
Computer Graphics and Imaging 
UC Berkeley CS184/284A

Lecture 4:

Transforms
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Basic Transforms
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Rotate
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R45
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Translate
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T1,1
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Scale
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S0.5
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Scale (Non-Uniform)
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S0.5,1.0
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What Are Transforms?

Just functions acting on points 

• (x’,y’,z’) = F(x,y,z) 

• P’ = F(P) 
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F(P)

P



Why Study Transforms?
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Modeling A Robot Army
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iRobot movie

Transforms can describe position of object instances
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Posing a Character’s Skeleton
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iRobot movie

Transforms can describe relative position of connected body parts



Project Polygons in 3D to 2D Screen 

target="_blank"

Moments That Changed The Movies: Jurassic Park 
https://www.youtube.com/watch?v=KWsbcBvYqN8

https://www.youtube.com/watch?v=KWsbcBvYqN8
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Coordinate Systems are Arbitrary

So feel free to pick one you like!
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Coordinate Systems are Arbitrary

So feel free to pick one you like!
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Why Study Transforms?

Modeling 

• Define shapes in convenient coordinates 

• Enable multiple copies of the same object 

• Efficiently represent hierarchical scenes 
Viewing 

• World coordinates to camera coordinates 

• Parallel / perspective projections from 3D to 2D 
Other 

• Switching between coordinate systems

13
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Lecture Outline

How to think about and use transformations 

• Types: rotate, translate, scale, … 

• Coordinate frames 

• Composing multiple transformations 

• Hierarchical transforms 

• Perspective projection 
How to implement? 

• Represent transforms as matrices 

• Homogeneous coordinates

14



Linear Transforms = Matrices
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Scale Transform
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S0.5
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Scale Transform
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S0.5

x′￼ = 0.5x
y′￼ = 0.5y



S26 - O’BrienCS184/284A

Scale Transform (non-uniform a.k.a anisotropic)
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S0.5,1.0



S26 - O’BrienCS184/284A

Scale Transform (non-uniform a.k.a anisotropic)
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S0.5,1.0

x′￼ = 0.5x
y′￼ = y
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Reflection Transform
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Reflection Transform
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x′￼ = − 1.0x
y′￼ = y
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Translation  Transform
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Translation  Transform
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x′￼ = x + 5
y′￼ = y
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Shear Transform
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Shear Transform
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x′￼ = x + 0.5y
y′￼ = y
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Linear Transforms = Matrices

21

x0 = a x+ b y

y0 = c x+ d y


x0

y0

�
=


a b
c d

� 
x
y

�

x0 = M x
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Scale Matrix
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S0.5

[x′￼

y′￼] = [0.5 0
0 0.5] [x

y]
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Scale Matrix
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S0.5

[x′￼

y′￼] = [0.5 0
0 0.5] ⋅ [x

y]
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Linear Transforms = Matrices

24

x0 = a x+ b y

y0 = c x+ d y


x0

y0

�
=


a b
c d

� 
x
y

�

x0 = M x

b = M1a
c = M2b
d = M3c

d = M3M2M1a

d = (M3M2M1)a

d = MaNote: no translation (addition) yet. Will come later…
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25

Can interpret the columns of the matrix as the  
x and y axes of the coordinate frame

2D Coordinate Systems

x0 = a x+ b y

y0 = c x+ d y


x0

y0

�
=


a b
c d

� 
x
y

�

x0 = M x

“The x-axis of the plane’s 
coordinate system 

expressed in the person’s 
coordinate system."

[a
c]

Ŷ

X̂

X̂′￼O

Ŷ′￼



S26 - O’BrienCS184/284A
25
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25

Can interpret the columns of the matrix as the  
x and y axes of the coordinate frame
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
a
c

�
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� 
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�
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�
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Consider the inverse matrix…

2D Coordinate Systems


a
c

�
=


a b
c d

� 
1
0

�


b
d

�
=


a b
c d

� 
0
1

�

x0 = a x+ b y

y0 = c x+ d y


x0

y0

�
=


a b
c d

� 
x
y

�

x0 = M x

Ŷ

X̂

X̂′￼O

Ŷ′￼
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Rotation Matrix

27

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)
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Rotation Matrix

27

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)
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�
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0 2
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Rotation Matrix

27

Lecture 3 Math
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Rotation Matrix
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Ss =


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
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�
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Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�

Translation:
Tb(x) = x+ b

Tb(x0)� Tb(x1)� Tb(x2)� Tb(x3)� Tb(x)� Tb(y)� Tb(x+ y)� Tb(x) + Tb(y)

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:
|f(x)� f(y)| = |x� y|

2
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Rotation Matrix
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Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�

Translation:
Tb(x) = x+ b

Tb(x0)� Tb(x1)� Tb(x2)� Tb(x3)� Tb(x)� Tb(y)� Tb(x+ y)� Tb(x) + Tb(y)

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:
|f(x)� f(y)| = |x� y|

2
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Rotation Matrix

27

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�

Translation:
Tb(x) = x+ b

Tb(x0)� Tb(x1)� Tb(x2)� Tb(x3)� Tb(x)� Tb(y)� Tb(x+ y)� Tb(x) + Tb(y)

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:
|f(x)� f(y)| = |x� y|

2



S26 - O’BrienCS184/284A

Rotation Matrix

28

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�

Translation:
Tb(x) = x+ b

Tb(x0)� Tb(x1)� Tb(x2)� Tb(x3)� Tb(x)� Tb(y)� Tb(x+ y)� Tb(x) + Tb(y)

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:
|f(x)� f(y)| = |x� y|

2

V = Vx + Vy

Vx

Vy

Where did this come from?

If you can figure out horizontal 
and vertical then you can do any 

vector!
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2D Rotation Matrix: Another Way

http://xkcd.com/184/
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2D Rotation Matrix: Another Way

http://xkcd.com/184/
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2D Rotation Matrix: Another Way

http://xkcd.com/184/
(What’s wrong with this picture??)
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2D Rotation Matrix: Another Way

http://xkcd.com/184/
(What’s wrong with this picture??)

(Left handed matrix!)
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Translation??

30

T1,1

x0 = x+ tx

y0 = y + ty
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Solution: Homogenous Coordinates

Add a third coordinate  (w-coordinate) 

• 2D point   = (x, y, 1)T 

• 2D vector = (x, y, 0)T

31
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Solution: Homogenous Coordinates

Add a third coordinate  (w-coordinate) 

• 2D point   = (x, y, 1)T 

• 2D vector = (x, y, 0)T

Now you can express translation as a matrix!!

31




x′

y′

w′



 =




1 0 tx
0 1 ty
0 0 1



 ·




x
y
1



 =




x + tx
y + ty

1




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Homogenous Coordinates

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 
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Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 
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Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	     = vector

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 
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Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	     = vector

• point	 – point	 	 = vector

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 
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Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	     = vector

• point	 – point	 	 = vector

• point	 + vector	     = point

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 
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Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	     = vector

• point	 – point	 	 = vector

• point	 + vector	     = point

• point	 + point	 	 = ??

