
Computer Graphics and Imaging
UC Berkeley CS184/284A

Lecture 4:

Transforms

1

Basic Transforms

2

S26 - O’BrienCS184/284A

Rotate

3

R45

S26 - O’BrienCS184/284A

Translate

4

T1,1

S26 - O’BrienCS184/284A

Scale

5

S0.5

S26 - O’BrienCS184/284A

Scale (Non-Uniform)

6

S0.5,1.0

S26 - O’BrienCS184/284A

What Are Transforms?

Just functions acting on points

• (x’,y’,z’) = F(x,y,z)

• P’ = F(P)

7

F(P)

P

Why Study Transforms?

8

S26 - O’BrienCS184/284A

Modeling A Robot Army

9

iRobot movie

Transforms can describe position of object instances

S26 - O’BrienCS184/284A

Posing a Character’s Skeleton

10

iRobot movie

Transforms can describe relative position of connected body parts

Project Polygons in 3D to 2D Screen

target="_blank"

Moments That Changed The Movies: Jurassic Park
https://www.youtube.com/watch?v=KWsbcBvYqN8

https://www.youtube.com/watch?v=KWsbcBvYqN8

Project Polygons in 3D to 2D Screen

target="_blank"

Moments That Changed The Movies: Jurassic Park
https://www.youtube.com/watch?v=KWsbcBvYqN8

https://www.youtube.com/watch?v=KWsbcBvYqN8

S26 - O’BrienCS184/284A

Coordinate Systems are Arbitrary

So feel free to pick one you like!

12

Ŷ

X̂

O

Ŷ

X̂O

S26 - O’BrienCS184/284A

Coordinate Systems are Arbitrary

So feel free to pick one you like!

12

Ŷ

X̂
O

Ŷ

X̂O

S26 - O’BrienCS184/284A

Why Study Transforms?

Modeling

• Define shapes in convenient coordinates

• Enable multiple copies of the same object

• Efficiently represent hierarchical scenes
Viewing

• World coordinates to camera coordinates

• Parallel / perspective projections from 3D to 2D
Other

• Switching between coordinate systems

13

S26 - O’BrienCS184/284A

Lecture Outline

How to think about and use transformations

• Types: rotate, translate, scale, …

• Coordinate frames

• Composing multiple transformations

• Hierarchical transforms

• Perspective projection
How to implement?

• Represent transforms as matrices

• Homogeneous coordinates

14

Linear Transforms = Matrices

15

S26 - O’BrienCS184/284A

Scale Transform

16

S0.5

S26 - O’BrienCS184/284A

Scale Transform

16

S0.5

x′￼ = 0.5x
y′￼ = 0.5y

S26 - O’BrienCS184/284A

Scale Transform (non-uniform a.k.a anisotropic)

17

S0.5,1.0

S26 - O’BrienCS184/284A

Scale Transform (non-uniform a.k.a anisotropic)

17

S0.5,1.0

x′￼ = 0.5x
y′￼ = y

S26 - O’BrienCS184/284A

Reflection Transform

18

S26 - O’BrienCS184/284A

Reflection Transform

18

x′￼ = − 1.0x
y′￼ = y

S26 - O’BrienCS184/284A

Translation Transform

19

S26 - O’BrienCS184/284A

Translation Transform

19

x′￼ = x + 5
y′￼ = y

S26 - O’BrienCS184/284A

Shear Transform

20

S26 - O’BrienCS184/284A

Shear Transform

20

x′￼ = x + 0.5y
y′￼ = y

S26 - O’BrienCS184/284A

Linear Transforms = Matrices

21

x0 = a x+ b y

y0 = c x+ d y


x0

y0

�
=


a b
c d

� 
x
y

�

x0 = M x

S26 - O’BrienCS184/284A

Scale Matrix

22

S0.5

[x′￼

y′￼] = [0.5 0
0 0.5] [x

y]

S26 - O’BrienCS184/284A

Scale Matrix

23

S0.5

[x′￼

y′￼] = [0.5 0
0 0.5] ⋅ [x

y]

S26 - O’BrienCS184/284A

Linear Transforms = Matrices

24

x0 = a x+ b y

y0 = c x+ d y


x0

y0

�
=


a b
c d

� 
x
y

�

x0 = M x

b = M1a
c = M2b
d = M3c

d = M3M2M1a

d = (M3M2M1)a

d = MaNote: no translation (addition) yet. Will come later…

S26 - O’BrienCS184/284A
25

Can interpret the columns of the matrix as the
x and y axes of the coordinate frame

2D Coordinate Systems

x0 = a x+ b y

y0 = c x+ d y


x0

y0

�
=


a b
c d

� 
x
y

�

x0 = M x

“The x-axis of the plane’s
coordinate system

expressed in the person’s
coordinate system."

[a
c]

Ŷ

X̂

X̂′￼O

Ŷ′￼

S26 - O’BrienCS184/284A
25

Can interpret the columns of the matrix as the
x and y axes of the coordinate frame

2D Coordinate Systems


a
c

�
=


a b
c d

� 
1
0

�

x0 = a x+ b y

y0 = c x+ d y


x0

y0

�
=


a b
c d

� 
x
y

�

x0 = M x

“The x-axis of the plane’s
coordinate system

expressed in the person’s
coordinate system."

