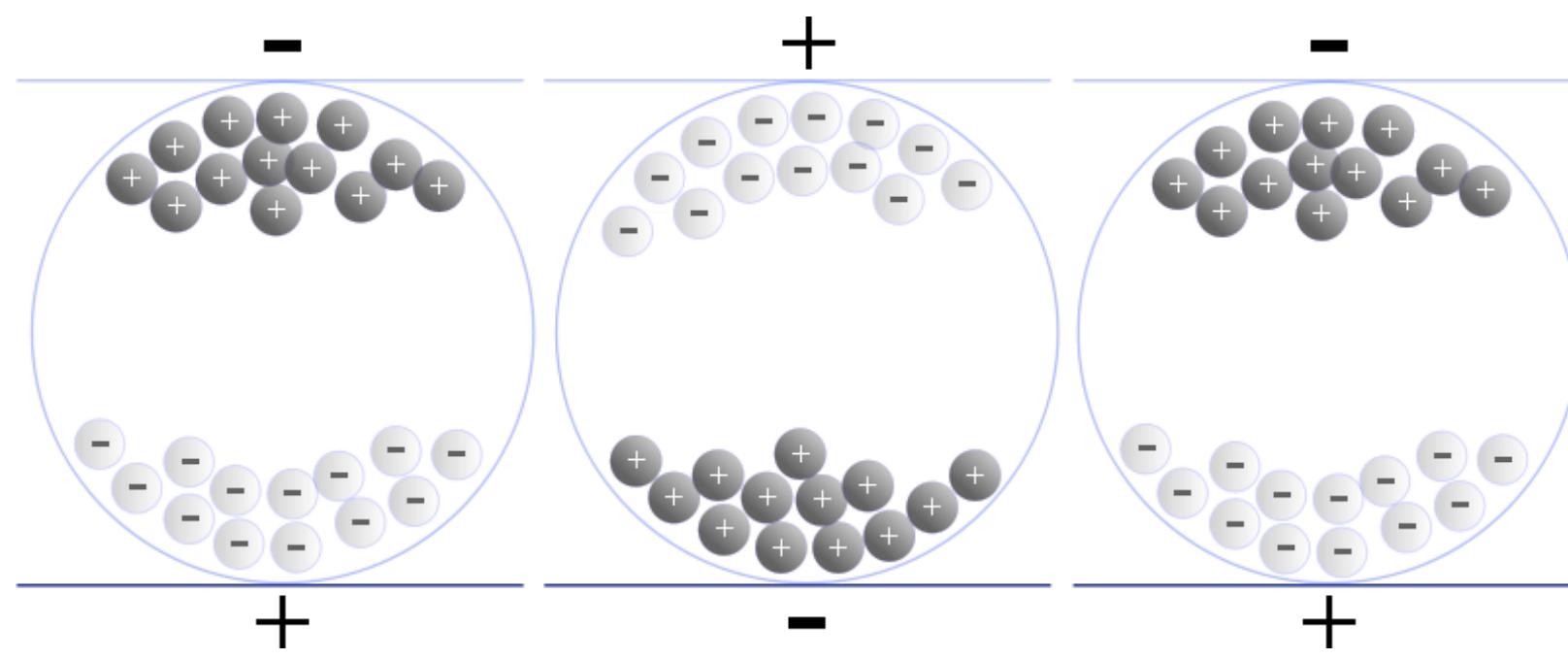


Texas Instruments

CS184/284A

S26 - O'Brien

Electrophoretic (Electronic Ink) Display

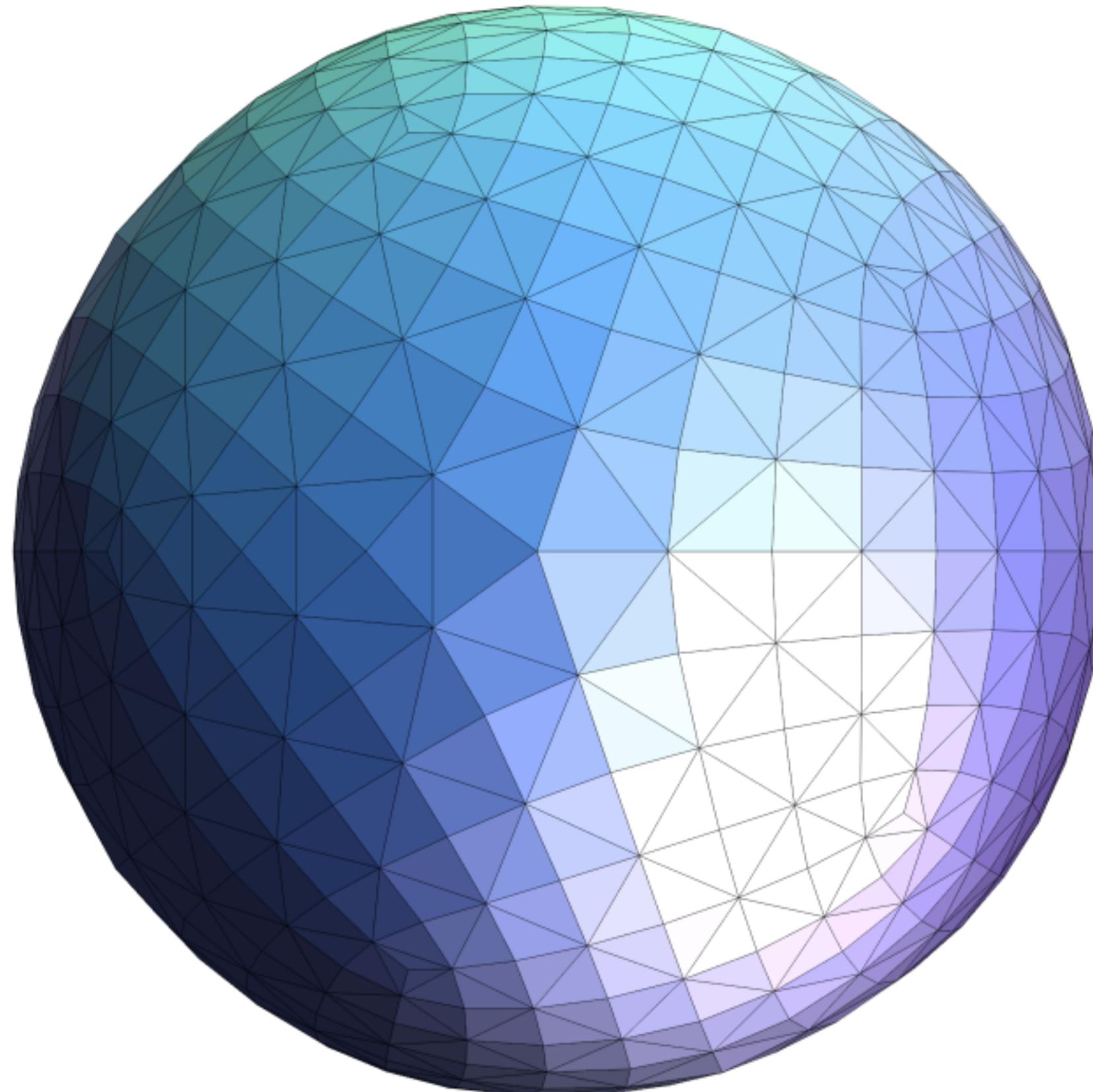


[Wikimedia Commons
—Senarcens]

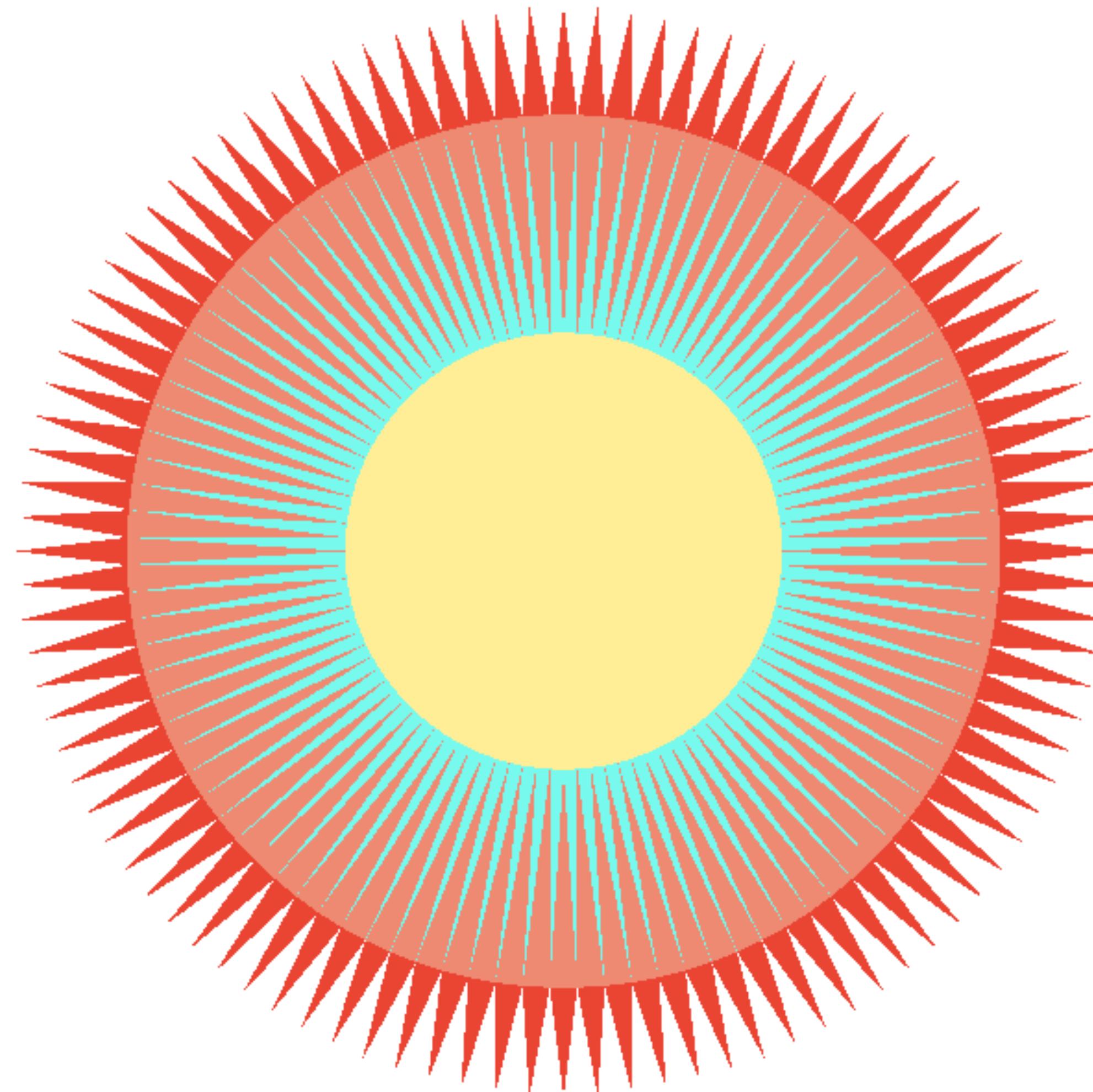
Drawing to Raster Displays

Polygon Meshes

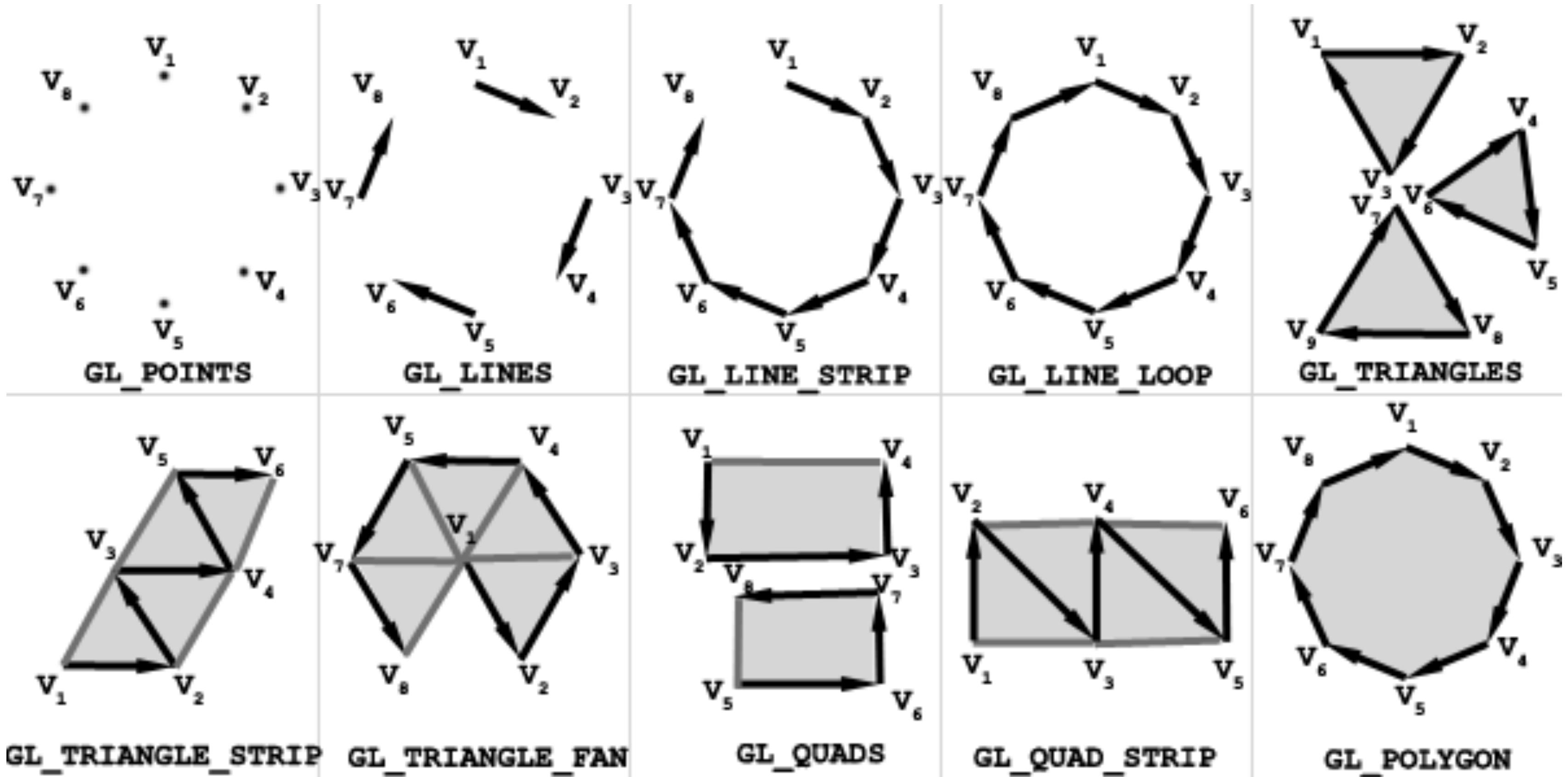
Triangle Meshes



Triangle Meshes

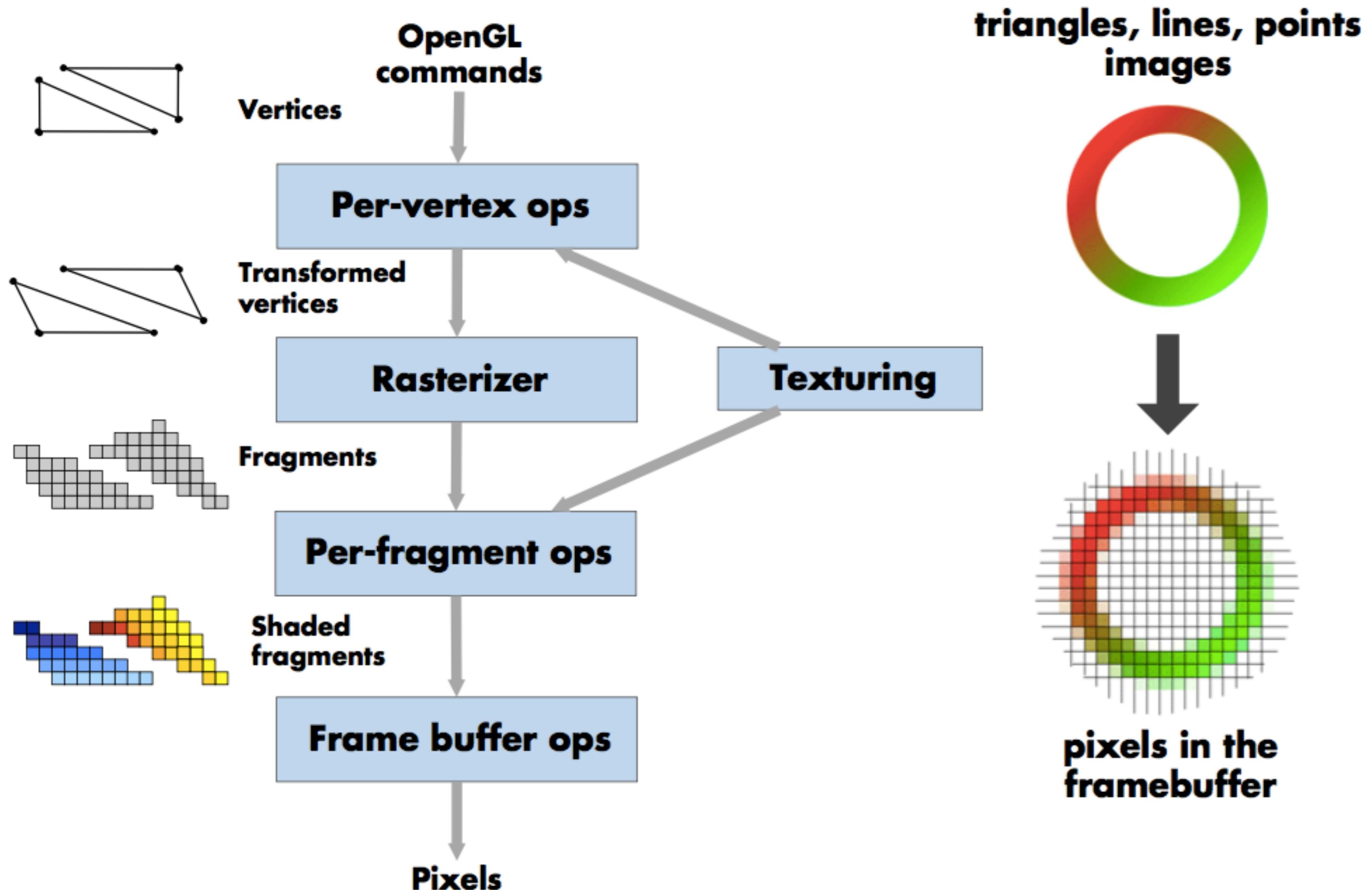


Shape Primitives



Example shape primitives (OpenGL)

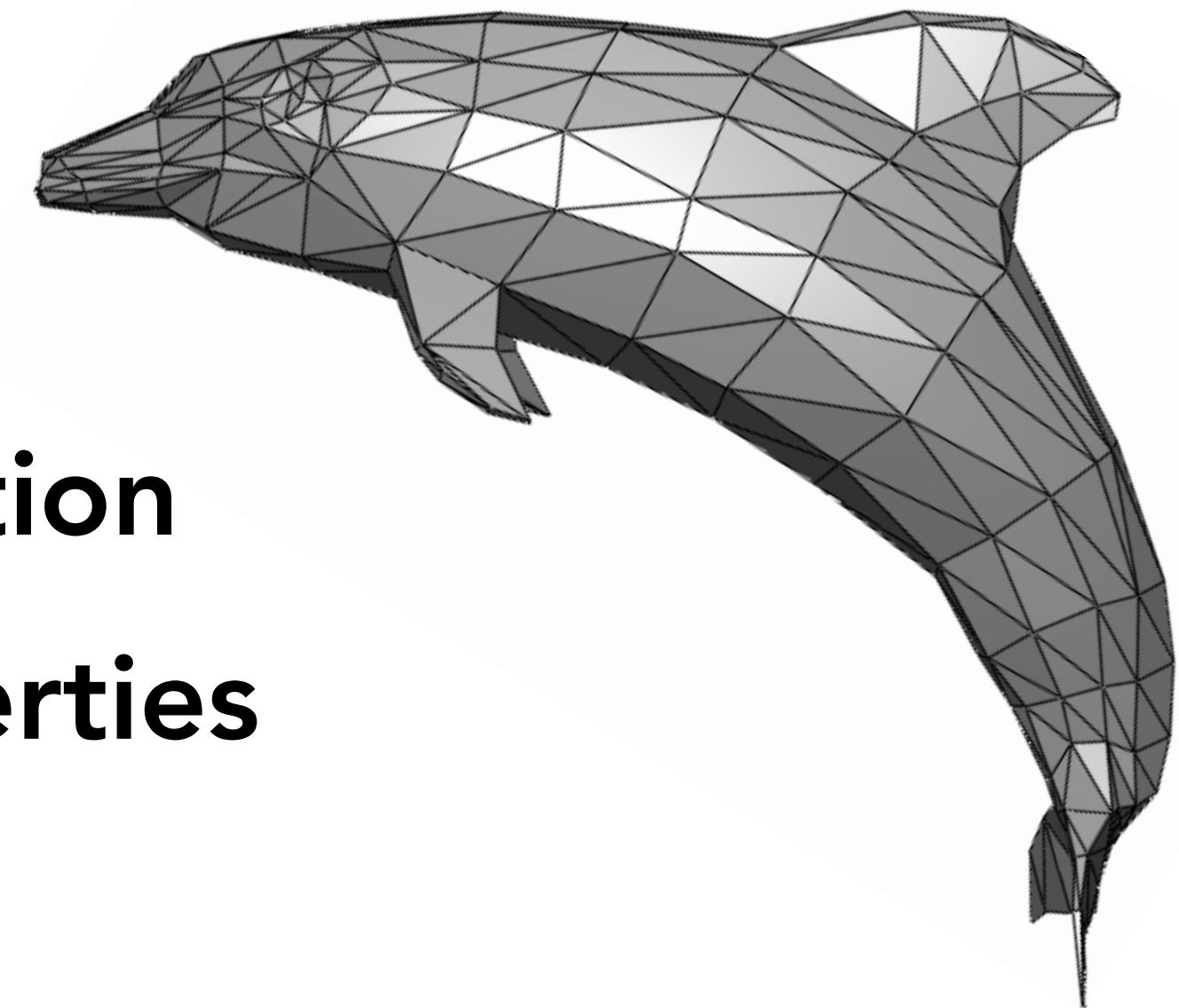
Graphics Pipeline = Abstract Drawing Machine