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 
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Homogenous Coordinates

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 
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Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 
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Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	     = vector

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 



S26 - O’BrienCS184/284A

Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	     = vector

• point	 – point	 	 = vector

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 
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Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	     = vector

• point	 – point	 	 = vector

• point	 + vector	     = point

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 
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Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	     = vector

• point	 – point	 	 = vector

• point	 + vector	     = point

• point	 + point	 	 = ??

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either 

• Divide entire vector by w  

• Generally you can do it later 
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Affine Transformations

Affine map = linear map + translation 

Using homogenous coordinates:

34




x′

y′

1



 =




a b tx
c d ty
0 0 1



 ·




x
y
1





(
x′

y′

)
=

(
a b
c d

)
·
(

x
y

)
+

(
tx
ty

)
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2D Transformations

Scale 

Rotation 

Translation

35

T(tx, ty) =




1 0 tx
0 1 ty
0 0 1





S(sx, sy) =




sx 0 0
0 sy 0
0 0 1





R(α) =




cos α − sin α 0
sinα cos α 0

0 0 1





(homogenous coordinates)
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2D Transformations

Scale 

Rotation 

Translation

35

T(tx, ty) =




1 0 tx
0 1 ty
0 0 1





S(sx, sy) =




sx 0 0
0 sy 0
0 0 1





R(α) =




cos α − sin α 0
sinα cos α 0

0 0 1





“Rigid Transform”

(homogenous coordinates)
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2D Transformations

Scale 

Rotation 

Translation

35

T(tx, ty) =




1 0 tx
0 1 ty
0 0 1





S(sx, sy) =




sx 0 0
0 sy 0
0 0 1





R(α) =




cos α − sin α 0
sinα cos α 0

0 0 1





“Rigid Transform”

“Similarity 
 Transform  
if Sx=Sy”

“Affine Transform”

“Projective Transform” 
(any matrix)(homogenous coordinates)
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Inverse Transform

 
 
          is the inverse of transform      in both a matrix 
and geometric sense

36

M�1

M�1

M

M�1 M�1

tx ty
• Special cases:

• Translation: negate     and 
• Rotation: transpose
• Scale: invert diagonal  (axis-aligned scales)

• Others:
• Invert matrix
• Invert SVD matrices  



Composing Transforms

37
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Composite Transform

38

?
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Translate Then Rotate?

39
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Translate Then Rotate?

39

M = R45 · T(1,0)
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Translate Then Rotate?

39

M = R45 · T(1,0) M = R45 · T(1,0)
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Rotate Then Translate

40
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Rotate Then Translate

40

M = T(1,0) ·R45
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Rotate Then Translate

40

M = T(1,0) ·R45 M = T(1,0) ·R45
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Transform Ordering Matters!

41

M = R45 · T(1,0) M = R45 · T(1,0)

M = T(1,0) ·R45 M = T(1,0) ·R45
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Transform Ordering Matters!

Matrix multiplication is not commutative 

42

M = R45 · T(1,0)M = T(1,0) ·R45≠
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Transform Ordering Matters!

Matrix multiplication is not commutative 

42

M = R45 · T(1,0)M = T(1,0) ·R45≠

2

4
cos 45� � sin 45� 0
sin 45� cos 45� 0

0 0 1

3

5

2

4
1 0 1
0 1 0
0 0 1

3

5 6=

2

4
1 0 1
0 1 0
0 0 1

3

5

2

4
cos 45� � sin 45� 0
sin 45� cos 45� 0

0 0 1

3

5

Recall the matrix math represented by these symbols: 
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Transform Ordering Matters!

Matrix multiplication is not commutative 

42

M = R45 · T(1,0)M = T(1,0) ·R45≠

2

4
cos 45� � sin 45� 0
sin 45� cos 45� 0

0 0 1

3

5

2

4
1 0 1
0 1 0
0 0 1

3

5 6=

2

4
1 0 1
0 1 0
0 0 1

3

5

2

4
cos 45� � sin 45� 0
sin 45� cos 45� 0

0 0 1

3

5

Recall the matrix math represented by these symbols: 

Note that matrices are applied right to left:

T(1,0) ·R45

2

4
x
y
1

3

5 =

2

4
1 0 1
0 1 0
0 0 1

3

5

2

4
cos 45� � sin 45� 0
sin 45� cos 45� 0

0 0 1

3

5

2

4
x
y
1

3

5



S26 - O’BrienCS184/284A

Composing Transforms

Sequence of transforms A1, A2, A3, ... 

• Compose by matrix multiplication 

• Very important for performance! 

• Very important for complexity!

43
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Composing Transforms

Sequence of transforms A1, A2, A3, ... 

• Compose by matrix multiplication 

• Very important for performance! 

• Very important for complexity!

43

An(. . . A2(A1(x))) = An · · · A2 · A1 ·




x
y
1




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Composing Transforms

Sequence of transforms A1, A2, A3, ... 

• Compose by matrix multiplication 

• Very important for performance! 

• Very important for complexity!

43

An(. . . A2(A1(x))) = An · · · A2 · A1 ·




x
y
1





Pre-multiply n matrices to obtain a  
single matrix representing combined transform
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Building Complex Transforms

44
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Building Complex Transforms

How to rotate around a given point c?

44
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Building Complex Transforms

How to rotate around a given point c?

44

R(α)



S26 - O’BrienCS184/284A

Building Complex Transforms

45
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Building Complex Transforms

How to rotate around a given point c?

45
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Building Complex Transforms

How to rotate around a given point c?
1. Translate center to origin

45

T(−c)
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Building Complex Transforms

How to rotate around a given point c?
1. Translate center to origin
2. Rotate

45

T(−c) R(α)
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Building Complex Transforms

How to rotate around a given point c?
1. Translate center to origin
2. Rotate
3. Translate back

45

T(−c) T(c)R(α)
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Building Complex Transforms

How to rotate around a given point c?
1. Translate center to origin
2. Rotate
3. Translate back

Matrix representation

45

T(−c) T(c)R(α)

T(c) · R(α) · T(−c)
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Building Complex Transforms

How to rotate around a given point c?
1. Translate center to origin
2. Rotate
3. Translate back

Matrix representation

45

T(−c) T(c)R(α)

T(c) · R(α) · T(−c)M𝖼𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾 =
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Building Not-Axis-Aligned Scale Matrix

46
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Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]
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Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]
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Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]
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Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]
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Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]
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Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]

[cos(45) −sin(45)
sin(45) cos(45) ] ⋅ [1 0

0 2] ⋅ [cos(−45) −sin(−45)
sin(−45) cos(−45) ] =

3
2 − 1

2

− 1
2

3
2R(45) s(1,2) R(-45)
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Building Not-Axis-Aligned Scale Matrix

47

[2 0
0 2]