[a
c]

Ŷ

X̂

X̂′￼O

Ŷ′￼

S26 - O’BrienCS184/284A
25

Can interpret the columns of the matrix as the
x and y axes of the coordinate frame

2D Coordinate Systems


a
c

�
=


a b
c d

� 
1
0

�


b
d

�
=


a b
c d

� 
0
1

�

x0 = a x+ b y

y0 = c x+ d y


x0

y0

�
=


a b
c d

� 
x
y

�

x0 = M x

“The x-axis of the plane’s
coordinate system

expressed in the person’s
coordinate system."

[a
c]

Ŷ

X̂

X̂′￼O

Ŷ′￼

S26 - O’BrienCS184/284A
26

Consider the inverse matrix…

2D Coordinate Systems


a
c

�
=


a b
c d

� 
1
0

�


b
d

�
=


a b
c d

� 
0
1

�

x0 = a x+ b y

y0 = c x+ d y


x0

y0

�
=


a b
c d

� 
x
y

�

x0 = M x

Ŷ

X̂

X̂′￼O

Ŷ′￼

S26 - O’BrienCS184/284A

Rotation Matrix

27

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

S26 - O’BrienCS184/284A

Rotation Matrix

27

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

S26 - O’BrienCS184/284A

Rotation Matrix

27

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

S26 - O’BrienCS184/284A

Rotation Matrix

27

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�

Translation:
Tb(x) = x+ b

Tb(x0)� Tb(x1)� Tb(x2)� Tb(x3)� Tb(x)� Tb(y)� Tb(x+ y)� Tb(x) + Tb(y)

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:
|f(x)� f(y)| = |x� y|

2

S26 - O’BrienCS184/284A

Rotation Matrix

27

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�

Translation:
Tb(x) = x+ b

Tb(x0)� Tb(x1)� Tb(x2)� Tb(x3)� Tb(x)� Tb(y)� Tb(x+ y)� Tb(x) + Tb(y)

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:
|f(x)� f(y)| = |x� y|

2

S26 - O’BrienCS184/284A

Rotation Matrix

27

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�

Translation:
Tb(x) = x+ b

Tb(x0)� Tb(x1)� Tb(x2)� Tb(x3)� Tb(x)� Tb(y)� Tb(x+ y)� Tb(x) + Tb(y)

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:
|f(x)� f(y)| = |x� y|

2

S26 - O’BrienCS184/284A

Rotation Matrix

28

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓ � xx � xy

cos ✓ � sin ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Ss =


sx 0
0 sy

�

Ss =


0.5 0
0 2

�

s =
⇥
0.5 2

⇤T

Ssx0 � Ssx1 � Ssx2 � Ssx3

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

R✓ =


cos ✓ � sin ✓
sin ✓ cos ✓

�

Translation:
Tb(x) = x+ b

Tb(x0)� Tb(x1)� Tb(x2)� Tb(x3)� Tb(x)� Tb(y)� Tb(x+ y)� Tb(x) + Tb(y)

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:
|f(x)� f(y)| = |x� y|

2

V = Vx + Vy

Vx

Vy

Where did this come from?

If you can figure out horizontal
and vertical then you can do any

vector!

S26 - O’BrienCS184/284A

2D Rotation Matrix: Another Way

http://xkcd.com/184/

S26 - O’BrienCS184/284A

2D Rotation Matrix: Another Way

http://xkcd.com/184/

S26 - O’BrienCS184/284A

2D Rotation Matrix: Another Way

http://xkcd.com/184/
(What’s wrong with this picture??)

S26 - O’BrienCS184/284A

2D Rotation Matrix: Another Way

http://xkcd.com/184/
(What’s wrong with this picture??)

(Left handed matrix!)

S26 - O’BrienCS184/284A

Translation??

30

T1,1

x0 = x+ tx

y0 = y + ty

S26 - O’BrienCS184/284A

Solution: Homogenous Coordinates

Add a third coordinate (w-coordinate)

• 2D point = (x, y, 1)T

• 2D vector = (x, y, 0)T

31

S26 - O’BrienCS184/284A

Solution: Homogenous Coordinates

Add a third coordinate (w-coordinate)

• 2D point = (x, y, 1)T

• 2D vector = (x, y, 0)T

Now you can express translation as a matrix!!

31




x′

y′

w′



 =




1 0 tx
0 1 ty
0 0 1



 ·




x
y
1



 =




x + tx
y + ty

1





S26 - O’BrienCS184/284A

Homogenous Coordinates

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	 = vector

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	 = vector

• point	 – point	 	 = vector

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	 = vector

• point	 – point	 	 = vector

• point	 + vector	 = point

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	 = vector

• point	 – point	 	 = vector

• point	 + vector	 = point

• point	 + point	 	 = ??