Triangles - Fundamental Area Primitive

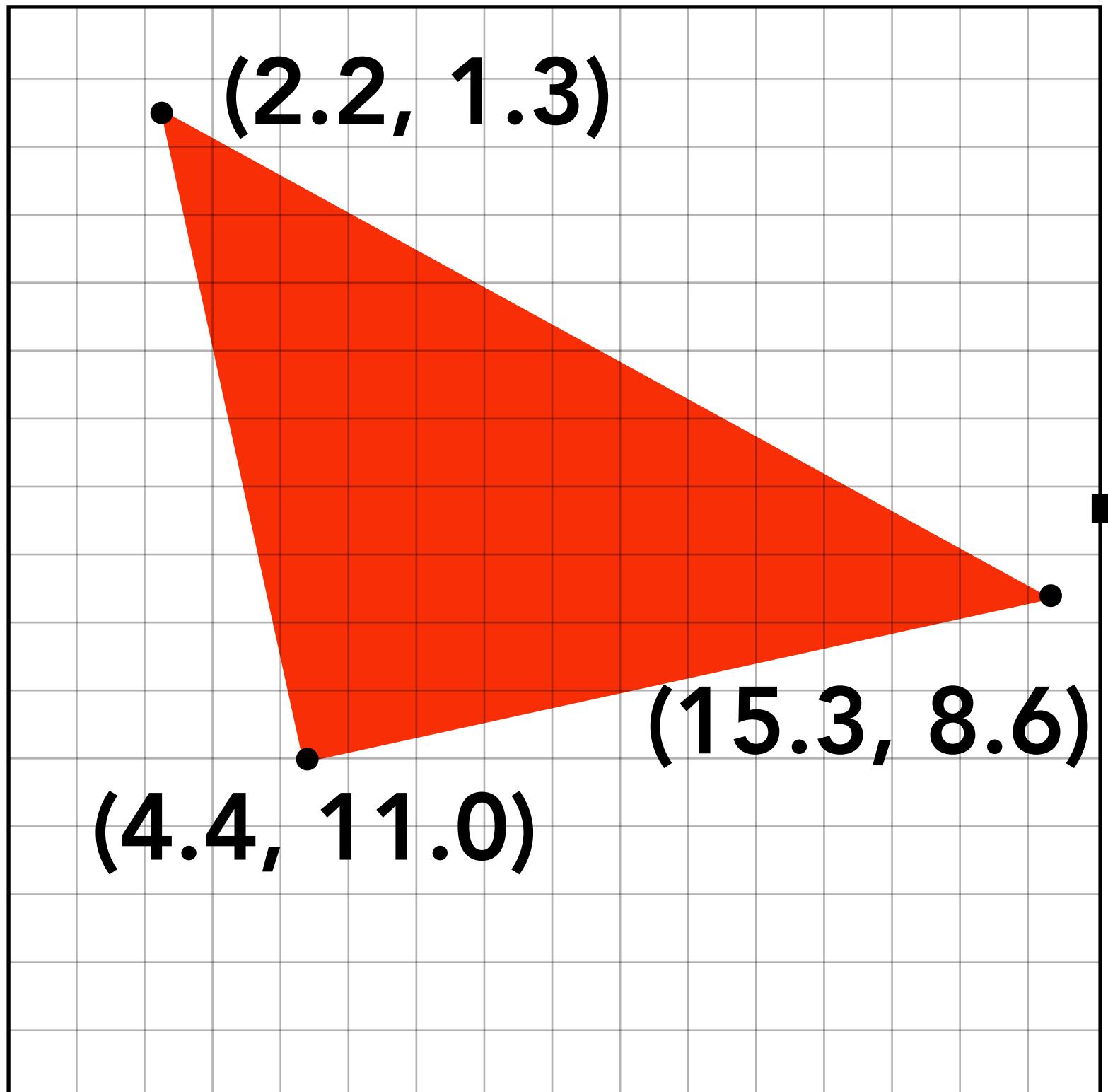
Why triangles?

- Most basic polygon
 - Break up other polygons
 - Optimize one implementation
- Triangles have unique properties
 - Guaranteed to be planar
 - Well-defined interior
 - Well-defined method for interpolating values at vertices over triangle (barycentric interpolation)

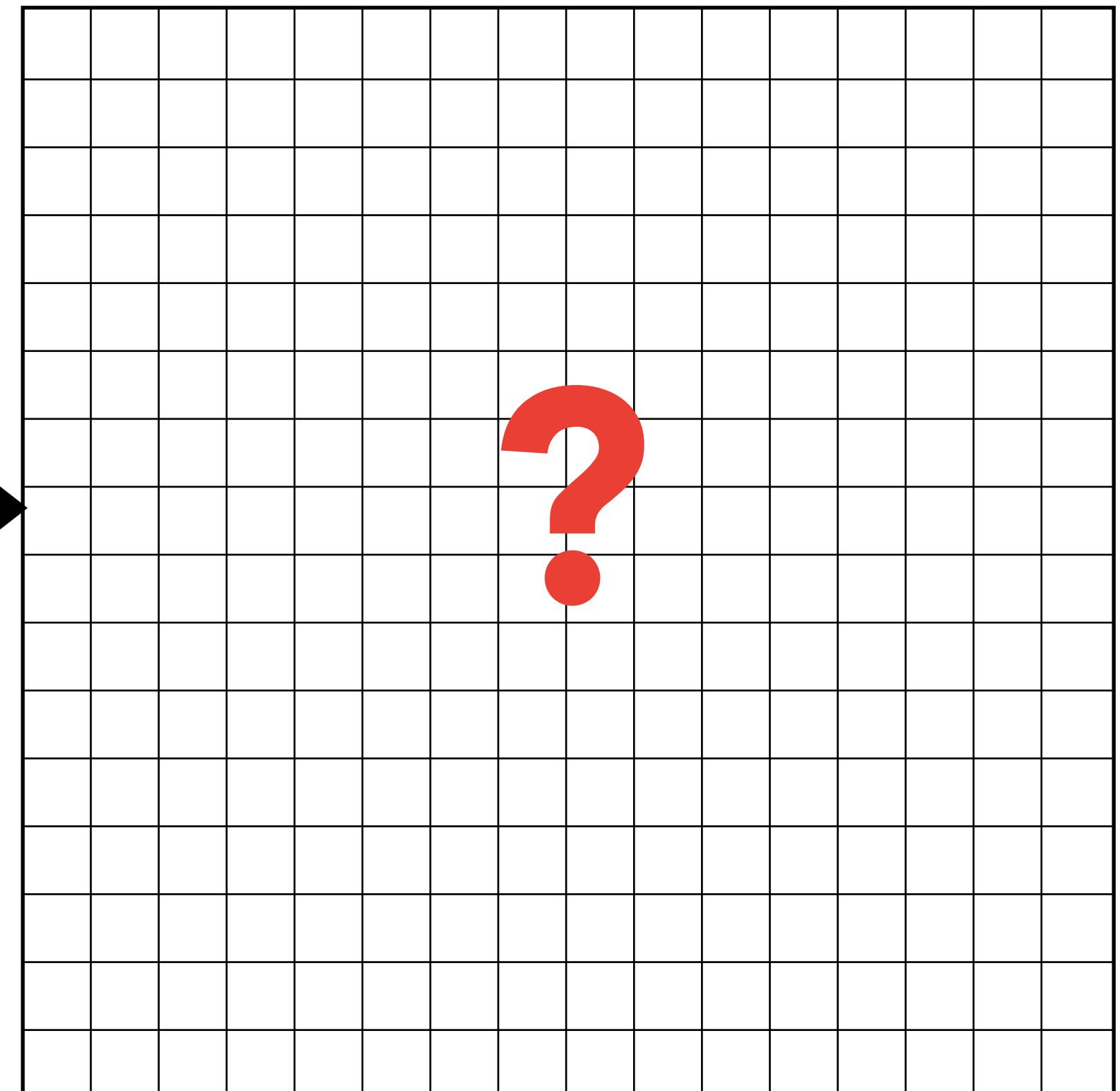


Drawing a Triangle To The Framebuffer ("Rasterization")

What Pixel Values Approximate a Triangle?



**Input: position of triangle
vertices projected on screen**



**Output: set of pixel values
approximating triangle**

**Today, Let's Start With
A Simple Approach: Sampling**

Sampling a Function

Evaluating a function at a point is sampling.

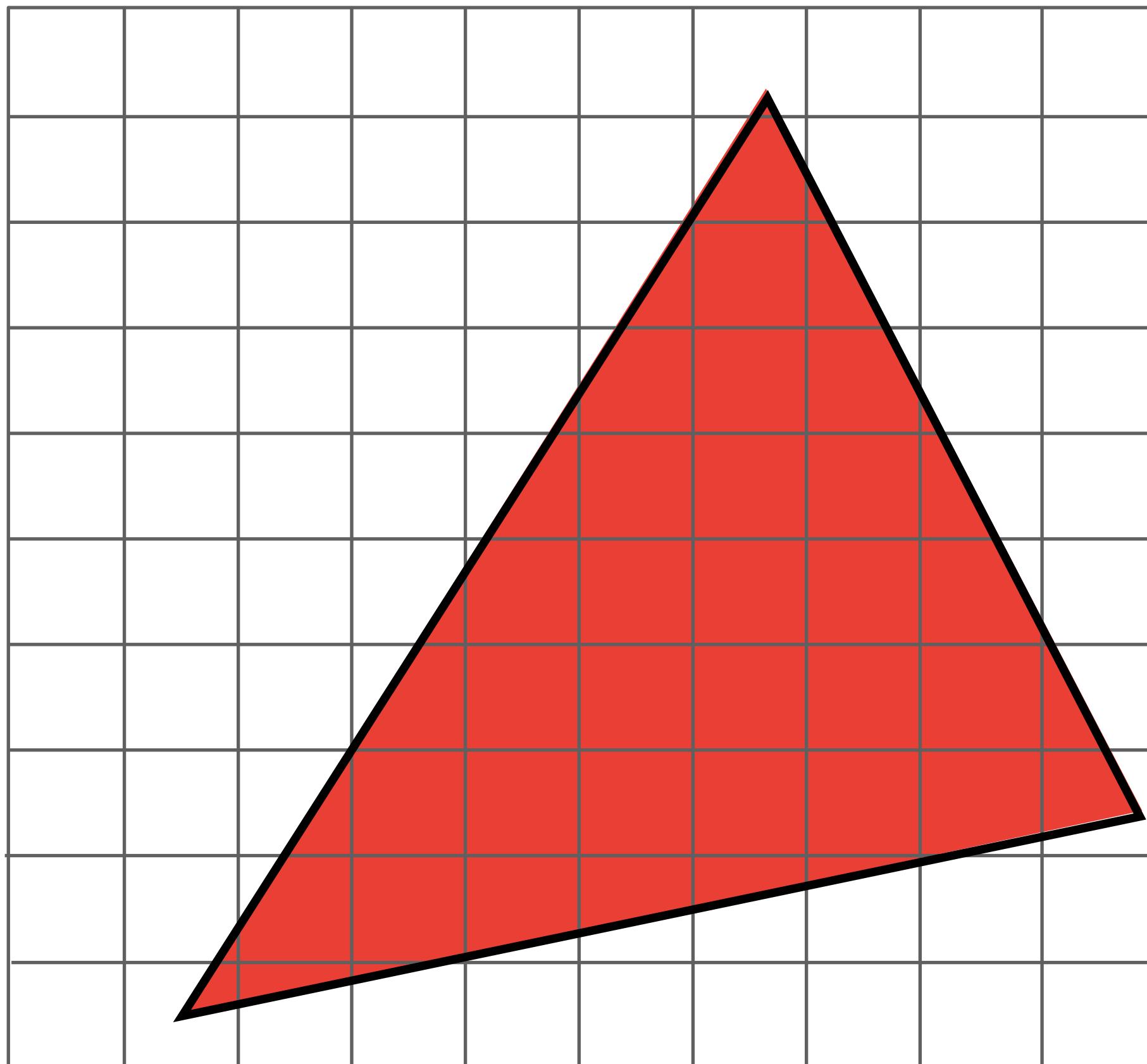
We can discretize a function by periodic sampling.

```
for( int x = 0; x < xmax; x++ )  
    output[x] = f(x);
```

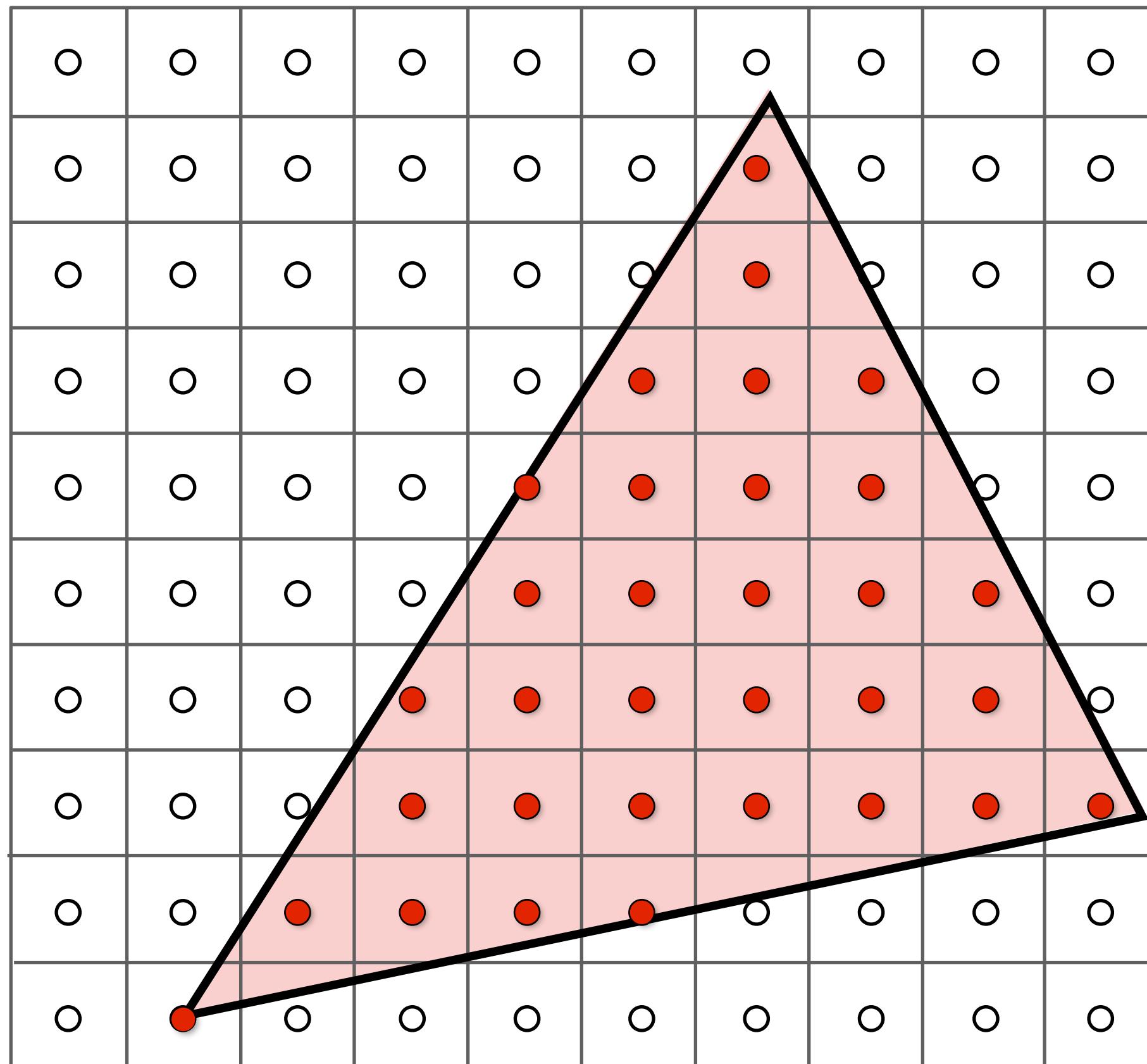
Sampling is a core idea in graphics. We'll sample time (1D), area (2D), angle (2D), volume (3D) ...

We'll sample N-dimensional functions, even infinite dimensional functions.