[cos(45) −sin(45)
sin(45) cos(45) ] ⋅ [1 0

0 2] ⋅ [cos(−45) −sin(−45)
sin(−45) cos(−45) ] =

R(45) s(1,2) R(-45)

[ 1.5 −0.5
−0.5 1.5 ]
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Useful Matrix Decompositions

48

A = VΛV−𝟣

A = QSR𝖳

A = PRSR𝖳

PR = Q

Eigen system 
Lambda is diagonal

Singular Value Decomposition (SVD) 
S is diagonal 

Q and R are orthonormal

Polar Decomposition 
S is diagonal 

P, W and R are orthonormal
Note: V=Q=R if A symmetric and real
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Useful Matrix Decompositions

48

A = VΛV−𝟣

A = QSR𝖳

A = PRSR𝖳

PR = Q

Eigen system 
Lambda is diagonal

Singular Value Decomposition (SVD) 
S is diagonal 

Q and R are orthonormal

Polar Decomposition 
S is diagonal 

P, W and R are orthonormal

Rotation Matrix  Orthonormal (det+1)≅
Axis-aligned Scale Matrix  Diagonal≅

Scale Matrix  OrthonormalTranspose . Diagonal . Orthonormal≅

Note: V=Q=R if A symmetric and real



Coordinate Systems

49
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Coordinate System Transform

In general, a new coordinate frame is defined by an 
origin (point) and two unit axes (vectors) 

50

F =


u v o
0 0 1

� F =


u v o
0 0 1

�

F =


u v o
0 0 1

�

x y

x y

Given coordinates in the (o,u,v) reference frame, what 
is the transform to coordinates in the (x,y) frame?
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Coordinate System Transform Matrix

51

F =


u v o
0 0 1

�
=

2

4
ux vx ox
uy vy oy
0 0 1

3

5

• Columns of matrix are defined 
by the reference frame’s 
coordinates in the world 

• Gives a new way to “read off” 
columns of matrix

v̂

û

O

Ŷ

X̂O′￼
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1

Coordinate System Transform - Example

Write down a matrix T representing this transform:

52

1

T

1
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1

Coordinate System Transform - Example

Write down a matrix T representing this transform:

52

1

T

1

(1, 1)
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1

Coordinate System Transform - Example

Write down a matrix T representing this transform:

52

1

T

1

 p
2

2
,

p
2

2

!

(1, 1)
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1

Coordinate System Transform - Example

Write down a matrix T representing this transform:

52

1

T

1

(0,�2)

 p
2

2
,

p
2

2

!

(1, 1)
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Coordinate System Transform - Example

Write down a matrix T representing this transform:

53

T
2

64

p
2
2 0 1p
2
2 �2 1
0 0 1

3

75

F =


u v o
0 0 1

�
=

2

4
ux vx ox
uy vy oy
0 0 1

3

5

(0,�2)

 p
2

2
,

p
2

2

!

(1, 1)



Two Interpretations of A Transform

54

Interpretation 1: Transforms object points



Two Interpretations of A Transform

54

T(-1,-1)

Interpretation 1: Transforms object points



Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5)

Interpretation 1: Transforms object points



Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o)

Interpretation 1: Transforms object points



Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

Interpretation 1: Transforms object points



Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system



Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system



Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system



Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1) S(2,2)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system



Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1) S(2,2) R(-45o)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system



Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1) S(2,2) R(-45o) T(-1,-1)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system



3D Transforms

55
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Attendance
If you are seated in class, go to this form and sign in: 

• https://tinyurl.com/184class 

Word of the day: 

• rotations

56
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3D Transformations

Scale 

Translation 

Coordinate Change 
(Frame-to-world)

57

T(tx, ty, tz) =





1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1





S(sx, sy, sz) =





sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1





F(u,v,w,o) =


u v w o
0 0 0 1

�
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3D Transformations

Use homogeneous coordinates again: 

• 3D point   = (x, y, z, 1)T 

• 3D vector = (x, y, z, 0)T 

Use 4×4 matrices for affine transformations

58





x′

y′

z′

1



 =





a b c tx
d e f ty
g h i tz
0 0 0 1



 ·





x
y
z
1




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Rotations

Rotations still orthonormal 
  

Preserve lengths and distance to origin 
3D rotations DO NOT COMMUTE! 
Right-hand rule 
Unique matrices

59

Det(R) = 1 6=�1
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2D and 3D Rotations

2D rotations implicitly rotate about a third  
out-of-plane axis

60
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3D Transformations
Rotation around x-, y-, or z-axis

61

Rx(α) =





1 0 0 0
0 cos α − sin α 0
0 sinα cos α 0
0 0 0 1





Ry(α) =





cos α 0 sinα 0
0 1 0 0

− sin α 0 cos α 0
0 0 0 1





Rz(α) =





cos α − sinα 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1





y

z

x

Rotation  
around  
x-axis

• Also known as “direction-cosine” matrices
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3D Rotations
Compose any 3D rotation from Rx, Ry, Rz?

62

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)

A list of the Euler angles is NOT a vector!



S26 - O’BrienCS184/284A

3D Rotations
Compose any 3D rotation from Rx, Ry, Rz?

• So-called Euler angles

62

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)

A list of the Euler angles is NOT a vector!
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3D Rotations
Compose any 3D rotation from Rx, Ry, Rz?

• So-called Euler angles

• Often used in flight simulators: roll, pitch, yaw

62

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)

A list of the Euler angles is NOT a vector!
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3D Rotations
Compose any 3D rotation from Rx, Ry, Rz?

• So-called Euler angles

• Often used in flight simulators: roll, pitch, yaw

62

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)

A list of the Euler angles is NOT a vector!
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3D Rotations

Compose any 3D rotation from Rx, Ry, Rz? 

• So-called Euler angles 

• Often used in flight simulators: roll, pitch, yaw  

• Problems:  
Gimbal Lock! 
Not unique! 
Ugly manifold!

63

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)
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3D Rotations

Compose any 3D rotation from Rx, Ry, Rz? 

• So-called Euler angles 

• Often used in flight simulators: roll, pitch, yaw  

• Problems:  
Gimbal Lock! 
Not unique! 
Ugly manifold!

63

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)
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3D Rotation Around Arbitrary Axis

64
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3D Rotation Around Arbitrary Axis
y

z

x

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

p

• Easy to understand but less useful method:
1. rotate about x axis to put w into the x-y plane
2. rotate about z axis align w with the x axis
3. rotate    degrees about x axis
4. undo #2 and then #1
5. composite together 

How would you take a derivative w.r.t. w?