32

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent

M

a
b
c
3
3

=

M

a
b
c
3

3
= M

a/3
b/3
c/3
1

If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Homogenous Coordinates

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	 = vector

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	 = vector

• point	 – point	 	 = vector

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	 = vector

• point	 – point	 	 = vector

• point	 + vector	 = point

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Homogenous Coordinates

Valid operation if w-coordinate of result is 1 or 0

• vector	 + vector	 = vector

• point	 – point	 	 = vector

• point	 + vector	 = point

• point	 + point	 	 = ??

33

x̃ =

64
12
30
2

→ x̃ =

32
6

15
1

Equivalent
If w is not zero but not one either

• Divide entire vector by w

• Generally you can do it later

S26 - O’BrienCS184/284A

Affine Transformations

Affine map = linear map + translation

Using homogenous coordinates:

34




x′

y′

1



 =




a b tx
c d ty
0 0 1



 ·




x
y
1





(
x′

y′

)
=

(
a b
c d

)
·
(

x
y

)
+

(
tx
ty

)

S26 - O’BrienCS184/284A

2D Transformations

Scale

Rotation

Translation

35

T(tx, ty) =




1 0 tx
0 1 ty
0 0 1





S(sx, sy) =




sx 0 0
0 sy 0
0 0 1





R(α) =




cos α − sin α 0
sinα cos α 0

0 0 1





(homogenous coordinates)

S26 - O’BrienCS184/284A

2D Transformations

Scale

Rotation

Translation

35

T(tx, ty) =




1 0 tx
0 1 ty
0 0 1





S(sx, sy) =




sx 0 0
0 sy 0
0 0 1





R(α) =




cos α − sin α 0
sinα cos α 0

0 0 1





“Rigid Transform”

(homogenous coordinates)

S26 - O’BrienCS184/284A

2D Transformations

Scale

Rotation

Translation

35

T(tx, ty) =




1 0 tx
0 1 ty
0 0 1





S(sx, sy) =




sx 0 0
0 sy 0
0 0 1





R(α) =




cos α − sin α 0
sinα cos α 0

0 0 1





“Rigid Transform”

“Similarity
 Transform
if Sx=Sy”

“Affine Transform”

“Projective Transform”
(any matrix)(homogenous coordinates)

S26 - O’BrienCS184/284A

Inverse Transform

 is the inverse of transform in both a matrix
and geometric sense

36

M�1

M�1

M

M�1 M�1

tx ty
• Special cases:

• Translation: negate and
• Rotation: transpose
• Scale: invert diagonal (axis-aligned scales)

• Others:
• Invert matrix
• Invert SVD matrices

Composing Transforms

37

S26 - O’BrienCS184/284A

Composite Transform

38

?

S26 - O’BrienCS184/284A

Translate Then Rotate?

39

S26 - O’BrienCS184/284A

Translate Then Rotate?

39

M = R45 · T(1,0)

S26 - O’BrienCS184/284A

Translate Then Rotate?

39

M = R45 · T(1,0) M = R45 · T(1,0)

S26 - O’BrienCS184/284A

Rotate Then Translate

40

S26 - O’BrienCS184/284A

Rotate Then Translate

40

M = T(1,0) ·R45

S26 - O’BrienCS184/284A

Rotate Then Translate

40

M = T(1,0) ·R45 M = T(1,0) ·R45

S26 - O’BrienCS184/284A

Transform Ordering Matters!

41

M = R45 · T(1,0) M = R45 · T(1,0)

M = T(1,0) ·R45 M = T(1,0) ·R45

S26 - O’BrienCS184/284A

Transform Ordering Matters!

Matrix multiplication is not commutative

42

M = R45 · T(1,0)M = T(1,0) ·R45≠

S26 - O’BrienCS184/284A

Transform Ordering Matters!

Matrix multiplication is not commutative

42

M = R45 · T(1,0)M = T(1,0) ·R45≠

2

4
cos 45� � sin 45� 0
sin 45� cos 45� 0

0 0 1

3

5

2

4
1 0 1
0 1 0
0 0 1

3

5 6=

2

4
1 0 1
0 1 0
0 0 1

3

5

2

4
cos 45� � sin 45� 0
sin 45� cos 45� 0

0 0 1

3

5

Recall the matrix math represented by these symbols:

S26 - O’BrienCS184/284A

Transform Ordering Matters!

Matrix multiplication is not commutative

42

M = R45 · T(1,0)M = T(1,0) ·R45≠

2

4
cos 45� � sin 45� 0
sin 45� cos 45� 0

0 0 1

3

5

2

4
1 0 1
0 1 0
0 0 1

3

5 6=

2

4
1 0 1
0 1 0
0 0 1

3

5

2

4
cos 45� � sin 45� 0
sin 45� cos 45� 0

0 0 1

3

5

Recall the matrix math represented by these symbols:

Note that matrices are applied right to left:

T(1,0) ·R45

2

4
x
y
1

3

5 =

2

4
1 0 1
0 1 0
0 0 1

3

5

2

4
cos 45� � sin 45� 0
sin 45� cos 45� 0

0 0 1

3

5

2

4
x
y
1

3

5

S26 - O’BrienCS184/284A

Composing Transforms

Sequence of transforms A1, A2, A3, ...

• Compose by matrix multiplication

• Very important for performance!

• Very important for complexity!