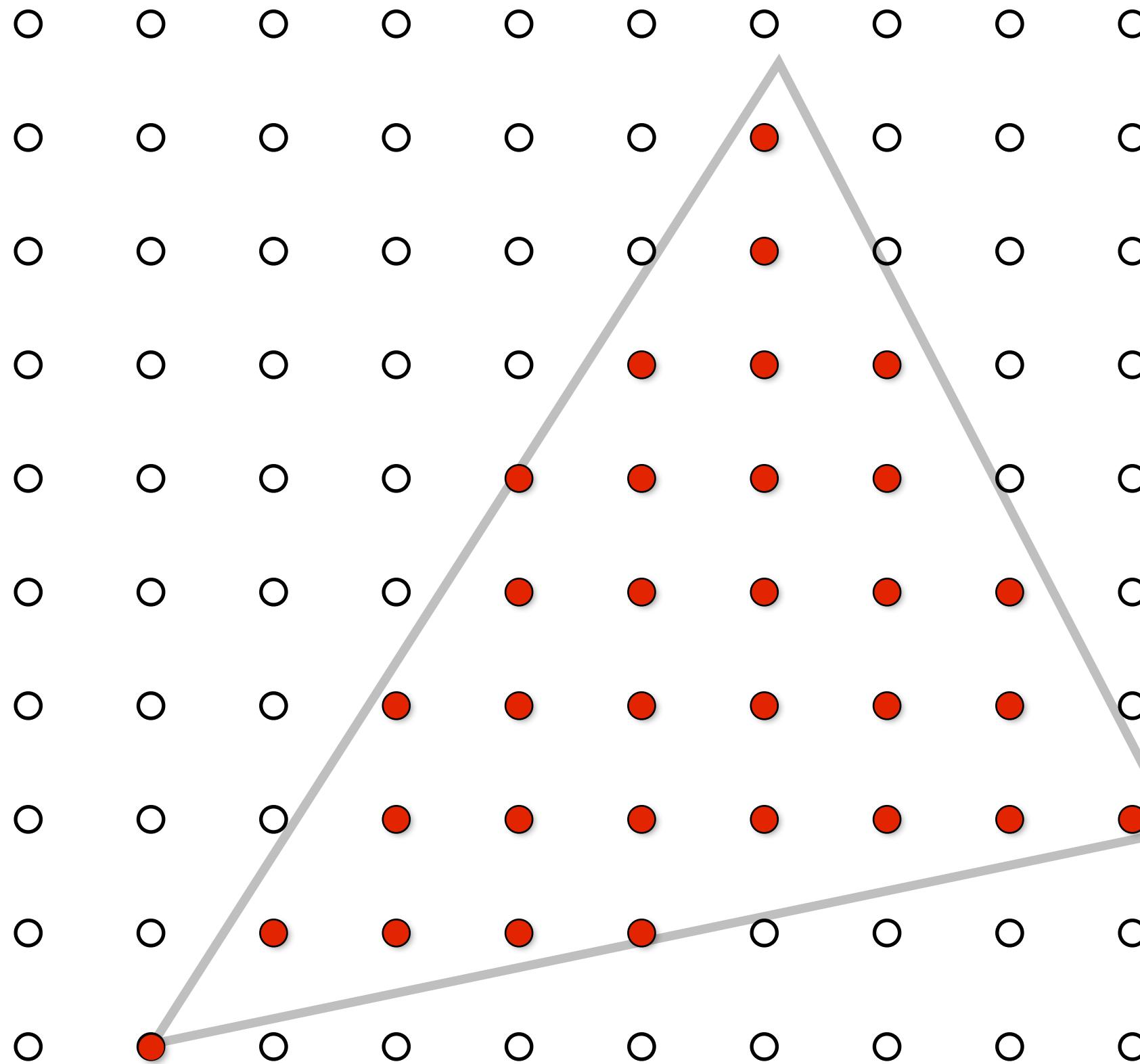
Let's Try Rasterization As 2D Sampling



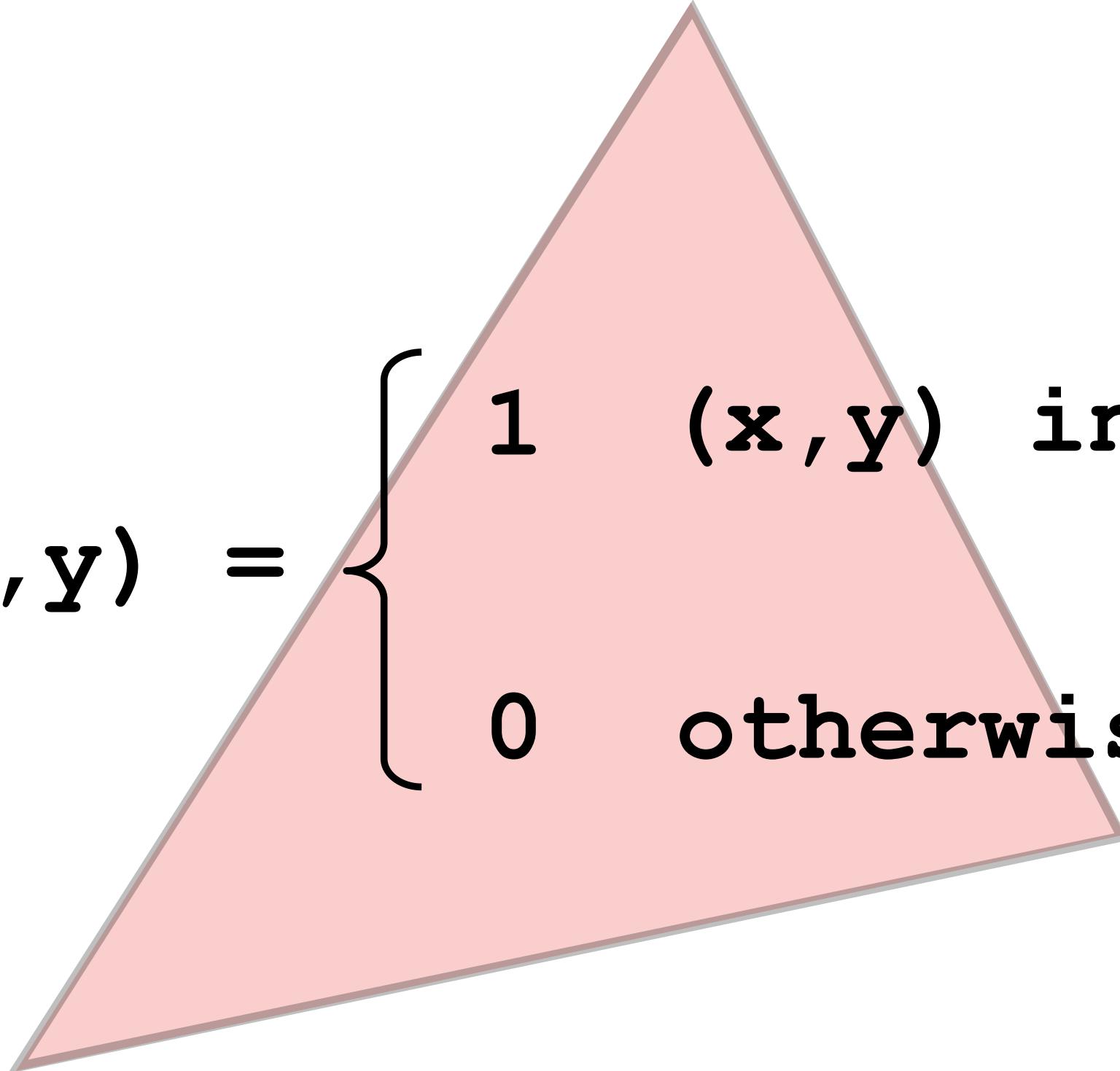
Sample If Each Pixel Center Is Inside Triangle



Sample If Each Pixel Center Is Inside Triangle



Define Binary Function: `inside(tri, x, y)`

`inside(t, x, y) =` 

$$\begin{cases} 1 & (x, y) \text{ in triangle } t \\ 0 & \text{otherwise} \end{cases}$$

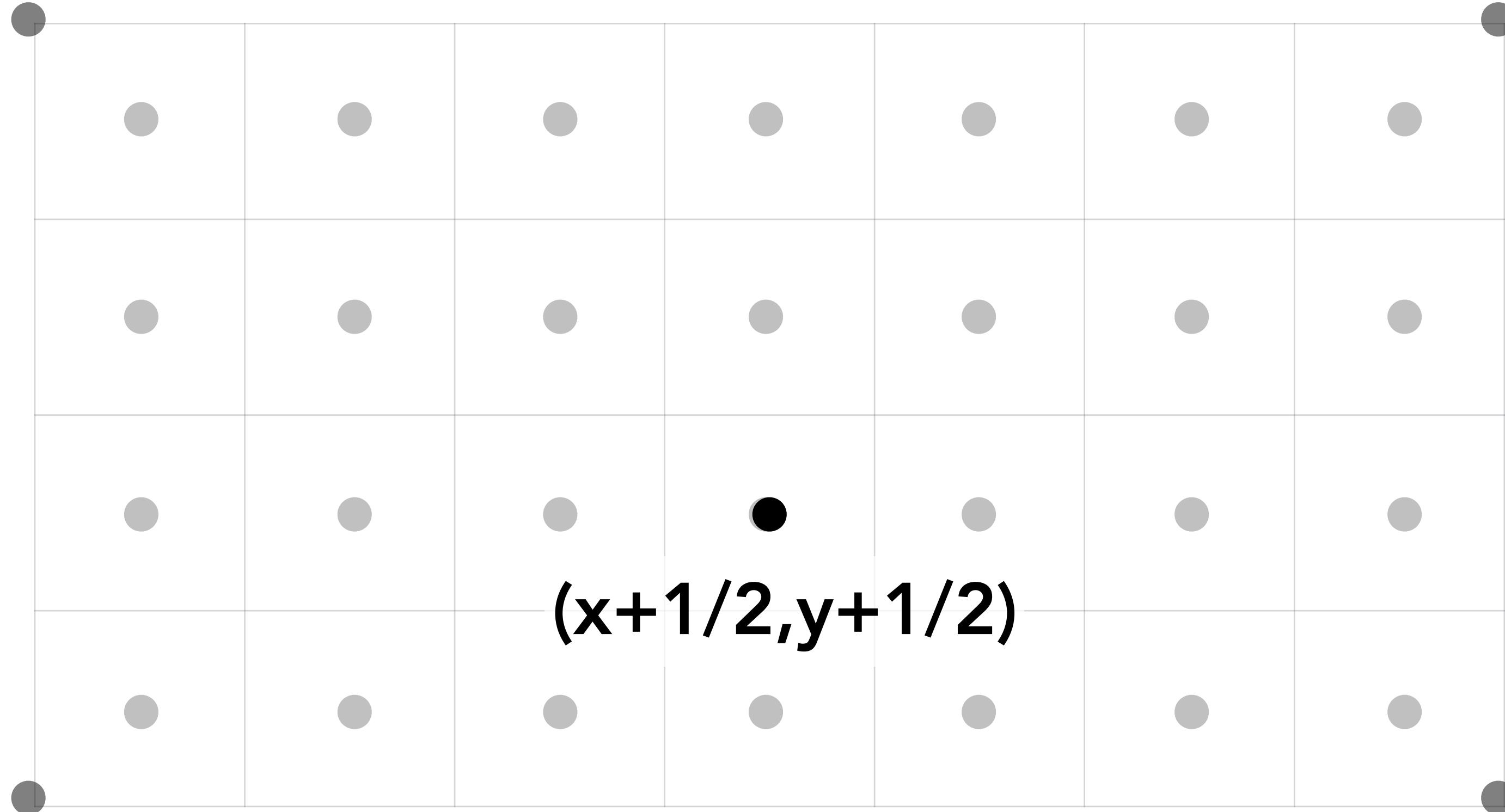
Rasterization = Sampling A 2D Indicator Function

```
for( int x = 0; x < xmax; x++ )  
  for( int y = 0; y < ymax; y++ )  
    Image[x][y] = f(x + 0.5, y + 0.5);
```

Rasterize triangle tri by sampling the function

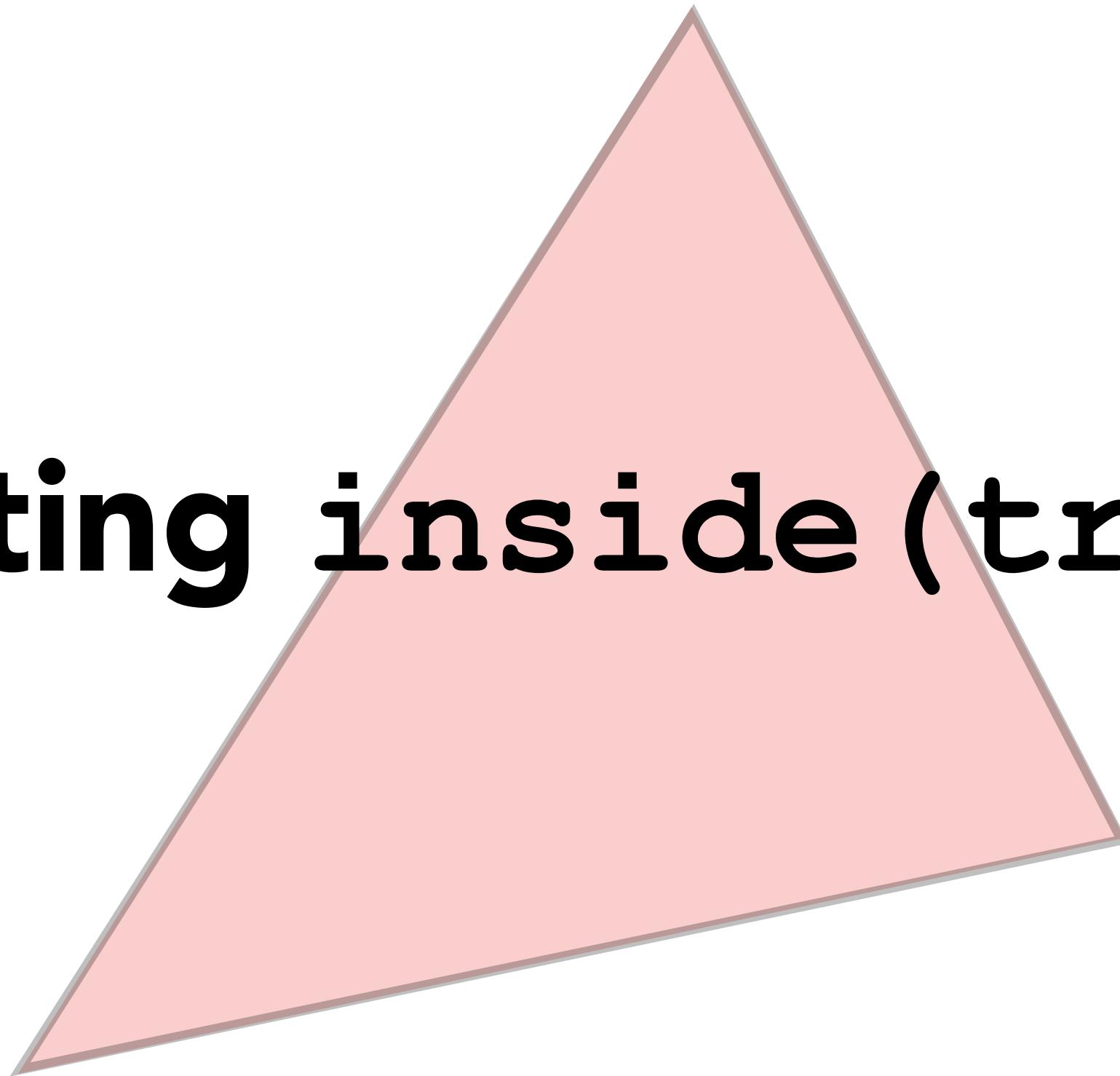
$f(x, y) = \text{inside}(\text{tri}, x, y)$

Implementation Detail: Sample Locations

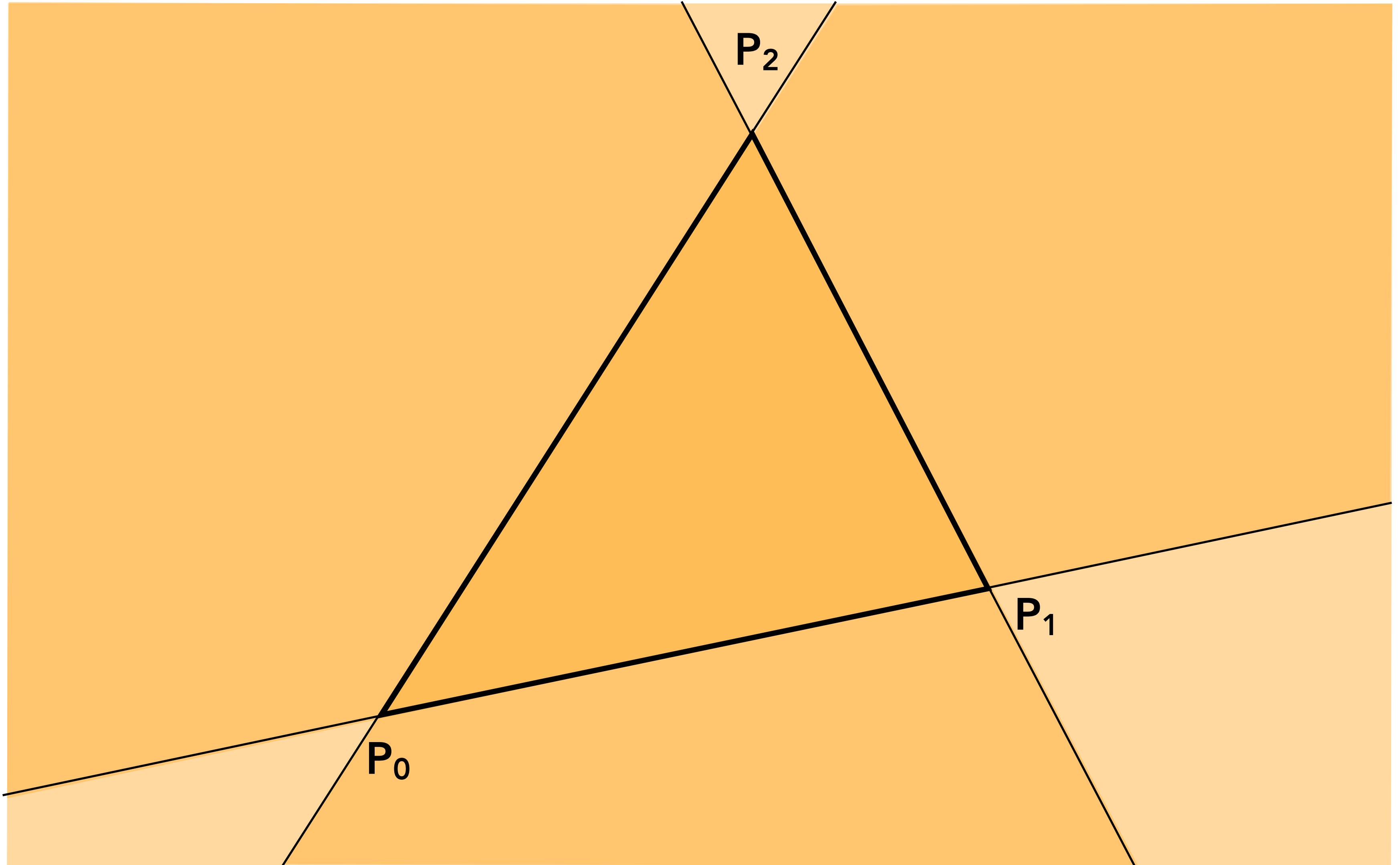


Sample location for pixel (x, y)

Evaluating inside (tri ,x ,y)