65

θ
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3D Rotation Around Arbitrary Axis

66

y

z

x
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3D Rotation Around Arbitrary Axis

Construct orthonormal frame  
transformation F with p, u, v, w,  
where p and w match the rotation axis
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3D Rotation Around Arbitrary Axis

Construct orthonormal frame  
transformation F with p, u, v, w,  
where p and w match the rotation axis

Apply the transform (F Rz(θ) F-1)
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3D Rotation Around Arbitrary Axis

Construct orthonormal frame  
transformation F with p, u, v, w,  
where p and w match the rotation axis

Apply the transform (F Rz(θ) F-1)

Interpretation:
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3D Rotation Around Arbitrary Axis

Construct orthonormal frame  
transformation F with p, u, v, w,  
where p and w match the rotation axis

Apply the transform (F Rz(θ) F-1)

Interpretation:

• Rotate to Z axis, rotate, then move back
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Rodrigues’ Rotation Formula

Rotation by angle α around axis n

67

R(n,↵) = cos(↵) I + (1� cos(↵))nnT + sin(↵)

0

@
0 �nz ny

nz 0 �nx

�ny nx 0

1

A

| {z }
N

n × v = Nv

n × v = [n]v
n × v = (n×)v

Turn cross-product into  
matrix multiplication!

Alternative notation
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Rodrigues’ Rotation Formula

Rotation by angle α around axis n

How to prove this magic formula?
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Rodrigues’ Rotation Formula

Rotation by angle α around axis n

How to prove this magic formula?

• Matrix N computes a cross-product: 
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Rodrigues’ Rotation Formula

Rotation by angle α around axis n

How to prove this magic formula?

• Matrix N computes a cross-product: 

• Assume orthonormal system e1, e2, n
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Rodrigues’ Rotation Formula

Rotation by angle α around axis n

How to prove this magic formula?

• Matrix N computes a cross-product: 

• Assume orthonormal system e1, e2, n

67

R(n,↵) = cos(↵) I + (1� cos(↵))nnT + sin(↵)

0

@
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A

| {z }
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Rn = n
Re1 = cos α e1 + sinα e2

Re2 = − sin α e1 + cos α e2

n × v = Nv

n × v = [n]v
n × v = (n×)v

Turn cross-product into  
matrix multiplication!

Alternative notation
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Exponential Maps

• Direct representation of arbitrary rotation 
• AKA: axis-angle, angular displacement 

vector 
• Rotate    degrees about some axis  
• Encode     by length of vector

68

θ

θ

θ= |r|
r̂

θ
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Exponential Maps

• Allows tumbling 
• No gimbal-lock! 
• Orientations are space within π-radius ball 
• Nearly unique representation  
• Singularities on shells at 2π 
• Nice for interpolation

69
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Exponential Maps
• Why exponential?

70

r

x

x0

• Instead of rotating once by θ, 
let’s do n small rotations of θ/n

• Now the angle is small, so the 
rotated x is approximately

• Do it n times and you get

x+ (✓/n)r̂⇥ x

(✓/n)r̂⇥ x

=

✓
I+

(r̂⇥)✓

n

◆
x

x0 =

✓
I+

(r̂⇥)✓

n

◆n

x
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Exponential Maps

• Remind you of anything?
is a definition of

• So the rotation we want is the exponential of           !

• In fact you can just plug it into the infinite series...

71

lim
n!1

⇣
1 +

a

n

⌘n
ea

x0 = lim
n!1

✓
I+

(r̂⇥)✓

n

◆n

x

(r̂⇥)✓

x′￼ = e( ̂r×)θ x}
Rotation matrix!
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ex = 1+
x
1!

+
x2

2!
+
x3

3!
+ · · ·

Exponential Maps
• Why exponential?
• Recall series expansion of ex
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• Why exponential?
• Recall series expansion of 
• Euler : what happens if you put in     for

eiθ = 1+
iθ
1!

+
�θ2

2!
+
�iθ3

3!
+
θ4

4!
+ · · ·

Exponential Maps

ex
iθ x

=
✓
1+

�θ2

2!
+
θ4

4!
+ · · ·

◆
+ i

✓
θ
1!

+
�θ3

3!
+ · · ·

◆

= cos(θ)+ isin(θ)
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• Do same trick with matrices!

Exponential Maps

e(r̂⇥)θ = I+
(r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+

(r̂⇥)3θ3

3!
+

(r̂⇥)4θ4

4!
+ · · ·

e(r̂⇥)θ = I+
(r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+
�(r̂⇥)θ3

3!
+
�(r̂⇥)2θ4

4!
+ · · ·

(r̂⇥)3 =�(r̂⇥)But notice that:
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Exponential Maps

75

e(r̂⇥)θ = I+
(r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+
�(r̂⇥)θ3

3!
+
�(r̂⇥)2θ4

4!
+ · · ·

e(r̂⇥)θ = (r̂⇥)
✓
θ
1!
� θ3

3!
+ · · ·

◆
+ I+(r̂⇥)2

✓
+
θ2

2!
� θ4

4!
+ · · ·

◆

e(r̂⇥)θ = (r̂⇥)sin(θ)+ I+(r̂⇥)2(1� cos(θ))
Compare to Rodrigue’s Formula
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Rotation Matrices
• Eigen system 

• One real eigenvalue 
• Real axis is axis of rotation
• Imaginary values are 2D rotation as complex number

• Logarithmic formula 

θ= cos�1
✓
Tr(R)�1

2

◆
(r̂⇥) = ln(R) =

θ
2sinθ

(R�RT)

Similar formulae as for exponential...
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Quaternions

• More popular than exponential maps 
• Natural extension of 
• Due to Hamilton (1843)

• Interesting bit of drama…. 

eiθ = cos(θ)+ isin(θ)
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i2 = j2 = k2 =�1

Quaternions
• Three-Times-As-Complex Numbers

q = (z1,z2,z3,s) = (z,s)
q = iz1+ jz2+ kz3+ s

i j = k ji=�k
jk = i k j =�i
ki= j ik =� j
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||q||2 = z · z+ s2 = q · q
⇤

Quaternions
• Multiplication natural consequence of defn. 

• Conjugate

• Magnitude

q · p = (zqsp+ zpsq+ zp⇥ zq , spsq� zp · zq)

q
⇤ = (�z,s)
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Quaternions
• Vectors as quaternions

• Rotations as quaternions

• Rotating a vector

• Composing rotations

v = (v,0)

r = (r̂sin
θ
2
,cos

θ
2
)

x
0 = r · x · r

⇤

r = r1 · r2 Compare to Exp. Map
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Quaternions

• No tumbling
• No gimbal-lock
• Orientations are “double unique”
• Surface of a 3-sphere in 4D
• Nice for interpolation

||r|| = 1
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Interpolation

82

Euler angles Exponential maps or quaternions 
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Interpolation

82

Euler angles Exponential maps or quaternions 



Hierarchical Transforms

83
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Skeleton - Linear Representation 

head 
torso 
right upper arm 
right lower arm 
right hand  
left upper arm 
left lower arm 
left hand 
right upper leg 
right lower leg 
right foot  
left upper leg 
left lower leg 
left foot 
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Linear Representation

Each shape associated with its own transform 
A single edit can require updating many transforms 