43

S26 - O’BrienCS184/284A

Composing Transforms

Sequence of transforms A1, A2, A3, ...

• Compose by matrix multiplication

• Very important for performance!

• Very important for complexity!

43

An(. . . A2(A1(x))) = An · · · A2 · A1 ·




x
y
1





S26 - O’BrienCS184/284A

Composing Transforms

Sequence of transforms A1, A2, A3, ...

• Compose by matrix multiplication

• Very important for performance!

• Very important for complexity!

43

An(. . . A2(A1(x))) = An · · · A2 · A1 ·




x
y
1





Pre-multiply n matrices to obtain a
single matrix representing combined transform

S26 - O’BrienCS184/284A

Building Complex Transforms

44

S26 - O’BrienCS184/284A

Building Complex Transforms

How to rotate around a given point c?

44

S26 - O’BrienCS184/284A

Building Complex Transforms

How to rotate around a given point c?

44

R(α)

S26 - O’BrienCS184/284A

Building Complex Transforms

45

S26 - O’BrienCS184/284A

Building Complex Transforms

How to rotate around a given point c?

45

S26 - O’BrienCS184/284A

Building Complex Transforms

How to rotate around a given point c?
1. Translate center to origin

45

T(−c)

S26 - O’BrienCS184/284A

Building Complex Transforms

How to rotate around a given point c?
1. Translate center to origin
2. Rotate

45

T(−c) R(α)

S26 - O’BrienCS184/284A

Building Complex Transforms

How to rotate around a given point c?
1. Translate center to origin
2. Rotate
3. Translate back

45

T(−c) T(c)R(α)

S26 - O’BrienCS184/284A

Building Complex Transforms

How to rotate around a given point c?
1. Translate center to origin
2. Rotate
3. Translate back

Matrix representation

45

T(−c) T(c)R(α)

T(c) · R(α) · T(−c)

S26 - O’BrienCS184/284A

Building Complex Transforms

How to rotate around a given point c?
1. Translate center to origin
2. Rotate
3. Translate back

Matrix representation

45

T(−c) T(c)R(α)

T(c) · R(α) · T(−c)M𝖼𝗈𝗆𝗉𝗈𝗌𝗂𝗍𝖾 =

S26 - O’BrienCS184/284A

Building Not-Axis-Aligned Scale Matrix

46

S26 - O’BrienCS184/284A

Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]

S26 - O’BrienCS184/284A

Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]

S26 - O’BrienCS184/284A

Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]

S26 - O’BrienCS184/284A

Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]

S26 - O’BrienCS184/284A

Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]

S26 - O’BrienCS184/284A

Building Not-Axis-Aligned Scale Matrix

46

[2 0
0 2]

[cos(45) −sin(45)
sin(45) cos(45)] ⋅ [1 0

0 2] ⋅ [cos(−45) −sin(−45)
sin(−45) cos(−45)] =

3
2 − 1

2

− 1
2

3
2R(45) s(1,2) R(-45)

S26 - O’BrienCS184/284A

Building Not-Axis-Aligned Scale Matrix

47

[2 0
0 2]

[cos(45) −sin(45)
sin(45) cos(45)] ⋅ [1 0

0 2] ⋅ [cos(−45) −sin(−45)
sin(−45) cos(−45)] =

R(45) s(1,2) R(-45)

[1.5 −0.5
−0.5 1.5]

S26 - O’BrienCS184/284A

Useful Matrix Decompositions

48

A = VΛV−𝟣

A = QSR𝖳

A = PRSR𝖳

PR = Q

Eigen system
Lambda is diagonal

Singular Value Decomposition (SVD)
S is diagonal

Q and R are orthonormal

Polar Decomposition
S is diagonal

P, W and R are orthonormal
Note: V=Q=R if A symmetric and real

S26 - O’BrienCS184/284A

Useful Matrix Decompositions

48

A = VΛV−𝟣

A = QSR𝖳

A = PRSR𝖳

PR = Q

Eigen system
Lambda is diagonal

Singular Value Decomposition (SVD)
S is diagonal

Q and R are orthonormal

Polar Decomposition
S is diagonal

P, W and R are orthonormal

Rotation Matrix Orthonormal (det+1)≅
Axis-aligned Scale Matrix Diagonal≅

Scale Matrix OrthonormalTranspose . Diagonal . Orthonormal≅

Note: V=Q=R if A symmetric and real

Coordinate Systems

49

S26 - O’BrienCS184/284A

Coordinate System Transform

In general, a new coordinate frame is defined by an
origin (point) and two unit axes (vectors)

50

F =


u v o
0 0 1

� F =


u v o
0 0 1

�

F =


u v o
0 0 1

�

x y

x y

Given coordinates in the (o,u,v) reference frame, what
is the transform to coordinates in the (x,y) frame?