Triangle = Intersection of Three Half Planes

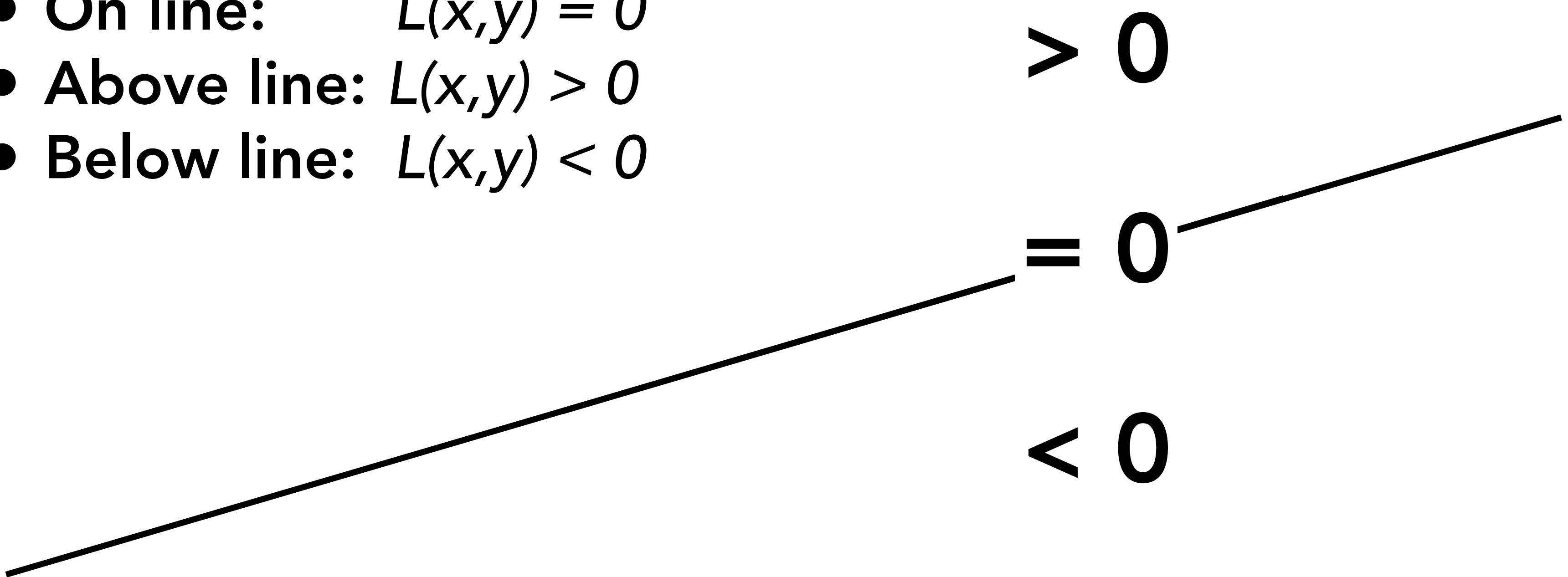


Each Line Defines Two Half-Planes

Implicit line equation

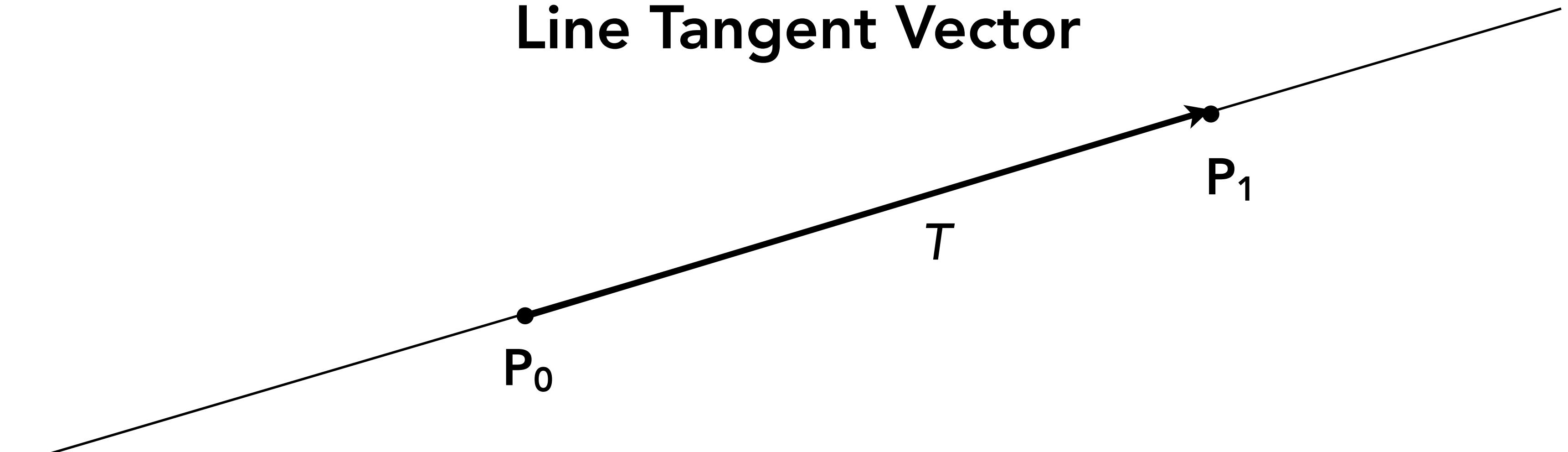
- $L(x,y) = Ax + By + C$

- On line: $L(x,y) = 0$
- Above line: $L(x,y) > 0$
- Below line: $L(x,y) < 0$



Line Equation Derivation

Line Tangent Vector



$$T = P_1 - P_0 = (x_1 - x_0, y_1 - y_0)$$

Line Equation Derivation

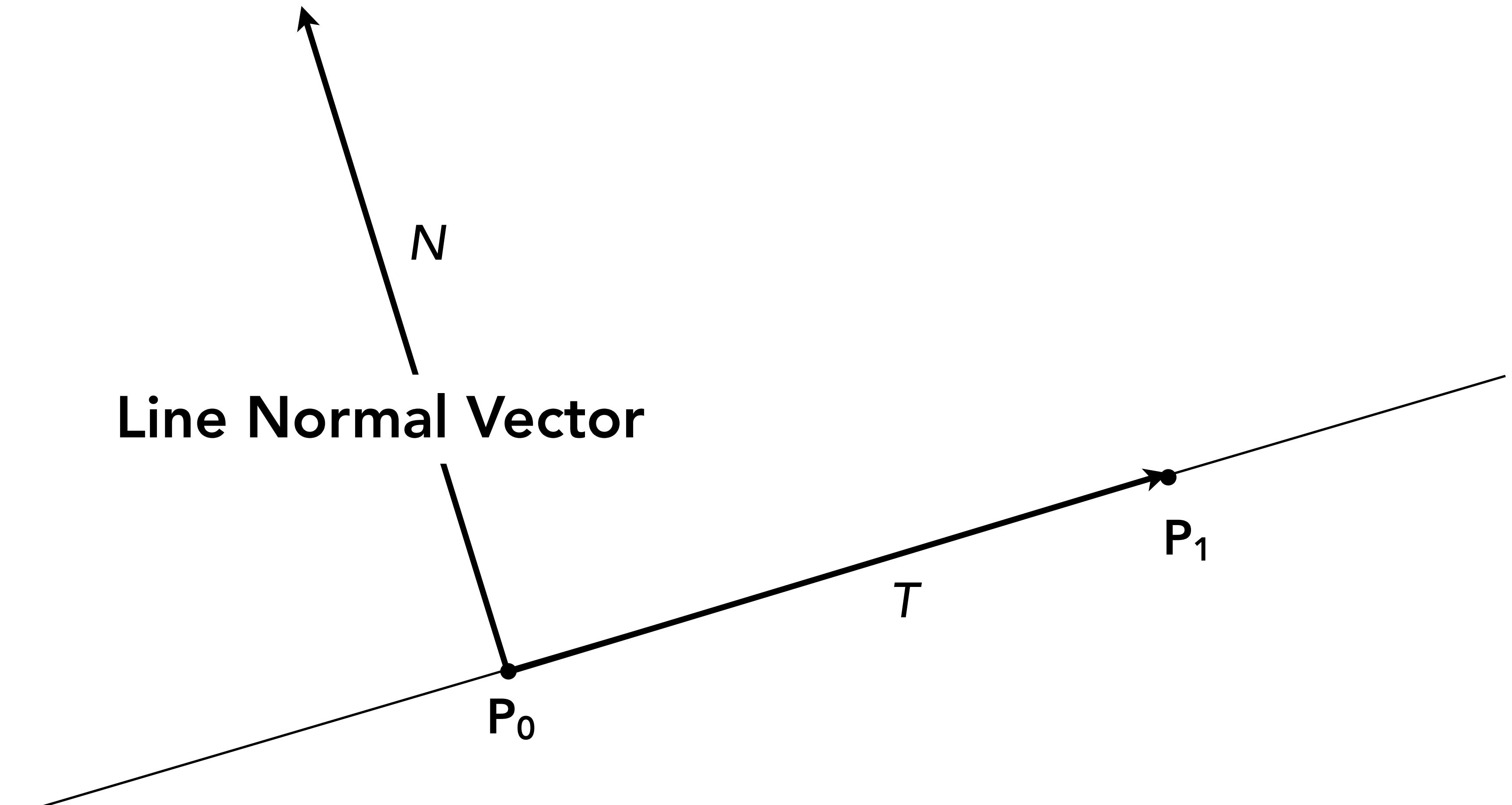
$(-y, x)$

General Perpendicular
Vector in 2D

(x, y)

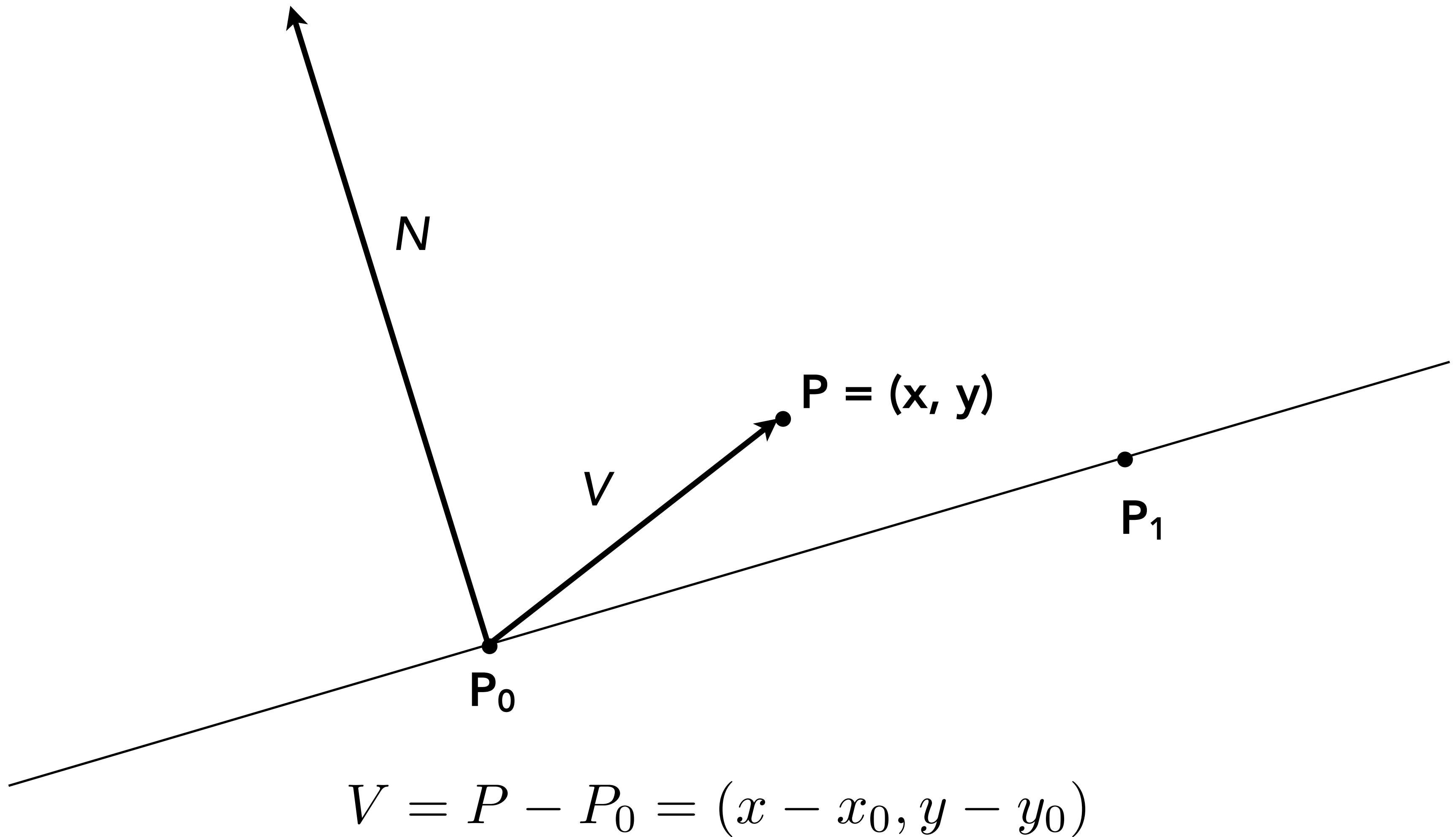
$$\text{Perp}(x, y) = (-y, x)$$

Line Equation Derivation

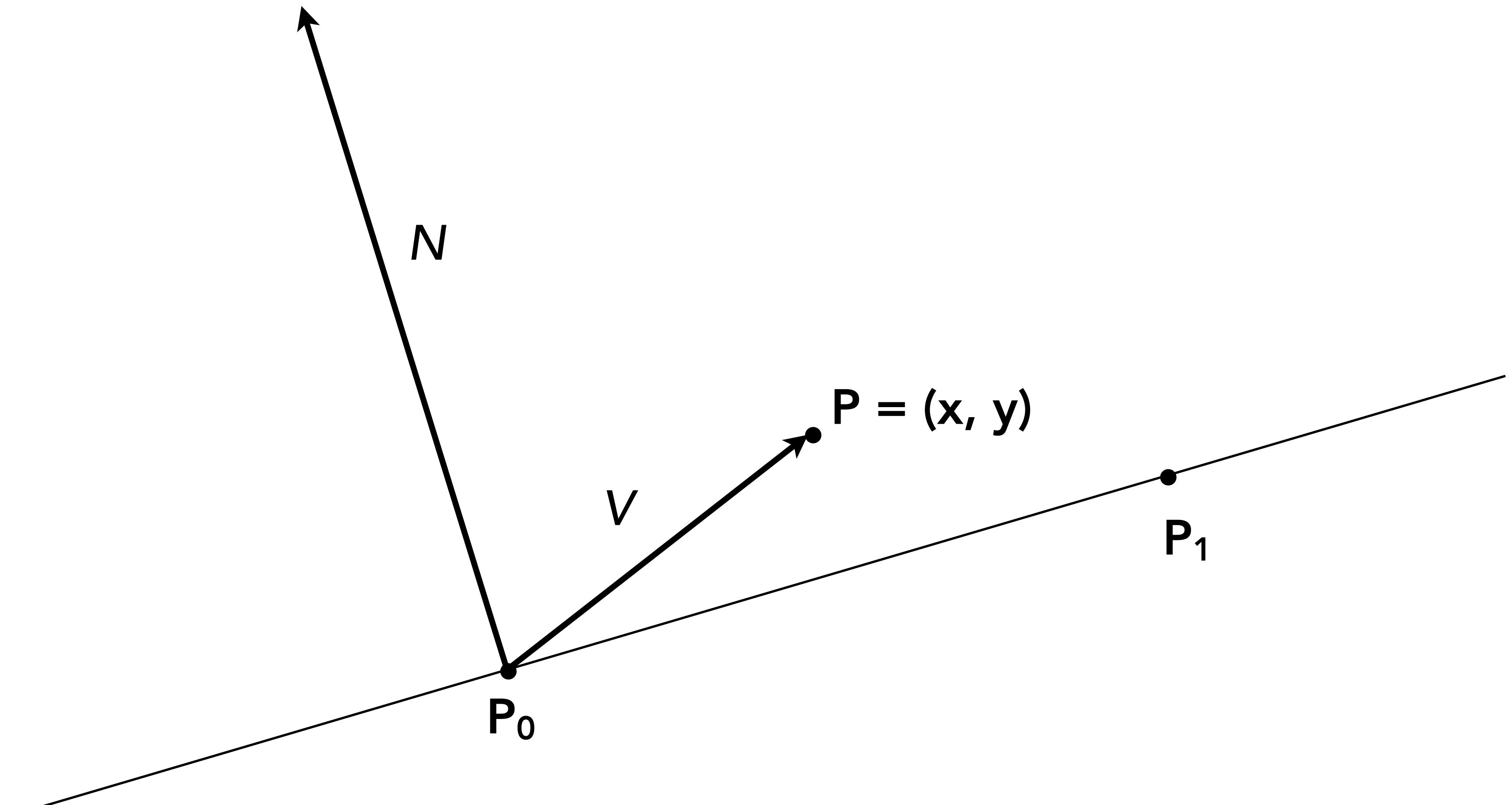


$$N = \text{Perp}(T) = (-(y_1 - y_0), x_1 - x_0)$$

Line Equation Derivation

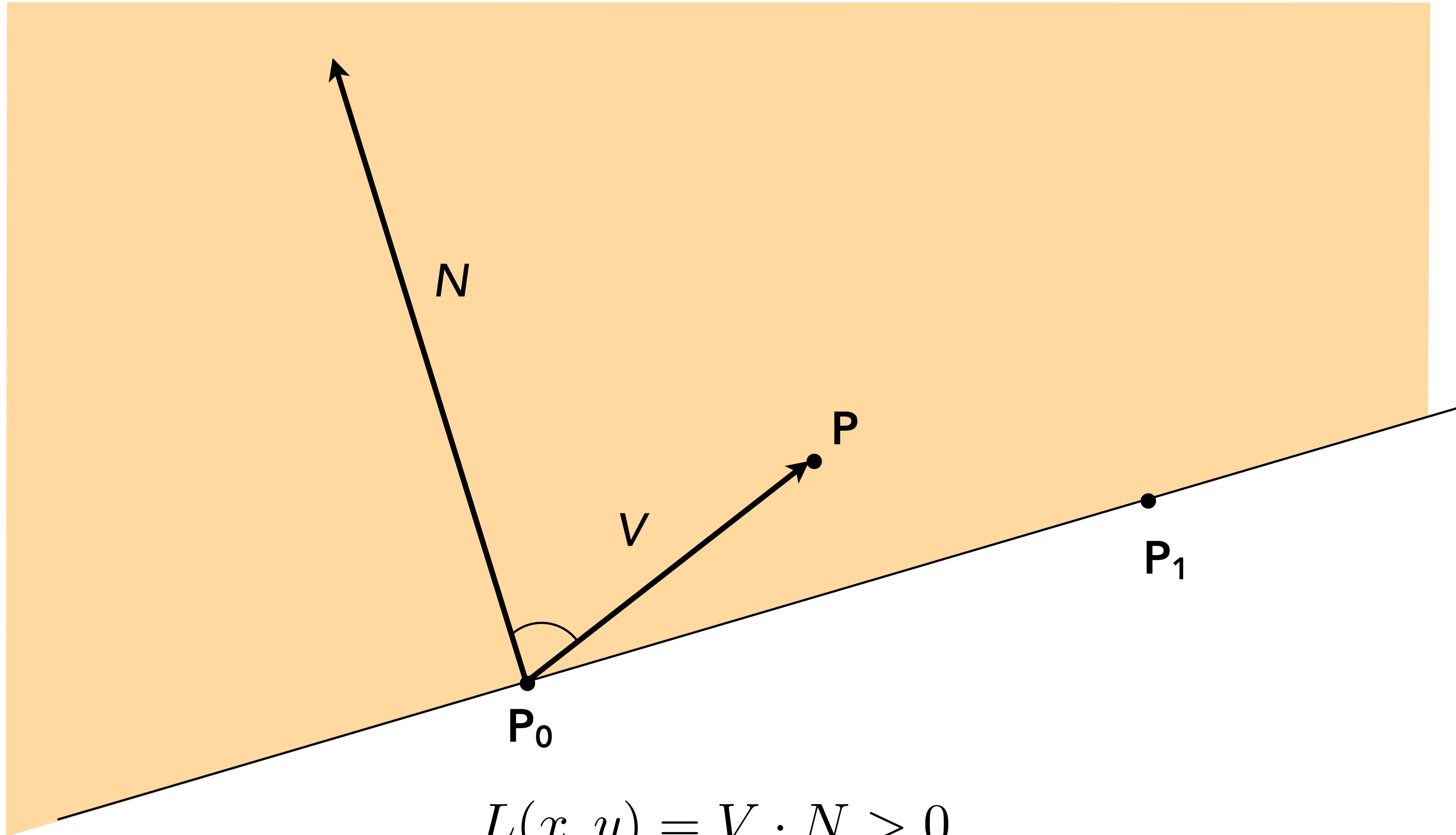


Line Equation



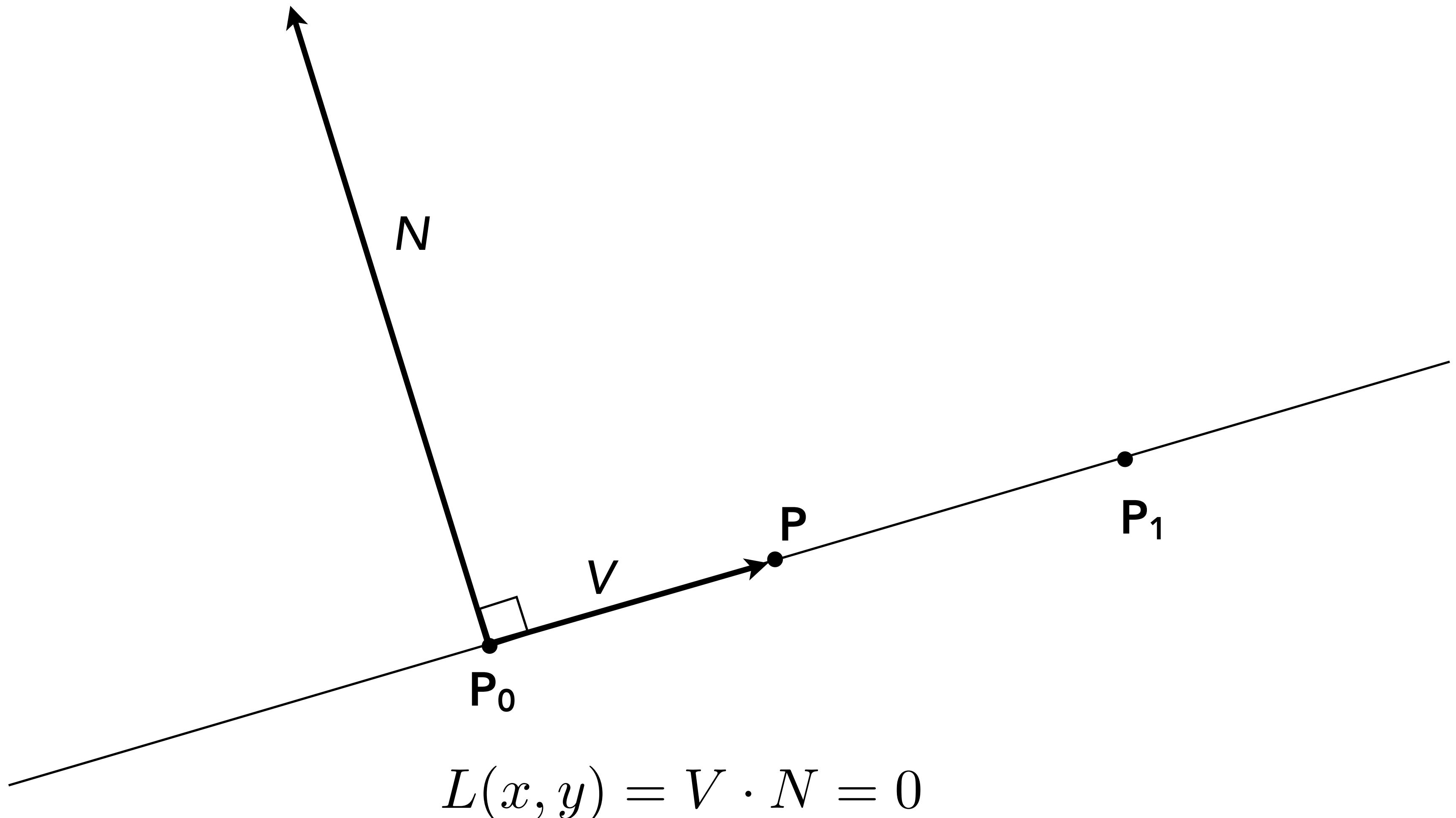
$$L(x, y) = V \cdot N = -(x - x_0)(y_1 - y_0) + (y - y_0)(x_1 - x_0)$$