• E.g. raising arm requires updating transforms for 
all arm parts 

85
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Skeleton - Hierarchical Representation

torso 
head 
right arm 

upper arm 
lower arm 
hand 

left arm 
upper arm 
lower arm 
hand 

right leg 
upper leg 
lower leg 
foot 

left leg 
upper leg 
lower leg 
foot
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Skeleton - Hierarchical Representation

torso 
head 
right arm 

upper arm 
lower arm 
hand 

left arm 
upper arm 
lower arm 
hand 

right leg 
upper leg 
lower leg 
foot 

left leg 
upper leg 
lower leg 
foot

87

Torso

Head right arm left arm …

r. up arm

r. low arm

r. hand

…
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Hierarchical Representation

88
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Hierarchical Representation

Grouped representation (tree)
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Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes
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Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes

• Each group is associated with a transform relative to 
parent group
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Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes

• Each group is associated with a transform relative to 
parent group

• Transform on leaf-node shape is concatenation of all 
transforms on path from root node to leaf 
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Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes

• Each group is associated with a transform relative to 
parent group

• Transform on leaf-node shape is concatenation of all 
transforms on path from root node to leaf 

• Changing a group’s transform affects all parts
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Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes

• Each group is associated with a transform relative to 
parent group

• Transform on leaf-node shape is concatenation of all 
transforms on path from root node to leaf 

• Changing a group’s transform affects all parts

• Allows high level editing by changing only one node

88
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Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes

• Each group is associated with a transform relative to 
parent group

• Transform on leaf-node shape is concatenation of all 
transforms on path from root node to leaf 

• Changing a group’s transform affects all parts

• Allows high level editing by changing only one node

• E.g. raising left arm requires changing only one 
transform for that group

88
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Skeleton - Hierarchical Representation

translate(0, 10); 
drawTorso(); 
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Skeleton - Hierarchical Representation

translate(0, 10); 
drawTorso(); 
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Skeleton - Hierarchical Representation

translate(0, 10); 
drawTorso(); 

89

pushmatrix();  // push a copy of transform onto stack 
translate(0, 5);  // right-multiply onto current transform 
rotate(headRotation);  // right-multiply onto current transform 
drawHead(); 

popmatrix();  // pop current transform off stack
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Skeleton - Hierarchical Representation

translate(0, 10); 
drawTorso(); 

89

pushmatrix(); 
translate(-2, 3); 
rotate(rightShoulderRotation); 
drawUpperArm(); 

pushmatrix();  // push a copy of transform onto stack 
translate(0, 5);  // right-multiply onto current transform 
rotate(headRotation);  // right-multiply onto current transform 
drawHead(); 

popmatrix();  // pop current transform off stack
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Skeleton - Hierarchical Representation

translate(0, 10); 
drawTorso(); 

89

pushmatrix(); 
translate(-2, 3); 
rotate(rightShoulderRotation); 
drawUpperArm(); 

pushmatrix();  // push a copy of transform onto stack 
translate(0, 5);  // right-multiply onto current transform 
rotate(headRotation);  // right-multiply onto current transform 
drawHead(); 

popmatrix();  // pop current transform off stack

pushmatrix(); 
translate(0, -3); 
rotate(elbowRotation); 
drawLowerArm(); 
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Skeleton - Hierarchical Representation

translate(0, 10); 
drawTorso(); 

89

pushmatrix(); 
translate(-2, 3); 
rotate(rightShoulderRotation); 
drawUpperArm(); 

pushmatrix();  // push a copy of transform onto stack 
translate(0, 5);  // right-multiply onto current transform 
rotate(headRotation);  // right-multiply onto current transform 
drawHead(); 

popmatrix();  // pop current transform off stack

pushmatrix(); 
translate(0, -3); 
rotate(elbowRotation); 
drawLowerArm(); 
pushmatrix(); 

translate(0, -3); 
rotate(wristRotation); 
drawHand(); 

popmatrix(); 
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Skeleton - Hierarchical Representation

translate(0, 10); 
drawTorso(); 

89

pushmatrix(); 
translate(-2, 3); 
rotate(rightShoulderRotation); 
drawUpperArm(); 

pushmatrix();  // push a copy of transform onto stack 
translate(0, 5);  // right-multiply onto current transform 
rotate(headRotation);  // right-multiply onto current transform 
drawHead(); 

popmatrix();  // pop current transform off stack

pushmatrix(); 
translate(0, -3); 
rotate(elbowRotation); 
drawLowerArm(); 
pushmatrix(); 

translate(0, -3); 
rotate(wristRotation); 
drawHand(); 

popmatrix(); 
popmatrix(); 

popmatrix(); 
….
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Skeleton - Hierarchical Representation

translate(0, 10); 
drawTorso(); 

89

right  
hand

pushmatrix(); 
translate(-2, 3); 
rotate(rightShoulderRotation); 
drawUpperArm(); 

pushmatrix();  // push a copy of transform onto stack 
translate(0, 5);  // right-multiply onto current transform 
rotate(headRotation);  // right-multiply onto current transform 
drawHead(); 

popmatrix();  // pop current transform off stack

pushmatrix(); 
translate(0, -3); 
rotate(elbowRotation); 
drawLowerArm(); 
pushmatrix(); 

translate(0, -3); 
rotate(wristRotation); 
drawHand(); 

popmatrix(); 
popmatrix(); 

popmatrix(); 
….
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Skeleton - Hierarchical Representation

translate(0, 10); 
drawTorso(); 

89

right  
lower 
arm 

group
right  
hand

pushmatrix(); 
translate(-2, 3); 
rotate(rightShoulderRotation); 
drawUpperArm(); 

pushmatrix();  // push a copy of transform onto stack 
translate(0, 5);  // right-multiply onto current transform 
rotate(headRotation);  // right-multiply onto current transform 
drawHead(); 

popmatrix();  // pop current transform off stack

pushmatrix(); 
translate(0, -3); 
rotate(elbowRotation); 
drawLowerArm(); 
pushmatrix(); 

translate(0, -3); 
rotate(wristRotation); 
drawHand(); 

popmatrix(); 
popmatrix(); 

popmatrix(); 
….
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Skeleton - Hierarchical Representation

translate(0, 10); 
drawTorso(); 

89

right  
lower 
arm 

group

right  
arm 

group
right  
hand

pushmatrix(); 
translate(-2, 3); 
rotate(rightShoulderRotation); 
drawUpperArm(); 

pushmatrix();  // push a copy of transform onto stack 
translate(0, 5);  // right-multiply onto current transform 
rotate(headRotation);  // right-multiply onto current transform 
drawHead(); 

popmatrix();  // pop current transform off stack

pushmatrix(); 
translate(0, -3); 
rotate(elbowRotation); 
drawLowerArm(); 
pushmatrix(); 

translate(0, -3); 
rotate(wristRotation); 
drawHand(); 

popmatrix(); 
popmatrix(); 

popmatrix(); 
….
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Skeleton - Hierarchical Representation

translate(0, 10); 
drawTorso(); 

90

right  
lower 
arm 

group

right  
arm 

group
right  
hand

pushmatrix(); 
translate(-2, 3); 
rotate(rightShoulderRotation); 
drawUpperArm(); 

pushmatrix();  // push a copy of transform onto stack 
translate(0, 5);  // right-multiply onto current transform 
rotate(headRotation);  // right-multiply onto current transform 
drawHead(); 

popmatrix();  // pop current transform off stack

pushmatrix(); 
translate(0, -3); 
rotate(elbowRotation); 
drawLowerArm(); 
pushmatrix(); 

translate(0, -3); 
rotate(wristRotation); 
drawHand(); 

popmatrix(); 
popmatrix(); 

popmatrix(); 
….