S26 - O’BrienCS184/284A

Coordinate System Transform Matrix

51

F =


u v o
0 0 1

�
=

2

4
ux vx ox
uy vy oy
0 0 1

3

5

• Columns of matrix are defined
by the reference frame’s
coordinates in the world

• Gives a new way to “read off”
columns of matrix

v̂

û

O

Ŷ

X̂O′￼

S26 - O’BrienCS184/284A

1

Coordinate System Transform - Example

Write down a matrix T representing this transform:

52

1

T

1

S26 - O’BrienCS184/284A

1

Coordinate System Transform - Example

Write down a matrix T representing this transform:

52

1

T

1

(1, 1)

S26 - O’BrienCS184/284A

1

Coordinate System Transform - Example

Write down a matrix T representing this transform:

52

1

T

1

 p
2

2
,

p
2

2

!

(1, 1)

S26 - O’BrienCS184/284A

1

Coordinate System Transform - Example

Write down a matrix T representing this transform:

52

1

T

1

(0,�2)

 p
2

2
,

p
2

2

!

(1, 1)

S26 - O’BrienCS184/284A

Coordinate System Transform - Example

Write down a matrix T representing this transform:

53

T
2

64

p
2
2 0 1p
2
2 �2 1
0 0 1

3

75

F =


u v o
0 0 1

�
=

2

4
ux vx ox
uy vy oy
0 0 1

3

5

(0,�2)

 p
2

2
,

p
2

2

!

(1, 1)

Two Interpretations of A Transform

54

Interpretation 1: Transforms object points

Two Interpretations of A Transform

54

T(-1,-1)

Interpretation 1: Transforms object points

Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5)

Interpretation 1: Transforms object points

Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o)

Interpretation 1: Transforms object points

Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

Interpretation 1: Transforms object points

Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system

Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system

Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system

Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1) S(2,2)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system

Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1) S(2,2) R(-45o)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system

Two Interpretations of A Transform

54

T(-1,-1) S(0.5,0.5) R(45o) T(1,1)

T(1,1) S(2,2) R(-45o) T(-1,-1)

Interpretation 1: Transforms object points

Interpretation 2: Transforms coordinate system

3D Transforms

55

S26 - O’BrienCS184/284A

Attendance
If you are seated in class, go to this form and sign in:

• https://tinyurl.com/184class

Word of the day:

• rotations

56

S26 - O’BrienCS184/284A

3D Transformations

Scale

Translation

Coordinate Change
(Frame-to-world)

57

T(tx, ty, tz) =





1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1





S(sx, sy, sz) =





sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1





F(u,v,w,o) =


u v w o
0 0 0 1

�

S26 - O’BrienCS184/284A

3D Transformations

Use homogeneous coordinates again:

• 3D point = (x, y, z, 1)T

• 3D vector = (x, y, z, 0)T

Use 4×4 matrices for affine transformations

58





x′

y′

z′

1



 =





a b c tx
d e f ty
g h i tz
0 0 0 1



 ·





x
y
z
1





CS184/284A S26 - O’BrienCS184/284A

Rotations

Rotations still orthonormal

Preserve lengths and distance to origin
3D rotations DO NOT COMMUTE!
Right-hand rule
Unique matrices

59

Det(R) = 1 6=�1

CS184/284A S26 - O’BrienCS184/284A

2D and 3D Rotations

2D rotations implicitly rotate about a third
out-of-plane axis

60

S26 - O’BrienCS184/284A

3D Transformations
Rotation around x-, y-, or z-axis

61

Rx(α) =





1 0 0 0
0 cos α − sin α 0
0 sinα cos α 0
0 0 0 1





Ry(α) =





cos α 0 sinα 0
0 1 0 0

− sin α 0 cos α 0
0 0 0 1





Rz(α) =





cos α − sinα 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1





y

z

x

Rotation
around
x-axis

• Also known as “direction-cosine” matrices

S26 - O’BrienCS184/284A

3D Rotations
Compose any 3D rotation from Rx, Ry, Rz?

62

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)

A list of the Euler angles is NOT a vector!

S26 - O’BrienCS184/284A

3D Rotations
Compose any 3D rotation from Rx, Ry, Rz?

• So-called Euler angles

62

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)

A list of the Euler angles is NOT a vector!

S26 - O’BrienCS184/284A

3D Rotations
Compose any 3D rotation from Rx, Ry, Rz?

• So-called Euler angles

• Often used in flight simulators: roll, pitch, yaw

62

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)

A list of the Euler angles is NOT a vector!

S26 - O’BrienCS184/284A

3D Rotations
Compose any 3D rotation from Rx, Ry, Rz?

• So-called Euler angles

• Often used in flight simulators: roll, pitch, yaw

62

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)

A list of the Euler angles is NOT a vector!

S26 - O’BrienCS184/284A

3D Rotations

Compose any 3D rotation from Rx, Ry, Rz?

• So-called Euler angles

• Often used in flight simulators: roll, pitch, yaw

• Problems:
Gimbal Lock!
Not unique!
Ugly manifold!

63

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)

S26 - O’BrienCS184/284A

3D Rotations

Compose any 3D rotation from Rx, Ry, Rz?

• So-called Euler angles

• Often used in flight simulators: roll, pitch, yaw

• Problems:
Gimbal Lock!
Not unique!
Ugly manifold!