Line Equation Tests

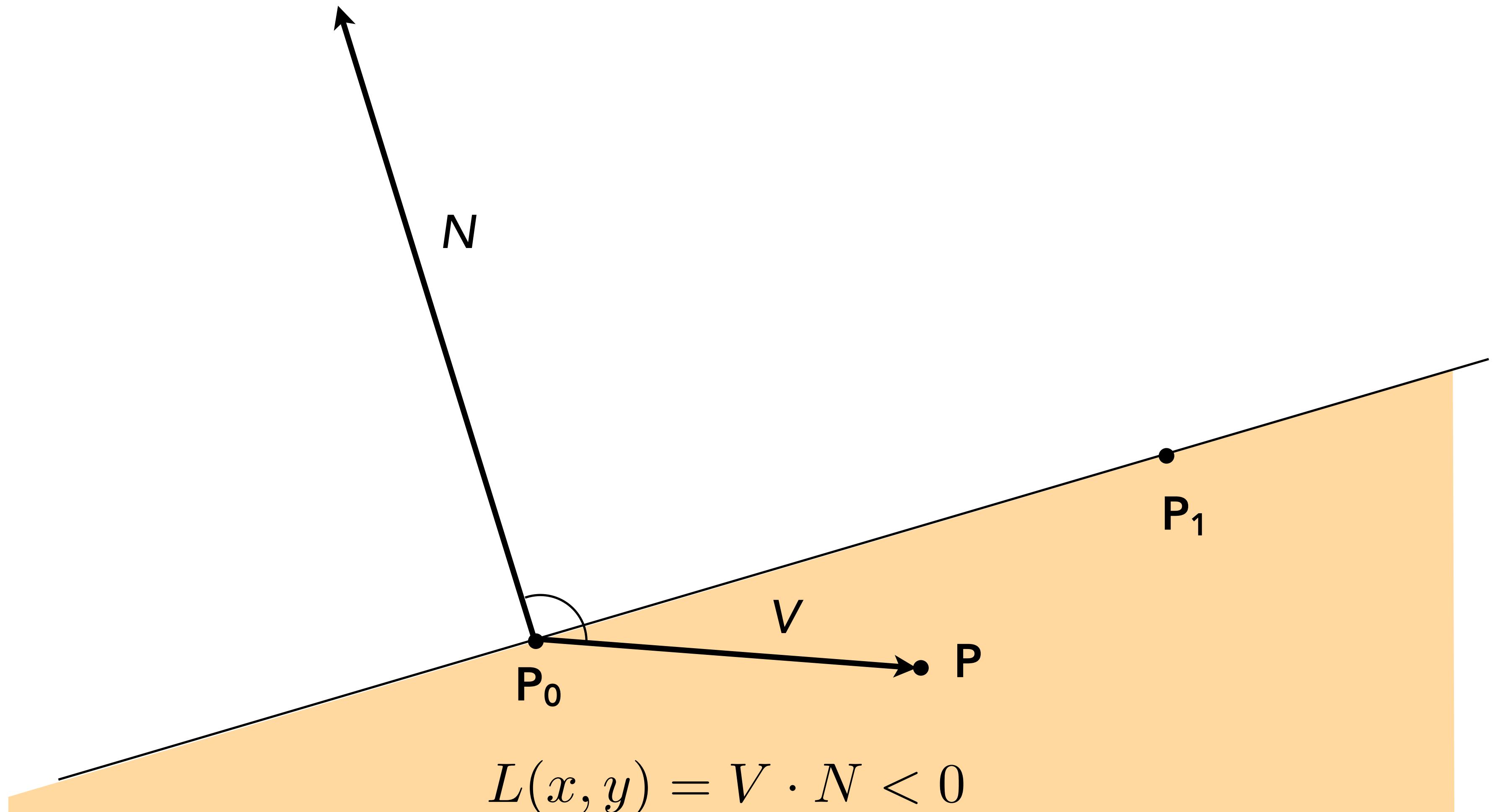


$$L(x, y) = V \cdot N > 0$$

Line Equation Tests



Line Equation Tests



Point-in-Triangle Test: Three Line Tests

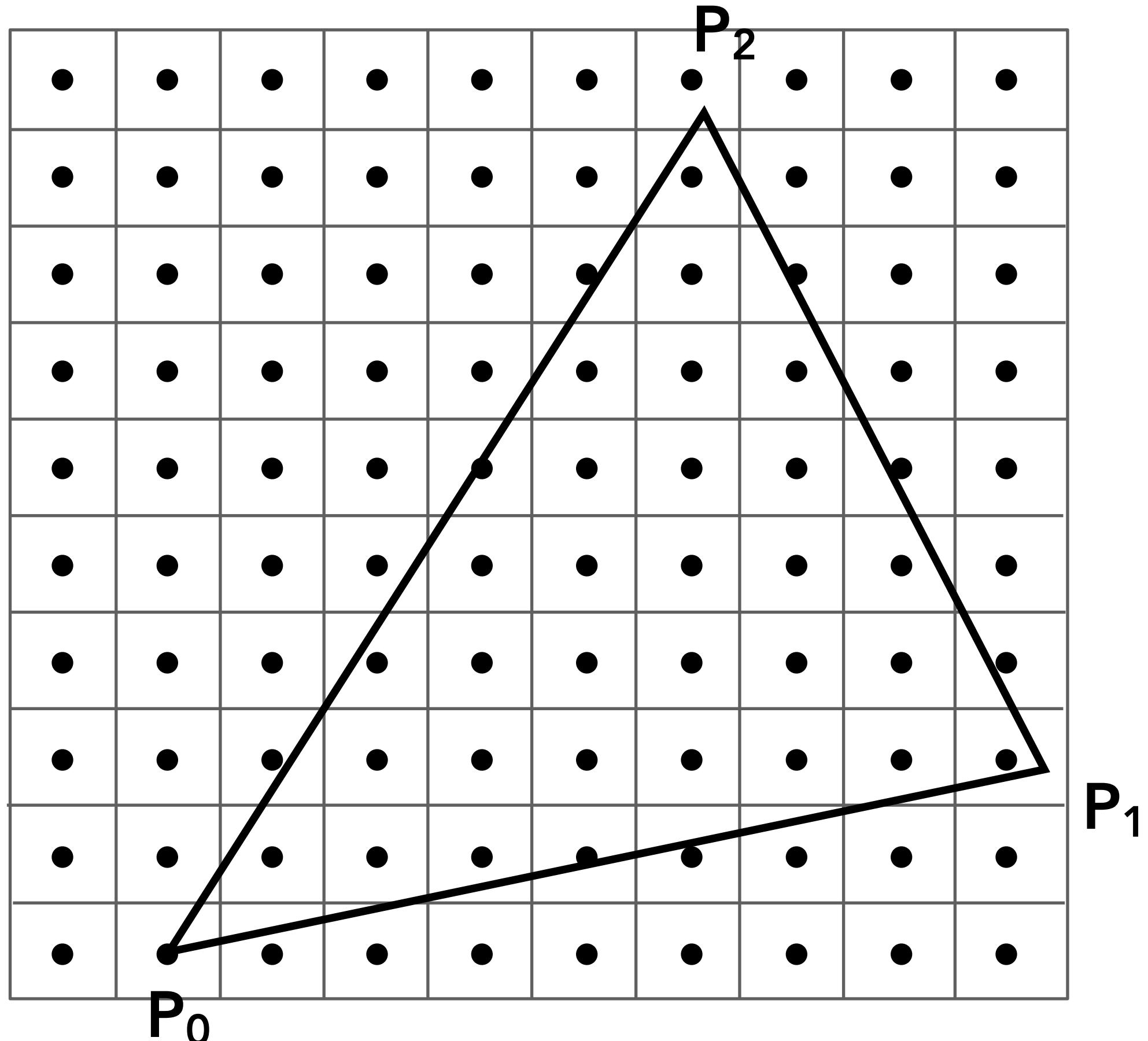
$$P_i = (X_i, Y_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$\begin{aligned} L_i(x, y) &= -(x - X_i) dY_i + (y - Y_i) dX_i \\ &= A_i x + B_i y + C_i \end{aligned}$$

$L_i(x, y) = 0$: point on edge
 < 0 : outside edge
 > 0 : inside edge



Compute line equations from pairs of vertices

Point-in-Triangle Test: Three Line Tests

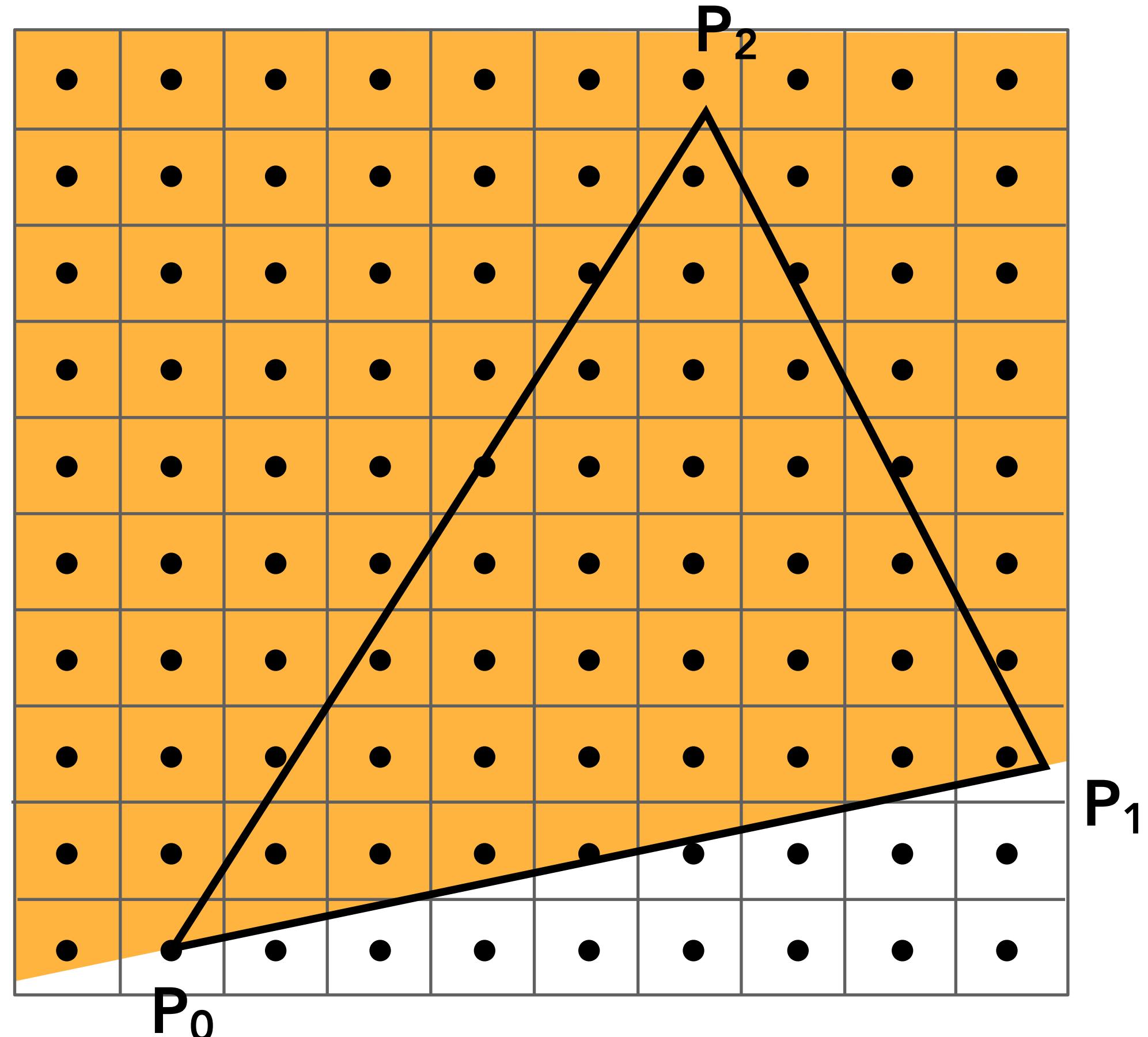
$$P_i = (X_i, Y_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$\begin{aligned} L_i(x, y) &= -(x - X_i) dY_i + (y - Y_i) dX_i \\ &= A_i x + B_i y + C_i \end{aligned}$$

$L_i(x, y) = 0$: point on edge
 < 0 : outside edge
 > 0 : inside edge



$$L_0(x, y) > 0$$

Point-in-Triangle Test: Three Line Tests

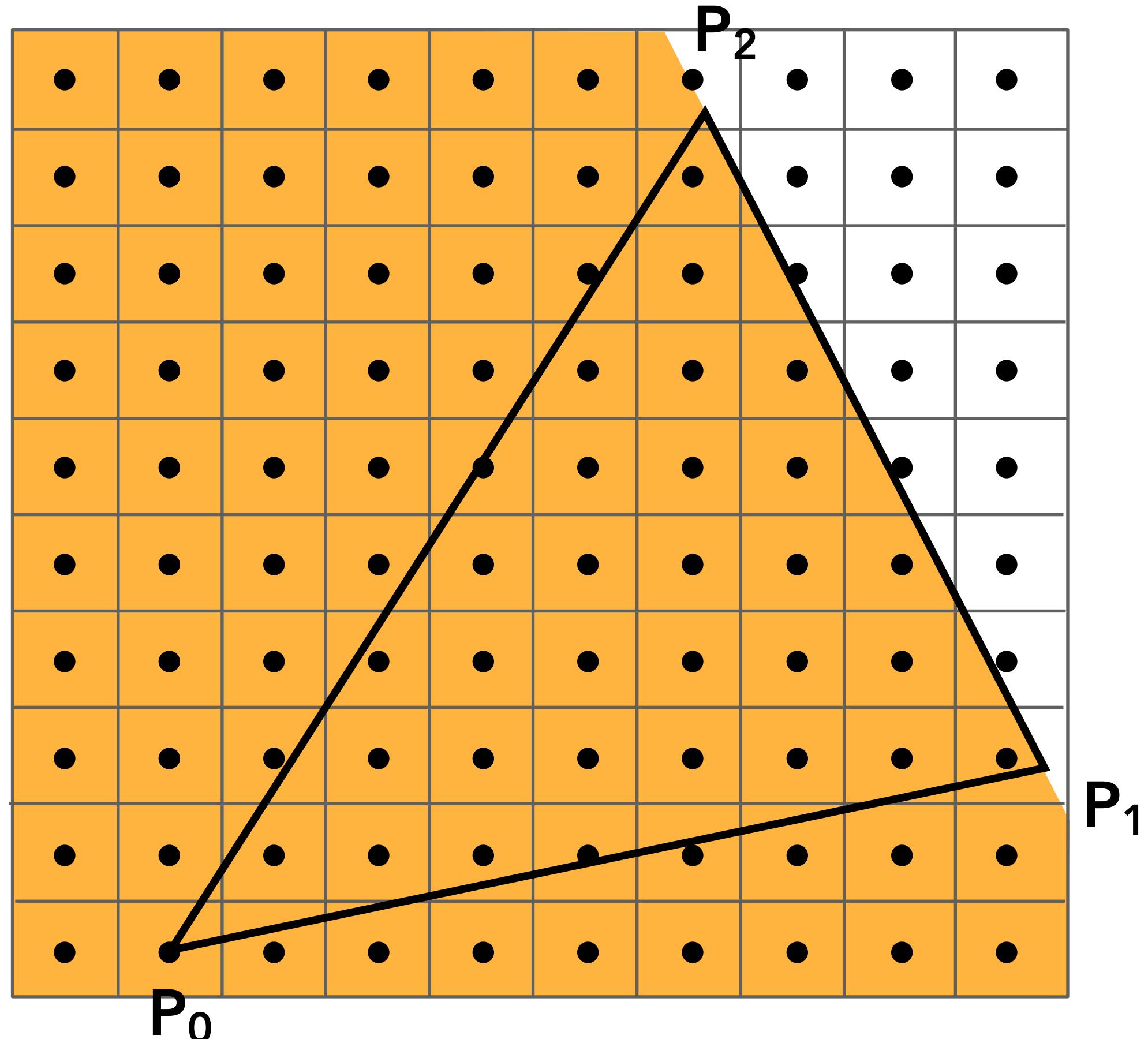
$$P_i = (X_i, Y_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$\begin{aligned} L_i(x, y) &= -(x - X_i) dY_i + (y - Y_i) dX_i \\ &= A_i x + B_i y + C_i \end{aligned}$$

$L_i(x, y) = 0$: point on edge
 < 0 : outside edge
 > 0 : inside edge



$$L_1(x, y) > 0$$

Point-in-Triangle Test: Three Line Tests

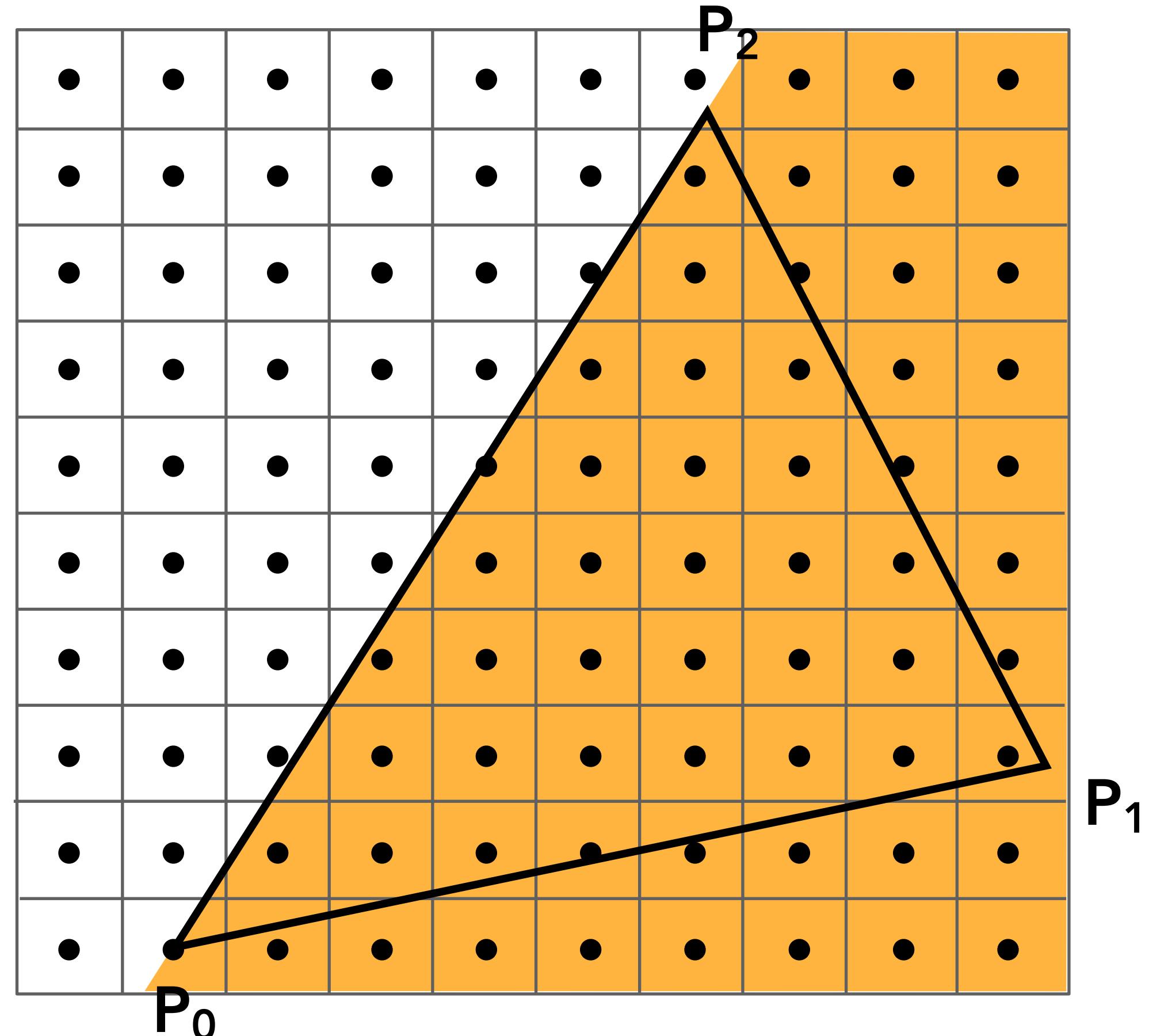
$$P_i = (X_i, Y_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$\begin{aligned} L_i(x, y) &= -(x - X_i) dY_i + (y - Y_i) dX_i \\ &= A_i x + B_i y + C_i \end{aligned}$$