Viewing and Perspective
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Viewing and Perspective Transforms

93

Rasterization 
2D screen coordinates

?

Scene modeling 
3D world coordinates



Camera Space

94
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“Standard” Camera Space

95

y
z

x

We will use this convention for 
“standard” camera coordinates: 

• camera located at the origin 

• looking down negative z-axis 

• vertical vector is y-axis 

• (x-axis) orthogonal to y & z
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“Standard” Camera Coordinates

96

y
z

x

Resulting image 
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“Standard” Camera Coordinates

96

y
z

x

Resulting image 

x

y

(z-axis pointing away from scene)
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Consider A Camera Pointing in The World
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Consider A Camera Pointing in The World

98

u = up vector

v = view direction
e = eye point 
(position of camera)
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Camera “Look-At” Transformation

99

u = up vector

v = view direction

Input: e, u & v given in world space coordinates  
Output: transform matrix from world space  
to standard camera space

e = eye point 
(position of camera)
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Camera “Look-At” Transformation

“Look-At” transformation

100
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Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v
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• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal
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Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal

• Find right vector r = v × u
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Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal

• Find right vector r = v × u

• Transform camera (e,r,u,v) to standard camera:
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Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal

• Find right vector r = v × u

• Transform camera (e,r,u,v) to standard camera:

• located at the origin
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Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal

• Find right vector r = v × u

• Transform camera (e,r,u,v) to standard camera:

• located at the origin

• looking down negative z axis
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Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal

• Find right vector r = v × u

• Transform camera (e,r,u,v) to standard camera:

• located at the origin

• looking down negative z axis

• up vector is y axis

100
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Camera “Look-At” Transformation

101
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Camera “Look-At” Transformation

Inverse: Matrix from standard camera to world space

101





rx ux −vx ex

ry uy −vy ey

rz uz −vz ez

0 0 0 1




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Camera “Look-At” Transformation

Inverse: Matrix from standard camera to world space
(Why? This is a coordinate frame transform to (e,r,u,-v))

101





rx ux −vx ex

ry uy −vy ey

rz uz −vz ez

0 0 0 1




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Camera “Look-At” Transformation

Inverse: Matrix from standard camera to world space
(Why? This is a coordinate frame transform to (e,r,u,-v))

“Look-at” (world->camera) transform is the inverse of 
above matrix:

101





rx ux −vx ex

ry uy −vy ey

rz uz −vz ez

0 0 0 1









rx ux −vx ex

ry uy −vy ey

rz uz −vz ez

0 0 0 1





−1

=





rx ry rz 0
ux uy uz 0
−vx −vy −vz 0
0 0 0 1



 ·





1 0 0 −ex

0 1 0 −ey

0 0 1 −ez

0 0 0 1




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Transform Camera Space to Image Plane?

How to transform from 3D camera space to 2D image plane?  

• One option: orthographic projection (just delete z) 

• Useful, e.g. for engineering drawings 

• But is this the whole story?

102

z



Perspective

103 Credit: jefflynchphoto.com

http://jefflynchphoto.com
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Perspective in Art

104
Berlinghieri 1235
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Perspective in Art

105
Giotto 1290



S26 - O’BrienCS184/284A

Perspective in Art

105
Giotto 1290
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Perspective in Art

106
Giotto 1290

Something wrong here!
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Perspective Composition = Camera Position + Angle of View

In this 
sequence, angle 
of view 
decreases as 
distance from 
subject 
increases, to 
size of human 
subject in 
image. 

Notice the 
dramatic change 
in background 
perspective. 

107

From Canon EF Lens Work III
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Perspective Composition 

108

16 mm (110°)

Up close and zoomed wide 
with short focal length
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Perspective Composition 

109

200 mm (12°)

Walk back and zoom in 
with long focal length



Pinhole Camera Model

110
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Pinhole Camera

111
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Projective Transform

112

C
-z

d

(x, y, z)Tx, y

Inverted image (as in real pinhole camera)

Scene point

Image  
point
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Pinhole Camera Projective Transform

113

C
-z

(x, y, z)Tx, y

Upright image

Scene point
Image  
point

d
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Projective Transforms

Standard perspective projection 

• Center of projection: (0, 0, 0)T 

• Image plane at z = d

114

C -z

z = d

(x,y,z)T
x, y
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Projective Transforms

Standard perspective projection 

• Center of projection: (0, 0, 0)T 

• Image plane at z = d

114

C -z

z = d

(x,y,z)T
x, y 0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA ⇠=

 
x · d/z
y · d/z

!
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Projective Transforms

Standard perspective projection 

• Center of projection: (0, 0, 0)T 

• Image plane at z = d

114

C -z

z = d

(x,y,z)T
x, y

} ?

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA ⇠=

 
x · d/z
y · d/z

!
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Projective Transforms

Standard perspective projection 

• Center of projection: (0, 0, 0)T 

• Image plane at z = d

114

C -z

z = d

(x,y,z)T
x, y

} x} ?

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA ⇠=

 
x · d/z
y · d/z

!
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Projective Transforms

Standard perspective projection 

• Center of projection: (0, 0, 0)T 

• Image plane at z = d

114

C -z

z = d

(x,y,z)T
x, y

} x} ?

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA ⇠=

 
x · d/z
y · d/z

!

x

z
=

?

d
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Projective Transforms

Standard perspective projection 

• Center of projection: (0, 0, 0)T 

• Image plane at z = d

115

C -z

z = d

(x,y,z)T
x, y

} x} ?

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA ⇠=

 
x · d/z
y · d/z

!

x

z
=

?

d
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Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d 

116

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA
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Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d 

Perspective foreshortening

116

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA
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Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d 

Perspective foreshortening

• Need division by z

116

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA
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Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d 

Perspective foreshortening

• Need division by z

• Matrix representation?

116

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA
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Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d 

Perspective foreshortening

• Need division by z

• Matrix representation?
➡Homogeneous coordinates!