63

Rxyz(α,β, γ) = Rx(α)Ry(β)Rz(γ)

S26 - O’BrienCS184/284A

3D Rotation Around Arbitrary Axis

64

S26 - O’BrienCS184/284A

3D Rotation Around Arbitrary Axis
y

z

x

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

p

• Easy to understand but less useful method:
1. rotate about x axis to put w into the x-y plane
2. rotate about z axis align w with the x axis
3. rotate degrees about x axis
4. undo #2 and then #1
5. composite together

How would you take a derivative w.r.t. w?

65

θ

S26 - O’BrienCS184/284A

3D Rotation Around Arbitrary Axis

66

y

z

x

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

p

S26 - O’BrienCS184/284A

3D Rotation Around Arbitrary Axis

Construct orthonormal frame
transformation F with p, u, v, w,
where p and w match the rotation axis

66

y

z

x

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

p

S26 - O’BrienCS184/284A

3D Rotation Around Arbitrary Axis

Construct orthonormal frame
transformation F with p, u, v, w,
where p and w match the rotation axis

Apply the transform (F Rz(θ) F-1)

66

y

z

x

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

p

S26 - O’BrienCS184/284A

3D Rotation Around Arbitrary Axis

Construct orthonormal frame
transformation F with p, u, v, w,
where p and w match the rotation axis

Apply the transform (F Rz(θ) F-1)

Interpretation:

66

y

z

x

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

p

S26 - O’BrienCS184/284A

3D Rotation Around Arbitrary Axis

Construct orthonormal frame
transformation F with p, u, v, w,
where p and w match the rotation axis

Apply the transform (F Rz(θ) F-1)

Interpretation:

• Rotate to Z axis, rotate, then move back

66

y

z

x

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

p

S26 - O’BrienCS184/284A

Rodrigues’ Rotation Formula

Rotation by angle α around axis n

67

R(n,↵) = cos(↵) I + (1� cos(↵))nnT + sin(↵)

0

@
0 �nz ny

nz 0 �nx

�ny nx 0

1

A

| {z }
N

n × v = Nv

n × v = [n]v
n × v = (n×)v

Turn cross-product into
matrix multiplication!

Alternative notation

S26 - O’BrienCS184/284A

Rodrigues’ Rotation Formula

Rotation by angle α around axis n

How to prove this magic formula?

67

R(n,↵) = cos(↵) I + (1� cos(↵))nnT + sin(↵)

0

@
0 �nz ny

nz 0 �nx

�ny nx 0

1

A

| {z }
N

n × v = Nv

n × v = [n]v
n × v = (n×)v

Turn cross-product into
matrix multiplication!

Alternative notation

S26 - O’BrienCS184/284A

Rodrigues’ Rotation Formula

Rotation by angle α around axis n

How to prove this magic formula?

• Matrix N computes a cross-product:

67

R(n,↵) = cos(↵) I + (1� cos(↵))nnT + sin(↵)

0

@
0 �nz ny

nz 0 �nx

�ny nx 0

1

A

| {z }
N

n × v = Nv

n × v = [n]v
n × v = (n×)v

Turn cross-product into
matrix multiplication!

Alternative notation

S26 - O’BrienCS184/284A

Rodrigues’ Rotation Formula

Rotation by angle α around axis n

How to prove this magic formula?

• Matrix N computes a cross-product:

• Assume orthonormal system e1, e2, n

67

R(n,↵) = cos(↵) I + (1� cos(↵))nnT + sin(↵)

0

@
0 �nz ny

nz 0 �nx

�ny nx 0

1

A

| {z }
N

n × v = Nv

n × v = [n]v
n × v = (n×)v

Turn cross-product into
matrix multiplication!

Alternative notation

S26 - O’BrienCS184/284A

Rodrigues’ Rotation Formula

Rotation by angle α around axis n

How to prove this magic formula?

• Matrix N computes a cross-product:

• Assume orthonormal system e1, e2, n

67

R(n,↵) = cos(↵) I + (1� cos(↵))nnT + sin(↵)

0

@
0 �nz ny

nz 0 �nx

�ny nx 0

1

A

| {z }
N

Rn = n
Re1 = cos α e1 + sinα e2

Re2 = − sin α e1 + cos α e2

n × v = Nv

n × v = [n]v
n × v = (n×)v

Turn cross-product into
matrix multiplication!

Alternative notation

CS184/284A S26 - O’BrienCS184/284A

Exponential Maps

• Direct representation of arbitrary rotation
• AKA: axis-angle, angular displacement

vector
• Rotate degrees about some axis
• Encode by length of vector

68

θ

θ

θ= |r|
r̂

θ

CS184/284A S26 - O’BrienCS184/284A

Exponential Maps

• Allows tumbling
• No gimbal-lock!
• Orientations are space within π-radius ball
• Nearly unique representation
• Singularities on shells at 2π
• Nice for interpolation

69

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Exponential Maps
• Why exponential?

70

r

x

x0

• Instead of rotating once by θ,
let’s do n small rotations of θ/n

• Now the angle is small, so the
rotated x is approximately

• Do it n times and you get

x+ (✓/n)r̂⇥ x

(✓/n)r̂⇥ x

=

✓
I+

(r̂⇥)✓

n

◆
x

x0 =

✓
I+

(r̂⇥)✓

n

◆n

x

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Exponential Maps

• Remind you of anything?
is a definition of

• So the rotation we want is the exponential of !