$L_i(x, y) = 0$: point on edge
 < 0 : outside edge
 > 0 : inside edge



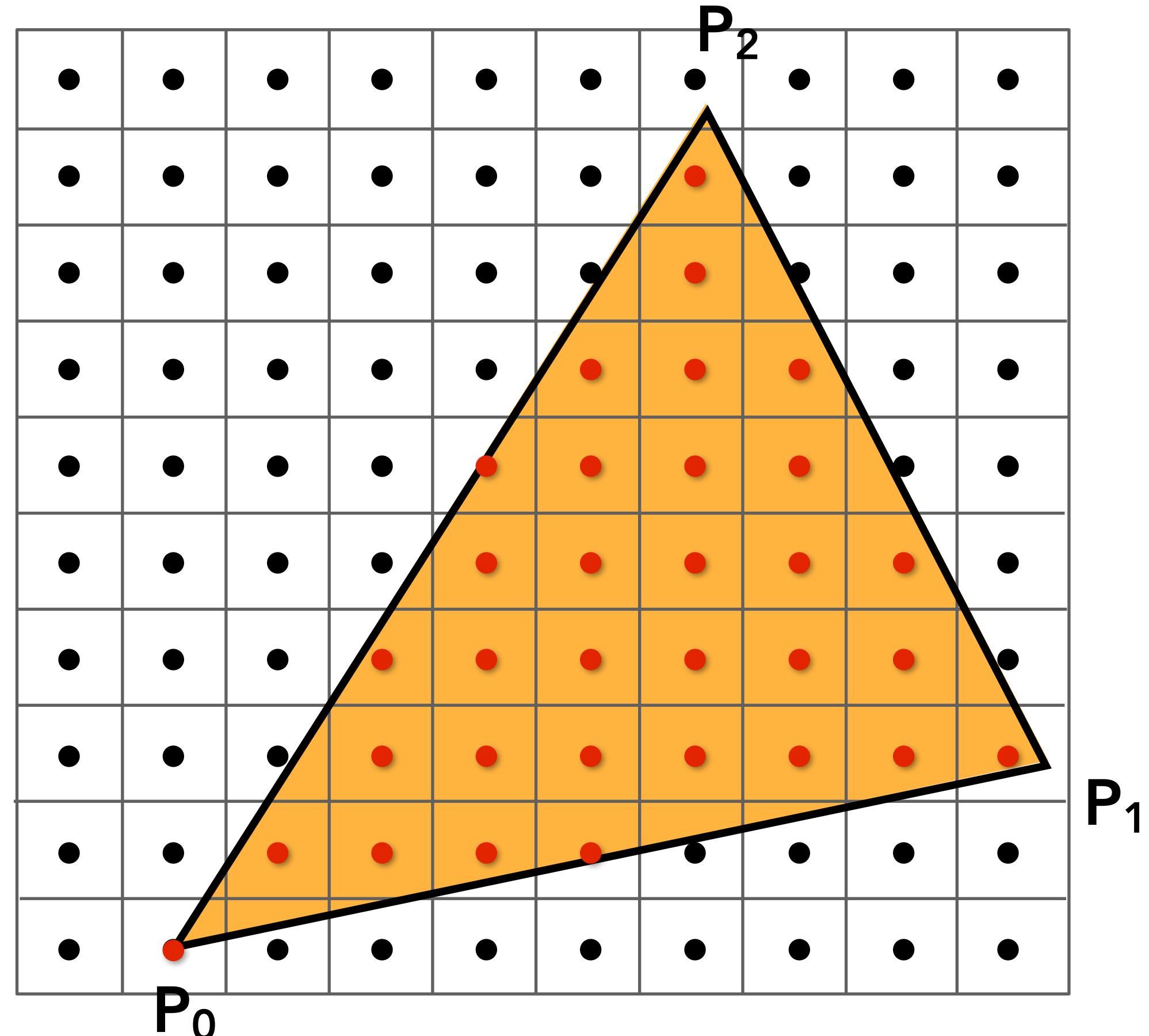
$$L_2(x, y) > 0$$

Point-in-Triangle Test: Three Line Tests

Sample point $s = (sx, sy)$ is inside the triangle if it is inside all three lines.

$inside(sx, sy) =$
 $L_0(sx, sy) > 0 \ \&\&$
 $L_1(sx, sy) > 0 \ \&\&$
 $L_2(sx, sy) > 0;$

Note: actual implementation of $inside(sx, sy)$ involves \leq checks based on edge rules

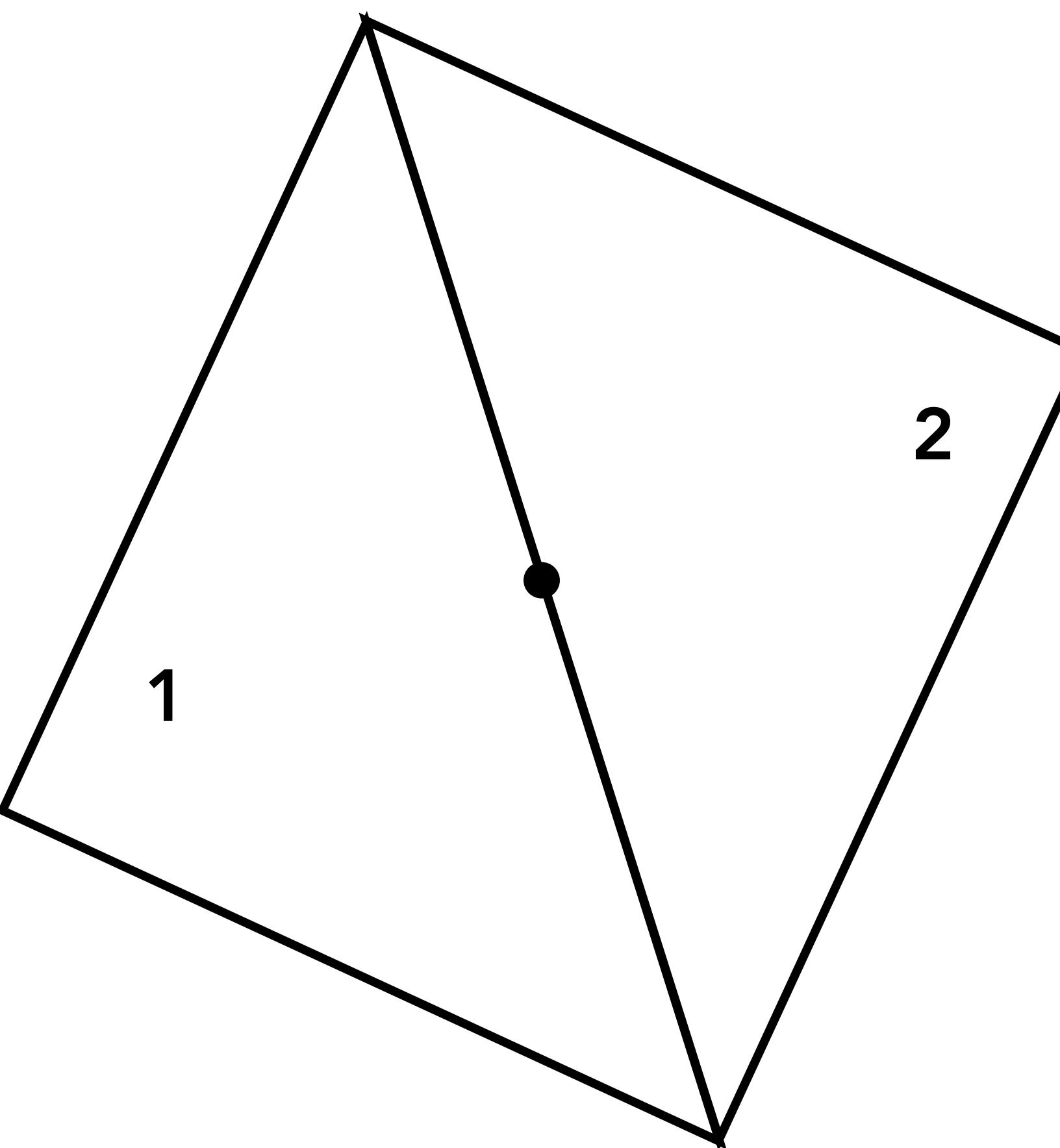


Attendance — Starts next week.

Some Details

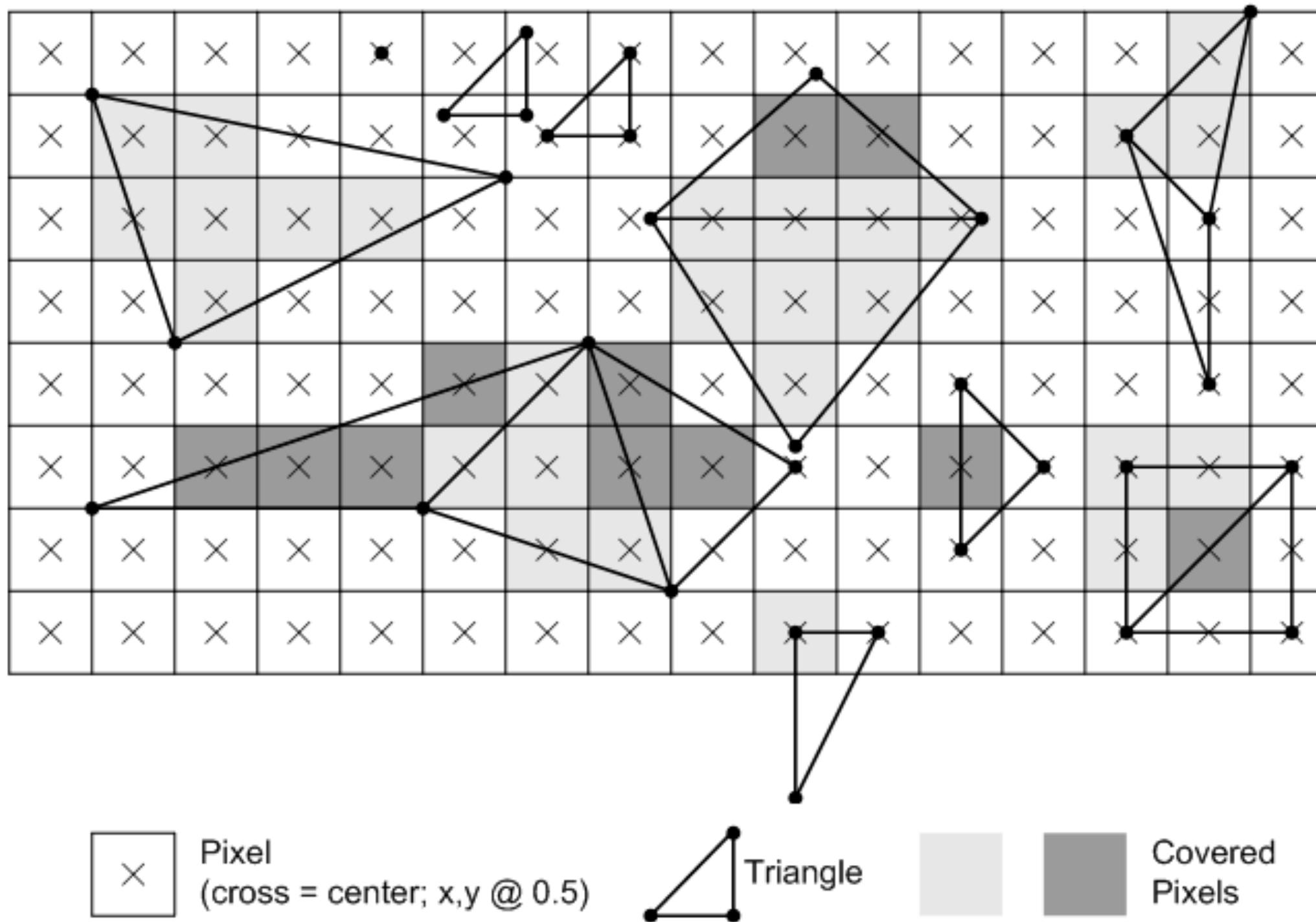
Edge Cases (Literally)

Is this sample point covered by triangle 1, triangle 2, or both?



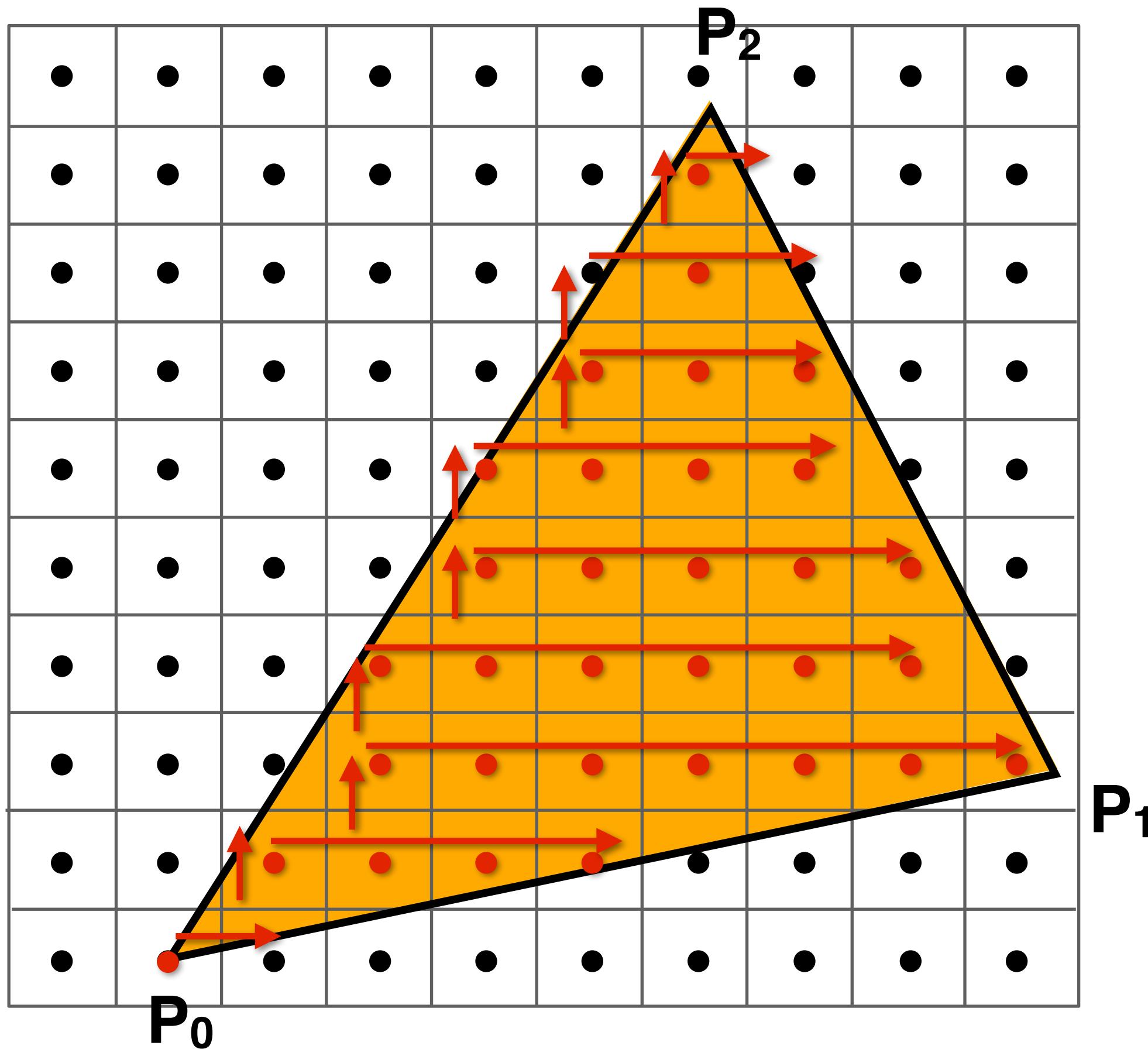
OpenGL/Direct3D Edge Rules

When sample point falls on an edge, the sample is classified as within triangle if the edge is a “top edge” or “left edge”



Source: Direct3D Programming Guide, Microsoft

Incremental Triangle Traversal (Faster?)



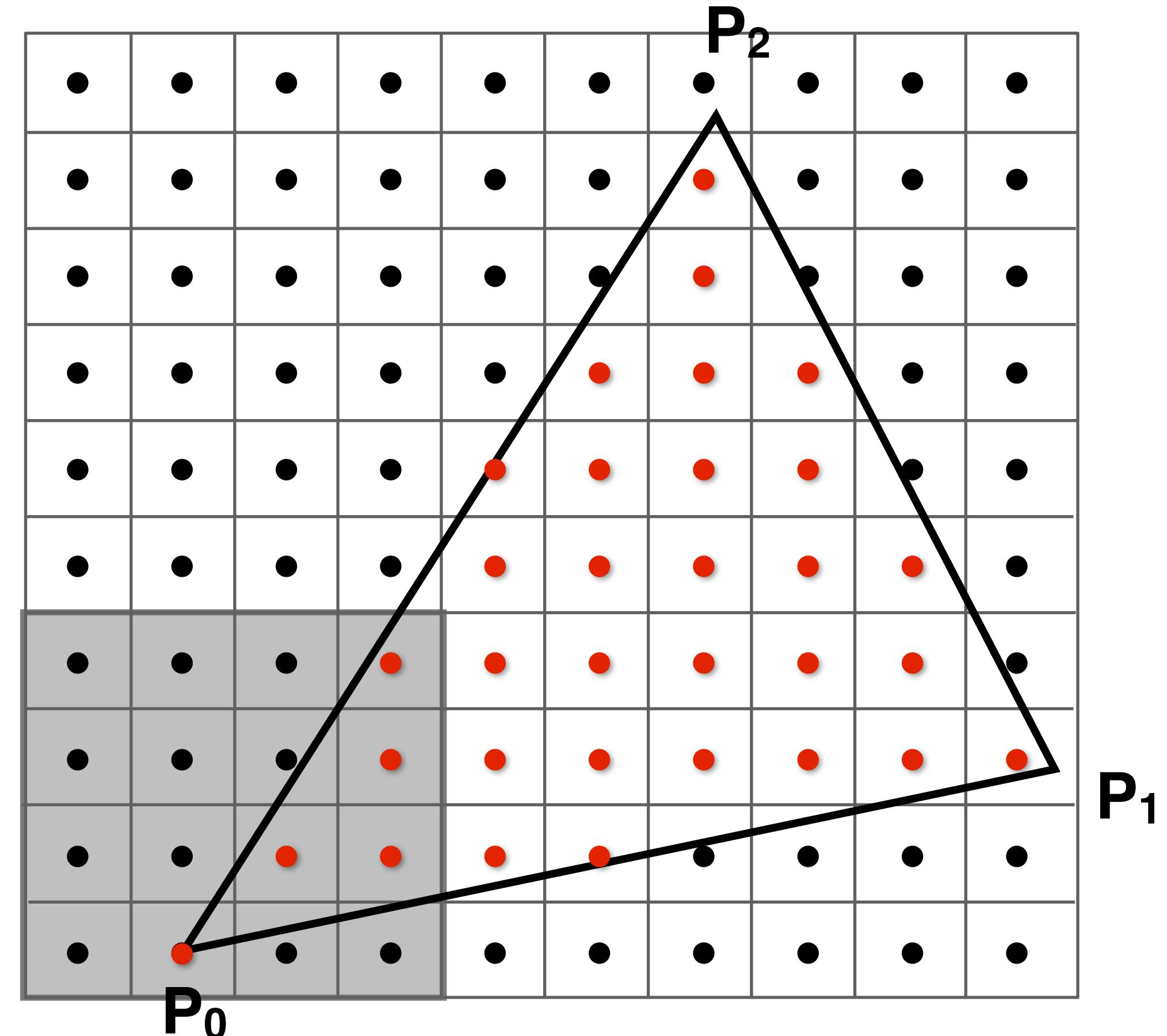
Modern Approach: Tiled Triangle Traversal

Traverse triangle in blocks

Test all samples in block in parallel

Advantages:

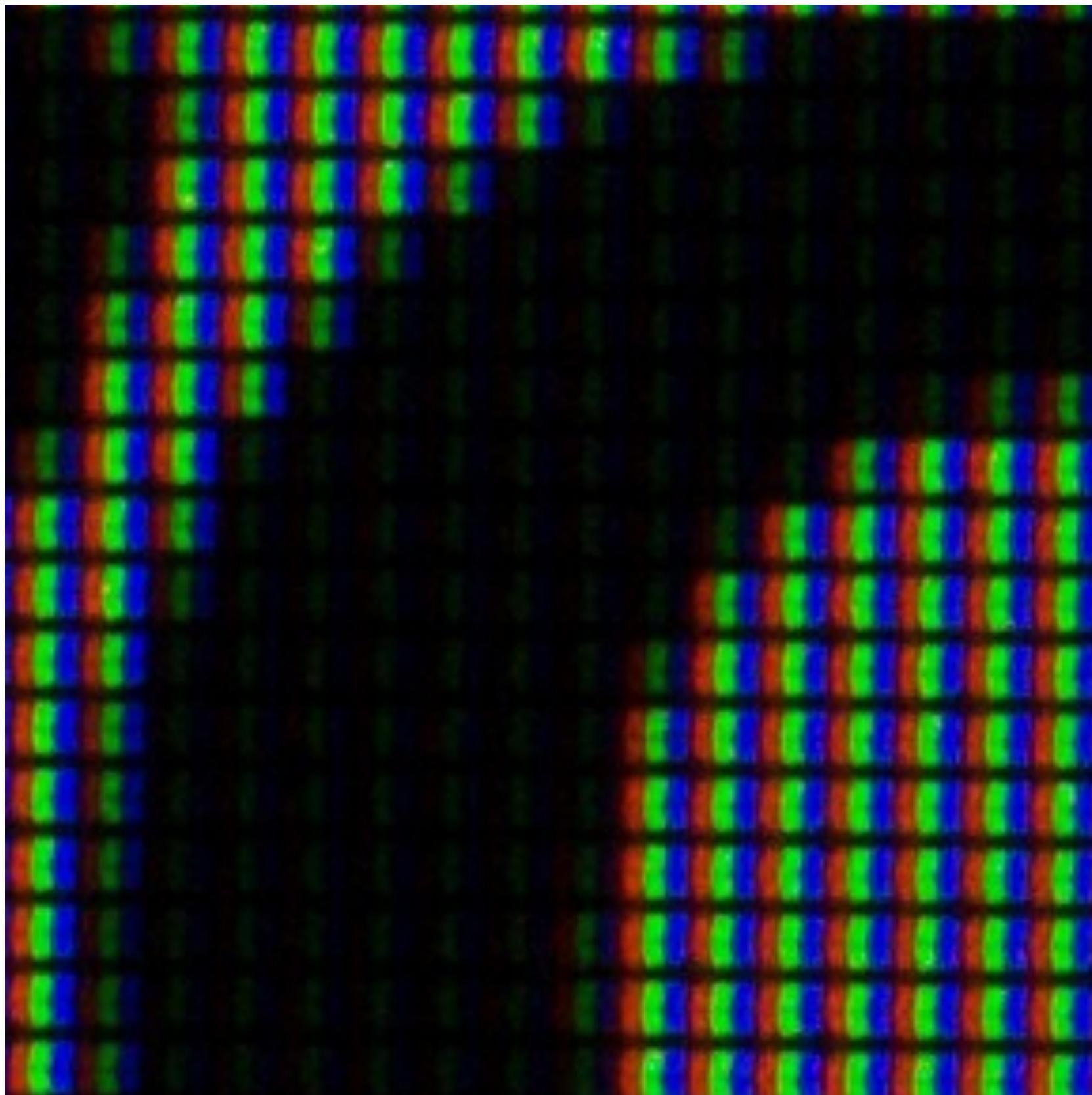
- Simplicity of wide parallel execution overcomes cost of extra point-in-triangle tests (most triangles cover many samples, especially when super-sampling)
- Can skip sample testing work: entire block not in triangle ("early out"), entire block entirely within triangle ("early in")



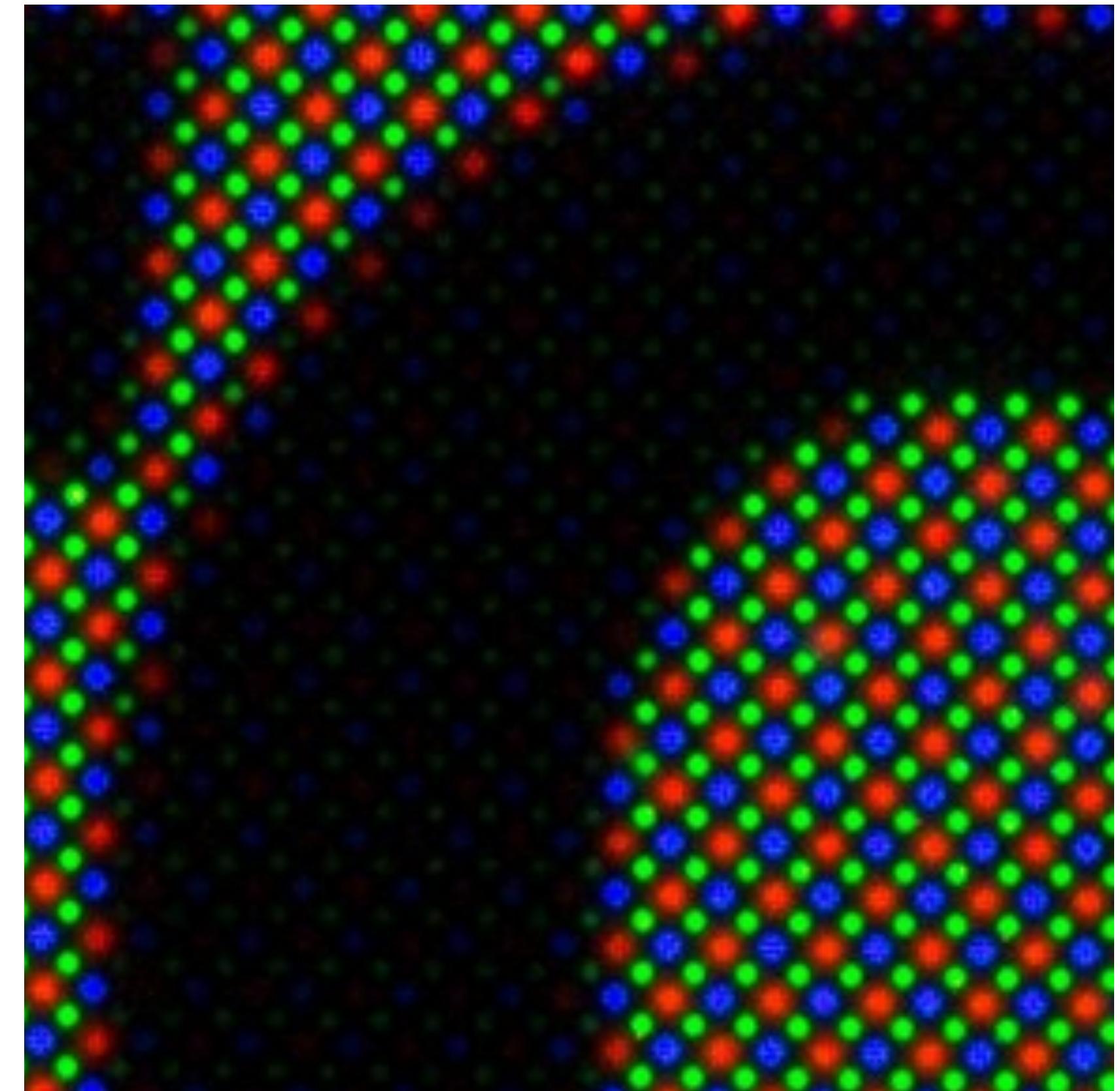
All modern GPUs have special-purpose hardware for efficient point-in-triangle tests

Signal Reconstruction on Real Displays

Real LCD Screen Pixels (Closeup)



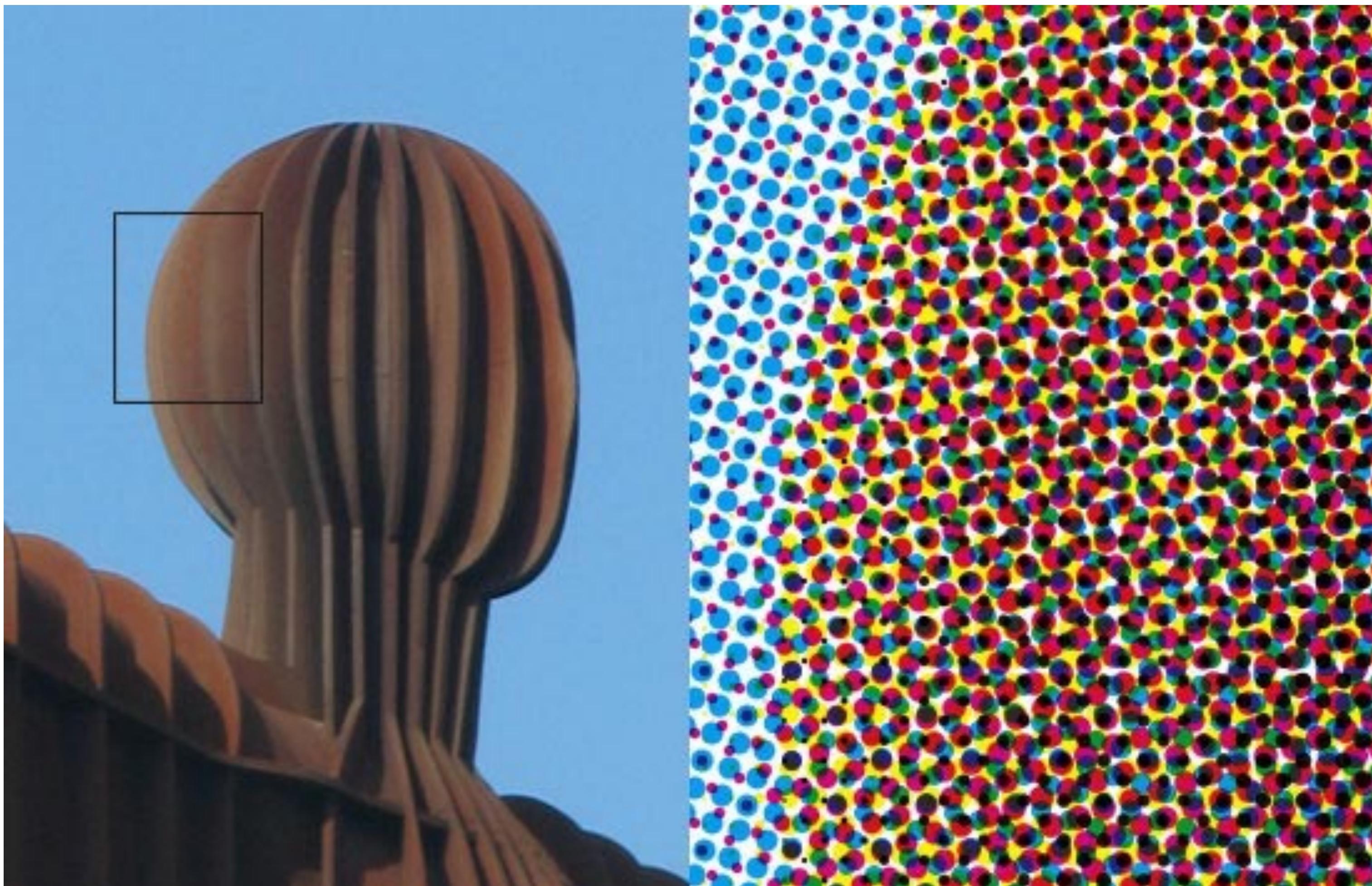
iPhone 6S



Galaxy S5

Notice R,G,B pixel geometry! But in this class, we will assume a colored square full-color pixel.

Aside: What About Other Display Methods?



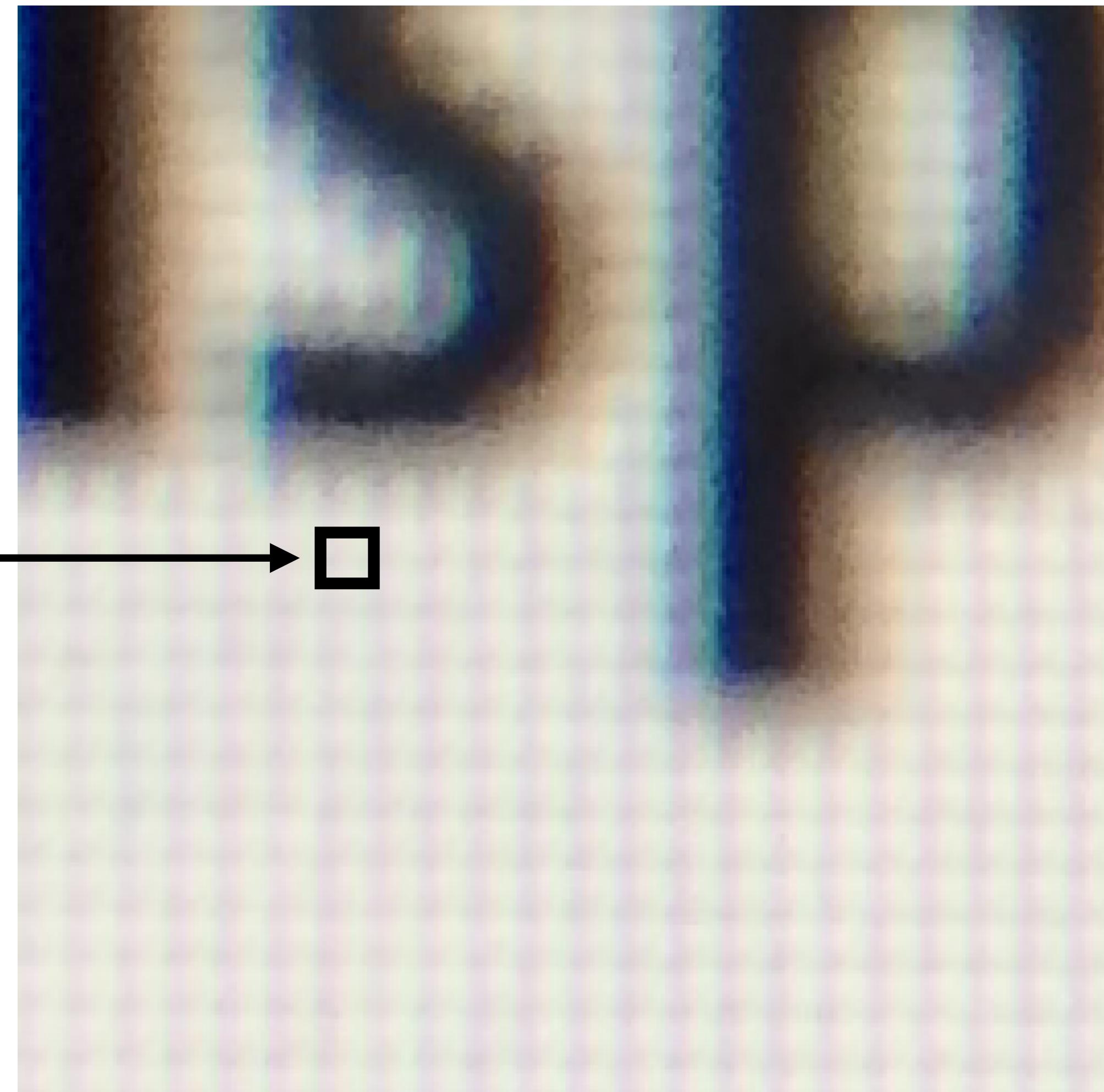
Color print: observe half-tone pattern

Assume Display Pixels Emit Square of Light

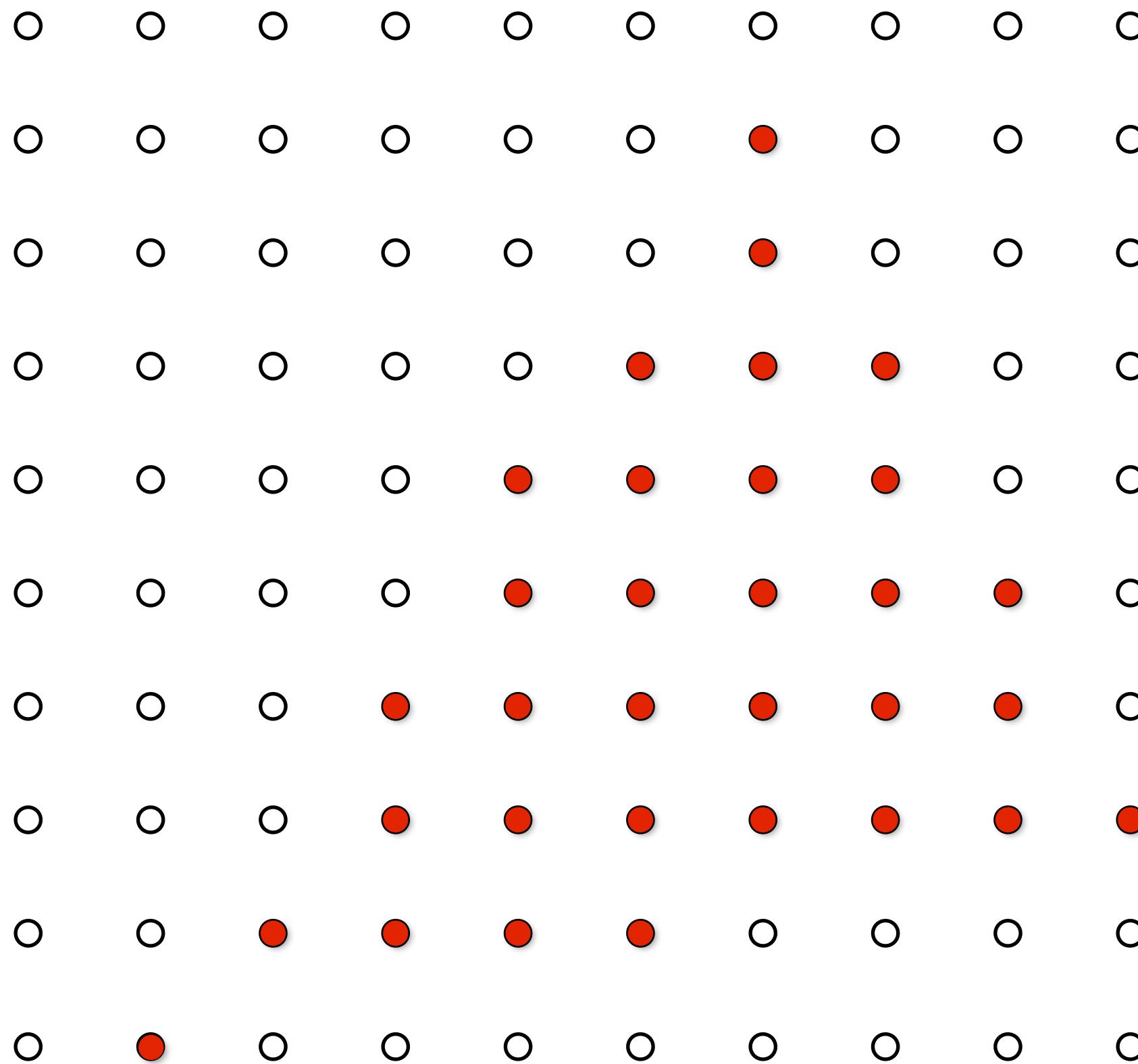
Each image sample sent to the display is converted into a little square of light of the appropriate color:
(a pixel = picture element)

LCD pixel
on laptop

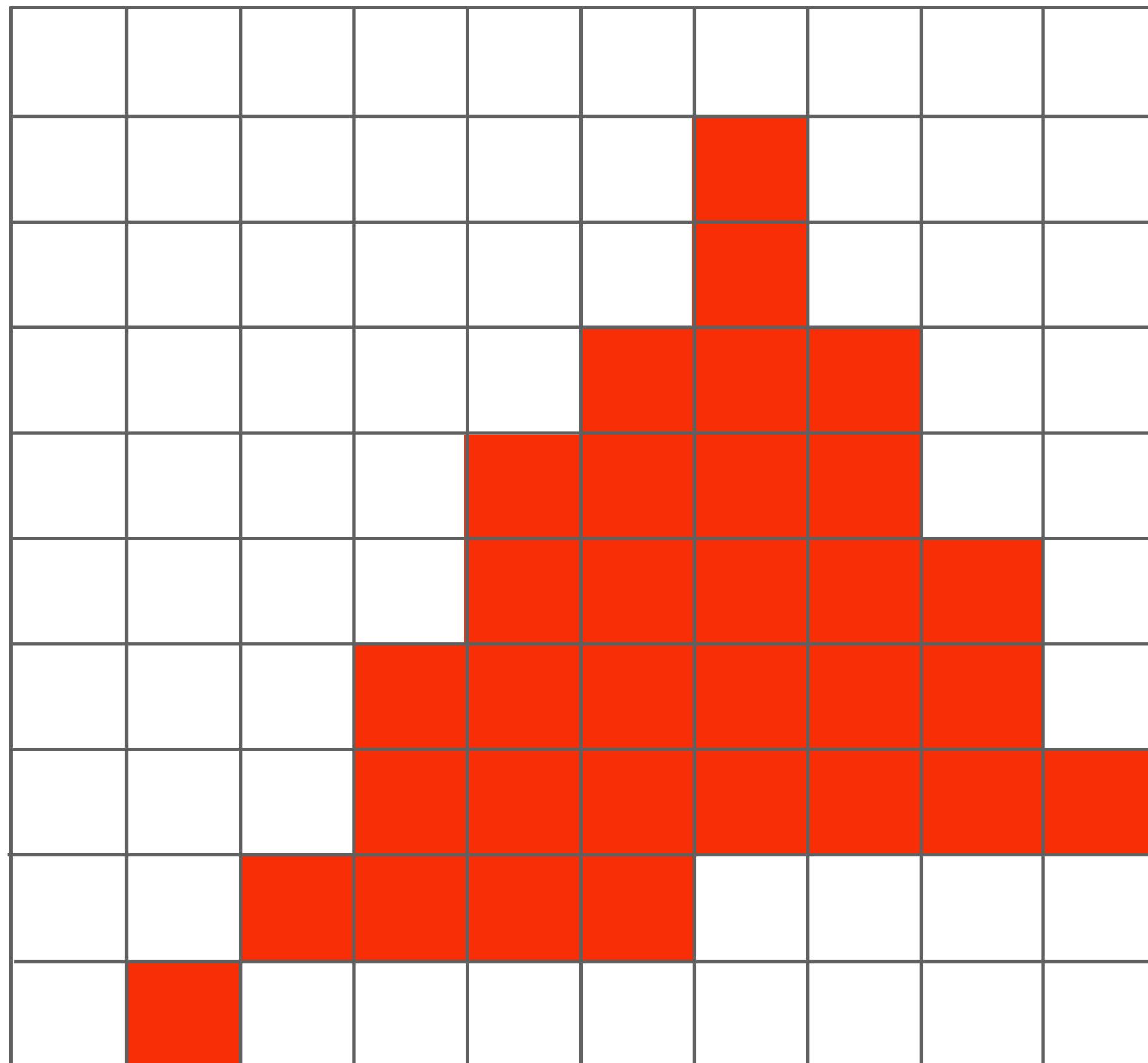
* LCD pixels do not actually emit light in a square of uniform color, but this approximation suffices for our current discussion