116

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA
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Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA
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Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA
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Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA M =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

1

CCA

Note non-zero term in final row.   
First time we have seen this. 
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Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA

q = M

0

BB@

x
y
z
1

1

CCA =

0

BB@

x
y
z

z/d

1

CCA

M =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

1

CCA

Note non-zero term in final row.   
First time we have seen this. 
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Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA

0

BB@

xd/z
yd/z
d
1

1

CCAq = M

0

BB@

x
y
z
1

1

CCA =

0

BB@

x
y
z

z/d

1

CCA

M =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

1

CCA

Note non-zero term in final row.   
First time we have seen this. 
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Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA

0

BB@

xd/z
yd/z
d
1

1

CCAq = M

0

BB@

x
y
z
1

1

CCA =

0

BB@

x
y
z

z/d

1

CCA

M =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

1

CCA

Note non-zero term in final row.   
First time we have seen this. 
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Note zeros in 4th column. 
We’ll change this later for 
hidden surface determination.

Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA

0

BB@

xd/z
yd/z
d
1

1

CCAq = M

0

BB@

x
y
z
1

1

CCA =

0

BB@

x
y
z

z/d

1

CCA

M =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

1

CCA

Note non-zero term in final row.   
First time we have seen this. 
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Pinhole Camera Model

This mathematical model produces all linear 
perspective effects! 

• Converging lines + vanishing points 

• Closer objects appear larger in images 

• …

118



Specifying Real Camera Perspectives

119
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Specifying Perspective Projection

120

From Angel and Shreiner, Interactive Computer Graphics
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Specifying Perspective Projection

120

From Angel and Shreiner, Interactive Computer Graphics
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Specifying Perspective Viewing Volume

121

From Angel and Shreiner, Interactive Computer Graphics



S26 - O’BrienCS184/284A

Specifying Perspective Viewing Volume

121

From Angel and Shreiner, Interactive Computer Graphics
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Specifying Perspective Viewing Volume

Parameterized by 

• fovy 		 	 	 	 :   vertical angular field of view  
• aspect ratio	  	 :   width / height of field of view 
• near 	 	 	 	 :   depth of near clipping plane  
• far 	 	 	 	 	 :   depth of far clipping plane 

Derived quantities 

• top 		 	 	 	 =   near * tan (fovy) 
• bottom 	 	 	 =   – top  
• right 	 	 	 	 =   top * aspect  
• left 	 	 	 	 	 =   – right

122



Perspective Projection Implementation

123
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124

Perspective Projection Transform

Camera Coordinates Normalized Device Coords 
“NDC”

(left, bottom, –near) 

(right, top, –near) 

(1, 1, 1)

(–1, –1, –1) z = –near

z = –far

Later we will “flatten and scale ” NDC to get framebuffer coordinates
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Perspective Projection Transform

Notes: 

• Need not be 
symmetric about z-
axis, but for 
simplicity here we 
assume so  

• This transform will 
preserve depth 
information 
(ordering) in NDC

125



S26 - O’BrienCS184/284A

Perspective Transform Matrix
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Perspective Transform Matrix

126
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Note entry in 4th column
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Perspective Transform Matrix Example

127

P =

2

664

near
right 0 0 0
0 near

top 0 0

0 0 � far+near
far�near

�2far⇤near
far�near

0 0 �1 0

3

775

2

664

right
top

�near
1

3

775

=

2

664

near
near

near ⇤ far+near
far�near � 2far⇤near

far�near

near

3

775

=

2

664

1
1

�far+near
far�near

1

3

775

=

2

664

1
1
�1
1

3

775



S26 - O’BrienCS184/284A

Perspective Transform Matrix Example
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Perspective Projection
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Z-Values do not swap order!



S26 - O’BrienCS184/284A

Perspective Projection Alternatives
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View
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Distance to image plane
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Y
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Perspective Tricks
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Attendance
If you are seated in class, go to this form and sign in: 

• https://tinyurl.com/184class 

Word of the day: 

• ????

131



Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Perspective Projection Alternatives
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• Step 1: Translate center to origin

Y

-Z

Perspective Projection Alternatives
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• Step 1: Translate center to origin
• Step 2: Rotate view to -Z, up to +Y

Y

-Z

Perspective Projection Alternatives
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• Step 1: Translate center to origin
• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis

Y

-Z

Perspective Projection Alternatives
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• Step 1: Translate center to origin
• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective

-Z

Perspective Projection Alternatives
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• Step 1: Translate center to origin
• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective
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Perspective Projection Alternatives
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• Step 4: Perspective
• Points at z=-i stay at z=-i
• Points at z=-f stay at z=-f
• Points at z=0 goto z=±∞
• Points at z=-∞ goto z=-(i+f)

• x and y values divided by -z/i

• Straight lines stay straight
• Depth ordering preserved in [-i,-f ]

• Movement along lines distorted

-Z

Perspective Projection Alternatives
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• Step 4: Perspective
• Points at z=-i stay at z=-i
• Points at z=-f stay at z=-f
• Points at z=0 goto z=±∞
• Points at z=-∞ goto z=-(i+f)

• x and y values divided by -z/i

• Straight lines stay straight
• Depth ordering preserved in [-i,-f ]

• Movement along lines distorted
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Perspective Projection Alternatives
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• Step 1: Translate center to orange
• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective
• Step 5: center view volume
• Step 6: scale to canonical size

-Z

Perspective Projection Alternatives
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• Step 1: Translate center to orange
• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective
• Step 5: center view volume
• Step 6: scale to canonical size

-ZM=Mo ·Mp ·Mv

Mo

Mp

Mv}

}

}

Perspective Projection Alternatives
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• There are other ways to set up the projection matrix
• View plane at z=0 zero
• Looking down another axis
• etc...

• Functionally equivalent

Perspective Projection Alternatives
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r(t) = p+ t d

Vanishing Points
• Consider a ray:

dp
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Vanishing Points
• Ignore Z part of matrix 
• X and Y will give location in image plane

• Assume image plane at z=-i
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Vanishing Points
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Vanishing Points
• Assume 

dz =�1

!
!
!
!

"

#

$
$
$
$

%

&

+−

+
+−

+

=!
"

#
$
%

&

−

−
=!

"

#
$
%

&

tp
tdp
tp

tdp

zy
zx

II
II

z

yy

z

xx

wy

wx

/
/

/
/

!
"

#
$
%

&
=

±∞→ y

x

d
d

t
Lim



Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 145

Vanishing Points

• All lines in direction d converge to same point in the image 
plane -- the vanishing point

• Every point in plane is a v.p. for some set of lines
• Lines parallel to image plane (         ) vanish at infinity
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dz = 0

What’s a horizon?
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Perspective Projection

ẑ

“Eye” plane

Top

Near Far

So
me h

ori
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tal 
line

s

View vector
Camera

3D Version
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Perspective Projection

ẑ

“Eye” plane

Top

Near Far

So
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View vector
Camera

Projected View
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Perspective Projection

ẑ

Visualizing division of x and y but not z
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Perspective Projection

ẑ

Motion in x,y

Projected View
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Perspective Projection

ẑ

Linear interpolation requires straight 
lines should stay straight!
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Perspective Projection

ẑ

Linear interpolation requires straight 
lines should stay straight!