• In fact you can just plug it into the infinite series...

71

lim
n!1

⇣
1 +

a

n

⌘n
ea

x0 = lim
n!1

✓
I+

(r̂⇥)✓

n

◆n

x

(r̂⇥)✓

x′￼ = e(̂r×)θ x}
Rotation matrix!

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 72

ex = 1+
x
1!

+
x2

2!
+
x3

3!
+ · · ·

Exponential Maps
• Why exponential?
• Recall series expansion of ex

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 73

• Why exponential?
• Recall series expansion of
• Euler : what happens if you put in for

eiθ = 1+
iθ
1!

+
�θ2

2!
+
�iθ3

3!
+
θ4

4!
+ · · ·

Exponential Maps

ex
iθ x

=
✓
1+

�θ2

2!
+
θ4

4!
+ · · ·

◆
+ i

✓
θ
1!

+
�θ3

3!
+ · · ·

◆

= cos(θ)+ isin(θ)

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 74

• Do same trick with matrices!

Exponential Maps

e(r̂⇥)θ = I+
(r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+

(r̂⇥)3θ3

3!
+

(r̂⇥)4θ4

4!
+ · · ·

e(r̂⇥)θ = I+
(r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+
�(r̂⇥)θ3

3!
+
�(r̂⇥)2θ4

4!
+ · · ·

(r̂⇥)3 =�(r̂⇥)But notice that:

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Exponential Maps

75

e(r̂⇥)θ = I+
(r̂⇥)θ
1!

+
(r̂⇥)2θ2

2!
+
�(r̂⇥)θ3

3!
+
�(r̂⇥)2θ4

4!
+ · · ·

e(r̂⇥)θ = (r̂⇥)
✓
θ
1!
� θ3

3!
+ · · ·

◆
+ I+(r̂⇥)2

✓
+
θ2

2!
� θ4

4!
+ · · ·

◆

e(r̂⇥)θ = (r̂⇥)sin(θ)+ I+(r̂⇥)2(1� cos(θ))
Compare to Rodrigue’s Formula

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 76

Rotation Matrices
• Eigen system

• One real eigenvalue
• Real axis is axis of rotation
• Imaginary values are 2D rotation as complex number

• Logarithmic formula

θ= cos�1
✓
Tr(R)�1

2

◆
(r̂⇥) = ln(R) =

θ
2sinθ

(R�RT)

Similar formulae as for exponential...

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 77

Quaternions

• More popular than exponential maps
• Natural extension of
• Due to Hamilton (1843)

• Interesting bit of drama….

eiθ = cos(θ)+ isin(θ)

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 78

i2 = j2 = k2 =�1

Quaternions
• Three-Times-As-Complex Numbers

q = (z1,z2,z3,s) = (z,s)
q = iz1+ jz2+ kz3+ s

i j = k ji=�k
jk = i k j =�i
ki= j ik =� j

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 79

||q||2 = z · z+ s2 = q · q
⇤

Quaternions
• Multiplication natural consequence of defn.

• Conjugate

• Magnitude

q · p = (zqsp+ zpsq+ zp⇥ zq , spsq� zp · zq)

q
⇤ = (�z,s)

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 80

Quaternions
• Vectors as quaternions

• Rotations as quaternions

• Rotating a vector

• Composing rotations

v = (v,0)

r = (r̂sin
θ
2
,cos

θ
2
)

x
0 = r · x · r

⇤

r = r1 · r2 Compare to Exp. Map

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 81

Quaternions

• No tumbling
• No gimbal-lock
• Orientations are “double unique”
• Surface of a 3-sphere in 4D
• Nice for interpolation

||r|| = 1

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Interpolation

82

Euler angles Exponential maps or quaternions

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Interpolation

82

Euler angles Exponential maps or quaternions

Hierarchical Transforms

83

S26 - O’BrienCS184/284A

Skeleton - Linear Representation

head
torso
right upper arm
right lower arm
right hand
left upper arm
left lower arm
left hand
right upper leg
right lower leg
right foot
left upper leg
left lower leg
left foot

84

S26 - O’BrienCS184/284A

Linear Representation

Each shape associated with its own transform
A single edit can require updating many transforms

• E.g. raising arm requires updating transforms for
all arm parts

85

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

torso
head
right arm

upper arm
lower arm
hand

left arm
upper arm
lower arm
hand

right leg
upper leg
lower leg
foot

left leg
upper leg
lower leg
foot

86

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

torso
head
right arm

upper arm
lower arm
hand

left arm
upper arm
lower arm
hand

right leg
upper leg
lower leg
foot

left leg
upper leg
lower leg
foot

87

Torso

Head right arm left arm …

r. up arm

r. low arm

r. hand

…

S26 - O’BrienCS184/284A

Hierarchical Representation

88

S26 - O’BrienCS184/284A

Hierarchical Representation

Grouped representation (tree)