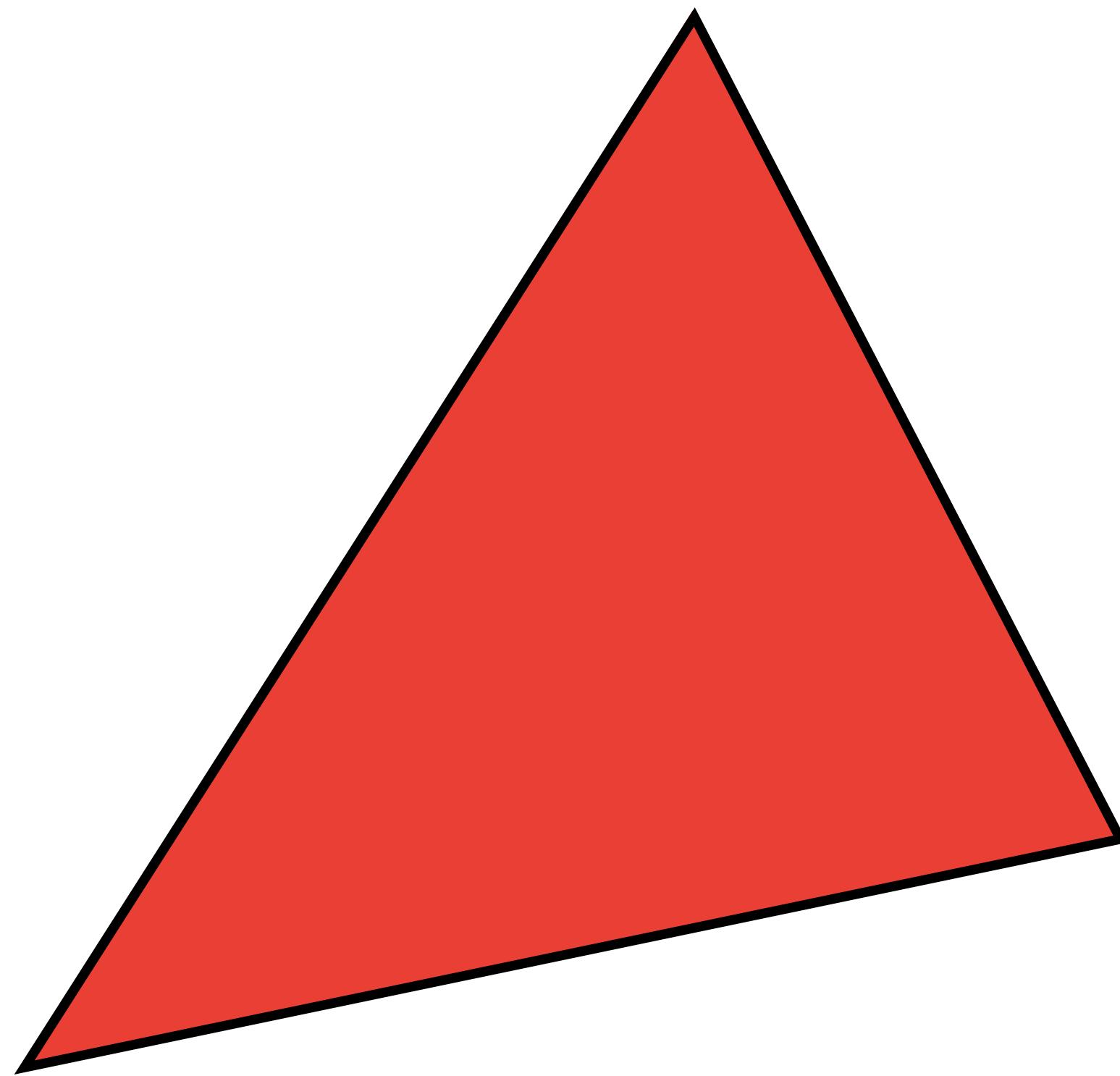
So, If We Send The Display This Sampled Signal



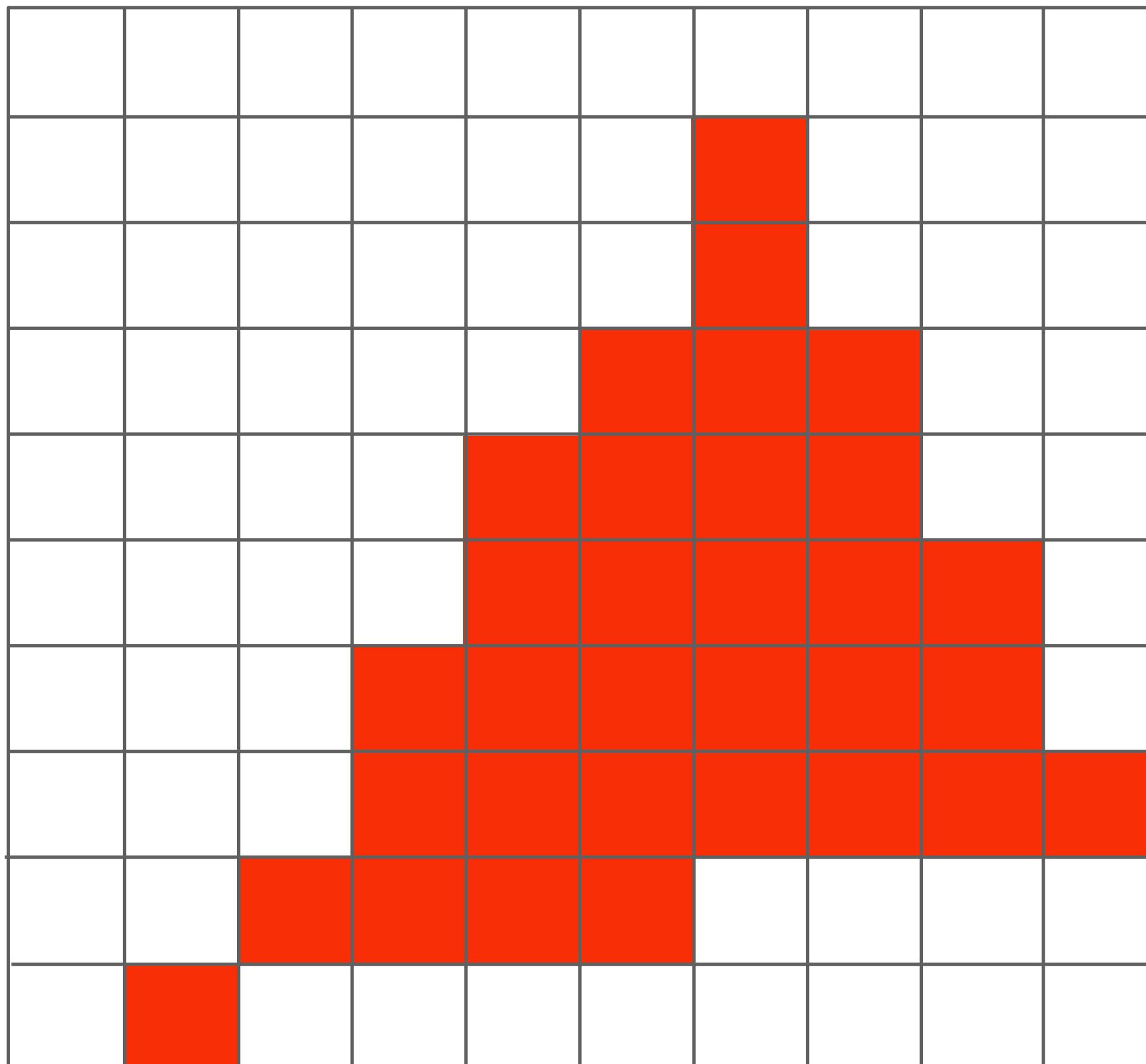
The Display Physically Emits This Signal



Compare: The Continuous Triangle Function

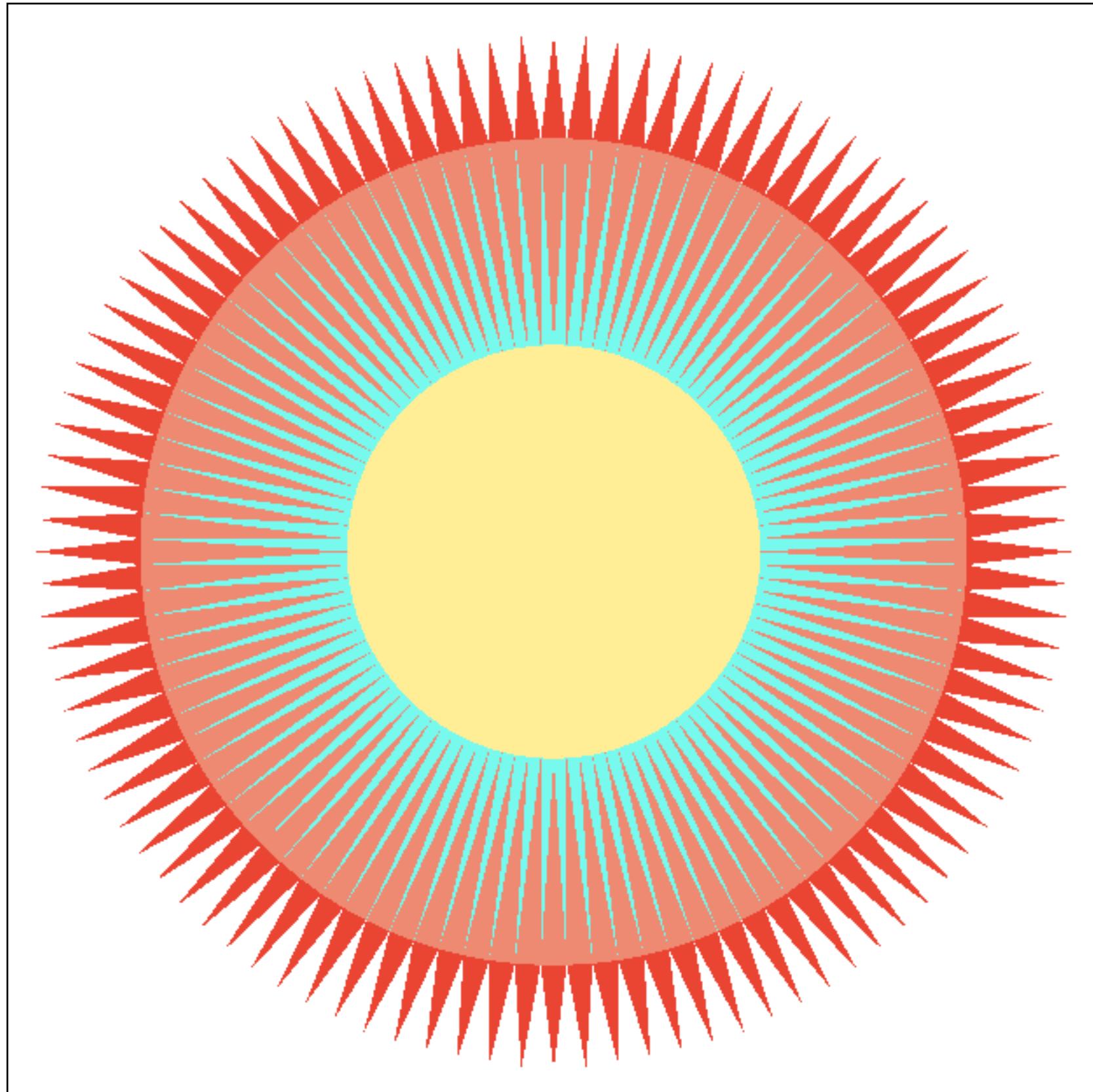
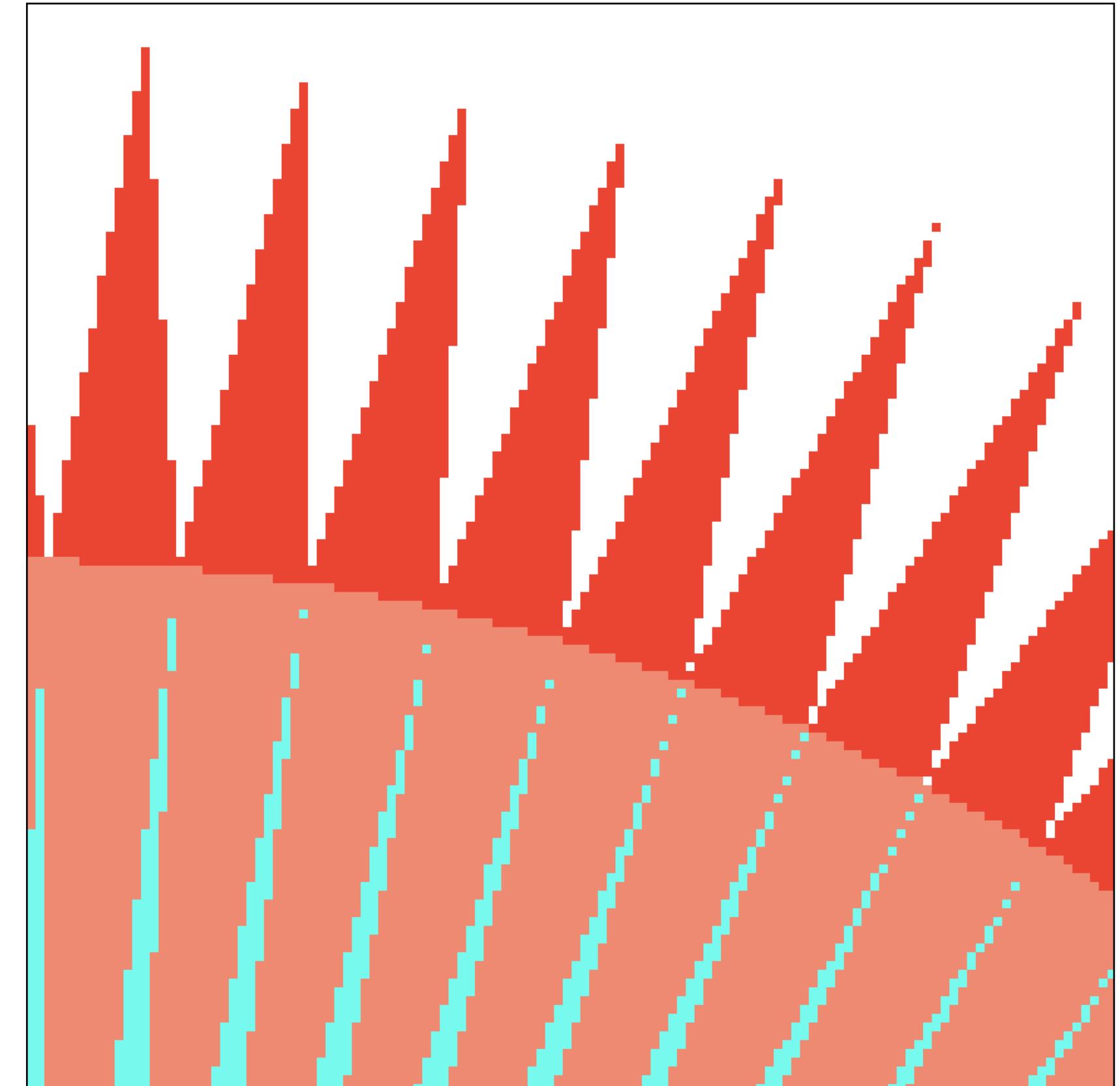


What's Wrong With This Picture?



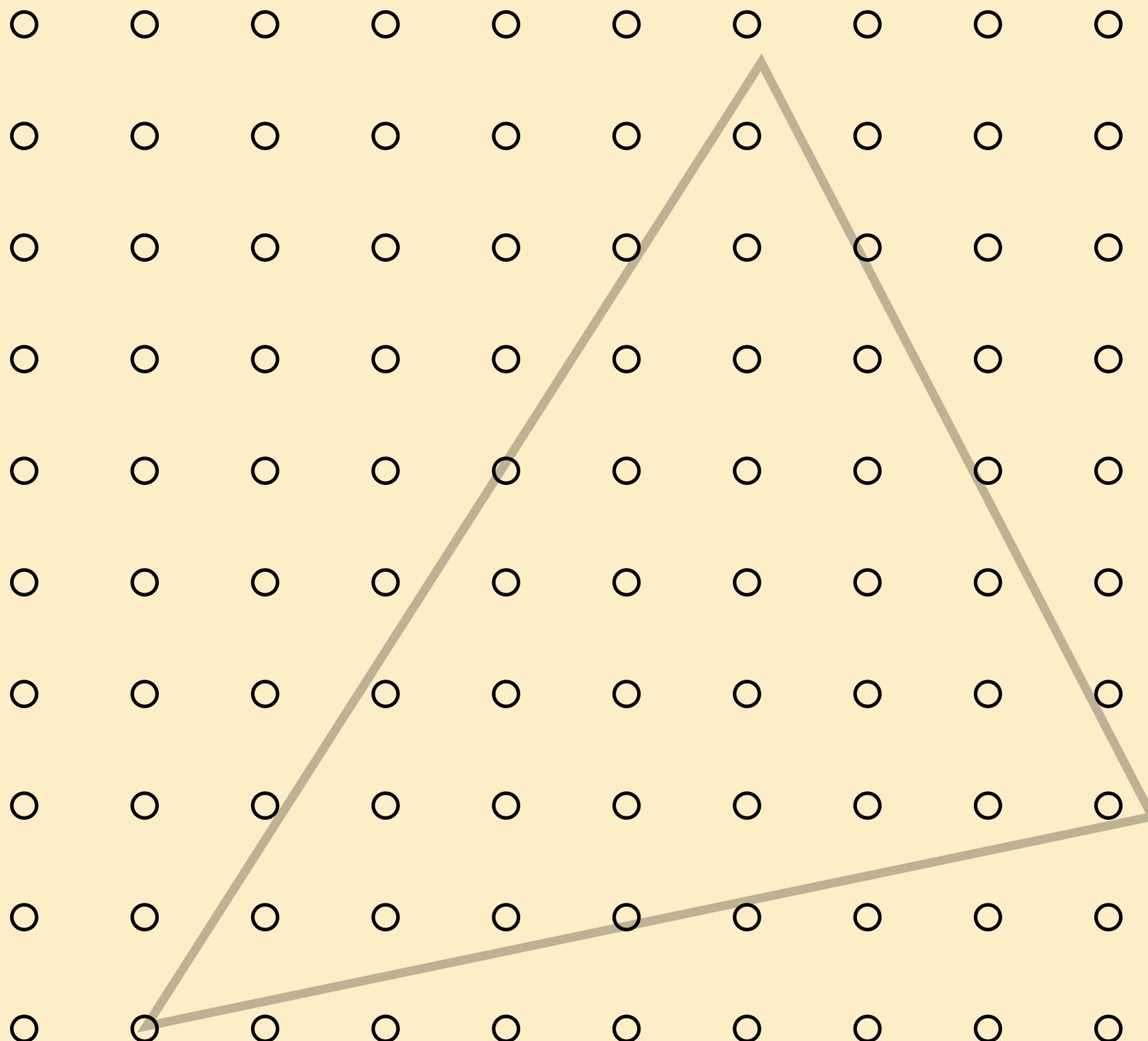
Jaggies!

Jaggies (Staircase Pattern)



Is this the best we can do?

Discussion: What Value Should a Pixel Have?



Potential topics for your pair discussion:

- Ideas for “higher quality” pixel formula?
- What are all the relevant factors?
- What’s right/wrong about point sampling?
- Why do jaggies look “wrong”?

Things to Remember

Drawing machines

- Many possibilities
- Why framebuffers and raster displays?
- Why triangles?

We posed rasterization as a 2D sampling process

- Test a binary function `inside(triangle, x, y)`
- Evaluate triangle coverage by 3 point-in-edge tests
- Finite sampling rate causes “jaggies” artifact
(next time we will analyze in more detail)

Acknowledgments

Thanks to Ren Ng, Kayvon Fatahalian, Pat Hanrahan, Mark Pauly and Steve Marschner for slide resources.