Crossover problem
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Perspective Projection

ẑ

Projection matrix changes Z also…
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Perspective Projection

ẑ

Total motion

Projected View
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Perspective Projection
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Z-Values do not swap order!
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Perspective Projection

ẑ

Note that points on near plane fixed
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Perspective Projection

ẑ

Recall that points on far plane will
stay there...
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Perspective Projection

ẑ

Lines extend outside view volume
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Perspective Projection

ẑ

Motion in z
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Perspective Projection

ẑ

Motion in z

�∞
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Perspective Tricks
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Right Looks Wrong (Sometimes)

160

Correction of Geometric Perceptual Distortions in Pictures.

Denis Zorin, Alan H. Barr

California Institute of Technology, Pasadena, CA 91125

Abstract
We suggest an approachfor correcting several types of perceived

geometric distortions in computer-generated and photographic im-
ages. The approach is based on a mathematical formalization of
desirable properties of pictures.

From a small set of simple assumptions we obtain perceptually
preferable viewing transformations and show that these transforma-
tions can be decomposed into a perspective or parallel projection
followed by a planar transformation. The decomposition is eas-
ily implemented and provides a convenient framework for further
analysis of the image mapping.

We prove that two perceptually important properties are incom-
patible and cannot be satisfied simultaneously. It is impossible to
construct a viewing transformation such that the images of all lines
are straight and the images of all spheres are exact circles. Percep-
tually preferable tradeoffs between these two types of distortions
can depend on the content of the picture. We construct parametric
families of transformations with parameters representing the rela-
tive importance of the perceptual characteristics. By adjusting the
settings of the parameters we can minimize the overall distortion of
the picture.

It turns out that a simple family of transformations produces
results that are sufficiently close to optimal. We implement the pro-
posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
and computer-generated animations.
Keywords: Perception, distortion, viewing transformations,

perspective.

The process of realistic image synthesis can be subdivided into
two stages: modeling the physics of light propagation in three-
dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
mation.”) While the first stage is relatively independent of our
understanding of visual perception, the viewing transformations are
based on the fact that we are able to perceive two-dimensional
patterns - pictures - as reasonably accurate representations of three-
dimensional objects. We can evaluate the quality of modeling the
propagationof light objectively, by comparing calculatedphotomet-
ric values with experimental measurements. For viewing transfor-
mations the quality is much more subjective.

a.

b.

Figure 1. a. Wide-angle pinhole photograph taken on the roof of the Church

of St. Ignatzio in Rome, classical example of perspective distortions from

[Pir70]; reprinted with the permission of Cambridge University Press. b.

Corrected version of the picture with transformation applied.

The perspective projection 1 is the viewing transformation that
has been primarily used for producing realistic images, in art, pho-
tography and in computer graphics.

One motivation for using perspective projection in computer

1By perspective projection or linear perspective we mean either central projection
or parallel projection into a plane.









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Abstract
We suggest an approachfor correcting several types of perceived

geometric distortions in computer-generated and photographic im-
ages. The approach is based on a mathematical formalization of
desirable properties of pictures.

From a small set of simple assumptions we obtain perceptually
preferable viewing transformations and show that these transforma-
tions can be decomposed into a perspective or parallel projection
followed by a planar transformation. The decomposition is eas-
ily implemented and provides a convenient framework for further
analysis of the image mapping.

We prove that two perceptually important properties are incom-
patible and cannot be satisfied simultaneously. It is impossible to
construct a viewing transformation such that the images of all lines
are straight and the images of all spheres are exact circles. Percep-
tually preferable tradeoffs between these two types of distortions
can depend on the content of the picture. We construct parametric
families of transformations with parameters representing the rela-
tive importance of the perceptual characteristics. By adjusting the
settings of the parameters we can minimize the overall distortion of
the picture.

It turns out that a simple family of transformations produces
results that are sufficiently close to optimal. We implement the pro-
posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
and computer-generated animations.
Keywords: Perception, distortion, viewing transformations,

perspective.

The process of realistic image synthesis can be subdivided into
two stages: modeling the physics of light propagation in three-
dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
mation.”) While the first stage is relatively independent of our
understanding of visual perception, the viewing transformations are
based on the fact that we are able to perceive two-dimensional
patterns - pictures - as reasonably accurate representations of three-
dimensional objects. We can evaluate the quality of modeling the
propagationof light objectively, by comparing calculatedphotomet-
ric values with experimental measurements. For viewing transfor-
mations the quality is much more subjective.

a.

b.

Figure 1. a. Wide-angle pinhole photograph taken on the roof of the Church

of St. Ignatzio in Rome, classical example of perspective distortions from

[Pir70]; reprinted with the permission of Cambridge University Press. b.

Corrected version of the picture with transformation applied.

The perspective projection 1 is the viewing transformation that
has been primarily used for producing realistic images, in art, pho-
tography and in computer graphics.

One motivation for using perspective projection in computer

1By perspective projection or linear perspective we mean either central projection
or parallel projection into a plane.
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





 257

From Correction of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995
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Right Looks Wrong (Sometimes)
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From WIRED Magazine
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Strangeness
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The Ambassadors
by Hans Holbein the Younger
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Strangeness
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The Ambassadors
by Hans Holbein the Younger
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Ray Picking
• Pick object by picking point on screen

• Compute ray from pixel coordinates.



Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 165

Ray Picking
• Transform from World to Screen is:

• Inverse:

• What Z value?
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r(t) = aw+ t(bw�aw) bs = [sx,sy,� f ]

as = [sx,sy,�i]

Ray Picking
• Recall that:

• Points at z=-i stay at z=-i
• Points at z=-f stay at z=-f

r(t) = p+ t d

Depends on screen details, YMMV
General idea should translate...



Transforms Recap
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Transforms Recap

Coordinate Systems 
• Object coordinates 

• Apply modeling transforms… 
• World (scene) coordinates 

• Apply viewing transform… 
• Camera (eye) coordinates 

• Apply perspective transform + homog. divide… 
• Normalized device coordinates 

• Apply 2D screen transform… 
• Screen coordinates 

168
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Transforms Recap

Object coords World coords

169

Modeling 
transforms 
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Transforms Recap

World coords
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Transforms Recap

World coords Camera coords

170

Viewing 
transform 
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Camera coords

Transforms Recap
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Camera coords NDC

(1, 1, 1)

(–1, –1, –1) 

Perspective 
projection 

and  
homogeneous 

divide 

Transforms Recap
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Transforms Recap

NDC Screen coords

172

(0, 0)

(w, h)

Screen 
transform 

(1, 1, 1)

(–1, –1, –1) 
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Transforms Recap
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Screen coords(0, 0)

(w, h)

Rasterization
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Things to Remember

Transform uses 

• Basic transforms: rotate, scale, translate, … 

• Modeling, viewing, projection, perspective 

• Change in coordinate system 

• Hierarchical scene descriptions by push/pop 
Implementing transforms 

• Linear transforms = matrices 

• Transform composition = matrix multiplication 

• Homogeneous coordinates for translation, projection
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