88

S26 - O’BrienCS184/284A

Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes

88

S26 - O’BrienCS184/284A

Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes

• Each group is associated with a transform relative to
parent group

88

S26 - O’BrienCS184/284A

Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes

• Each group is associated with a transform relative to
parent group

• Transform on leaf-node shape is concatenation of all
transforms on path from root node to leaf

88

S26 - O’BrienCS184/284A

Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes

• Each group is associated with a transform relative to
parent group

• Transform on leaf-node shape is concatenation of all
transforms on path from root node to leaf

• Changing a group’s transform affects all parts

88

S26 - O’BrienCS184/284A

Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes

• Each group is associated with a transform relative to
parent group

• Transform on leaf-node shape is concatenation of all
transforms on path from root node to leaf

• Changing a group’s transform affects all parts

• Allows high level editing by changing only one node

88

S26 - O’BrienCS184/284A

Hierarchical Representation

Grouped representation (tree)

• Each group contains subgroups and/or shapes

• Each group is associated with a transform relative to
parent group

• Transform on leaf-node shape is concatenation of all
transforms on path from root node to leaf

• Changing a group’s transform affects all parts

• Allows high level editing by changing only one node

• E.g. raising left arm requires changing only one
transform for that group

88

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

89

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

89

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

89

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform
drawHead();

popmatrix(); // pop current transform off stack

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

89

pushmatrix();
translate(-2, 3);
rotate(rightShoulderRotation);
drawUpperArm();

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform
drawHead();

popmatrix(); // pop current transform off stack

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

89

pushmatrix();
translate(-2, 3);
rotate(rightShoulderRotation);
drawUpperArm();

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform
drawHead();

popmatrix(); // pop current transform off stack

pushmatrix();
translate(0, -3);
rotate(elbowRotation);
drawLowerArm();

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

89

pushmatrix();
translate(-2, 3);
rotate(rightShoulderRotation);
drawUpperArm();

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform
drawHead();

popmatrix(); // pop current transform off stack

pushmatrix();
translate(0, -3);
rotate(elbowRotation);
drawLowerArm();
pushmatrix();

translate(0, -3);
rotate(wristRotation);
drawHand();

popmatrix();

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

89

pushmatrix();
translate(-2, 3);
rotate(rightShoulderRotation);
drawUpperArm();

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform
drawHead();

popmatrix(); // pop current transform off stack

pushmatrix();
translate(0, -3);
rotate(elbowRotation);
drawLowerArm();
pushmatrix();

translate(0, -3);
rotate(wristRotation);
drawHand();

popmatrix();
popmatrix();

popmatrix();
….

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

89

right
hand

pushmatrix();
translate(-2, 3);
rotate(rightShoulderRotation);
drawUpperArm();

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform
drawHead();

popmatrix(); // pop current transform off stack

pushmatrix();
translate(0, -3);
rotate(elbowRotation);
drawLowerArm();
pushmatrix();

translate(0, -3);
rotate(wristRotation);
drawHand();

popmatrix();
popmatrix();

popmatrix();
….

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

89

right
lower
arm

group
right
hand

pushmatrix();
translate(-2, 3);
rotate(rightShoulderRotation);
drawUpperArm();

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform
drawHead();

popmatrix(); // pop current transform off stack

pushmatrix();
translate(0, -3);
rotate(elbowRotation);
drawLowerArm();
pushmatrix();

translate(0, -3);
rotate(wristRotation);
drawHand();

popmatrix();
popmatrix();

popmatrix();
….

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

89

right
lower
arm

group

right
arm

group
right
hand

pushmatrix();
translate(-2, 3);
rotate(rightShoulderRotation);
drawUpperArm();

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform
drawHead();

popmatrix(); // pop current transform off stack

pushmatrix();
translate(0, -3);
rotate(elbowRotation);
drawLowerArm();
pushmatrix();

translate(0, -3);
rotate(wristRotation);
drawHand();

popmatrix();
popmatrix();

popmatrix();
….

S26 - O’BrienCS184/284A

Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

90

right
lower
arm

group

right
arm

group
right
hand

pushmatrix();
translate(-2, 3);
rotate(rightShoulderRotation);
drawUpperArm();

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform
drawHead();

popmatrix(); // pop current transform off stack

pushmatrix();
translate(0, -3);
rotate(elbowRotation);
drawLowerArm();
pushmatrix();

translate(0, -3);
rotate(wristRotation);
drawHand();

popmatrix();
popmatrix();

popmatrix();
….

Viewing and Perspective

92

S26 - O’BrienCS184/284A

Viewing and Perspective Transforms

93

Rasterization
2D screen coordinates

?

Scene modeling
3D world coordinates

Camera Space

94

S26 - O’BrienCS184/284A

“Standard” Camera Space

95

y
z

x

We will use this convention for
“standard” camera coordinates:

• camera located at the origin

• looking down negative z-axis

• vertical vector is y-axis

• (x-axis) orthogonal to y & z

S26 - O’BrienCS184/284A

“Standard” Camera Coordinates

96

y
z

x

Resulting image

S26 - O’BrienCS184/284A

“Standard” Camera Coordinates

96

y
z

x

Resulting image

x

y

(z-axis pointing away from scene)

S26 - O’BrienCS184/284A

Consider A Camera Pointing in The World

97

S26 - O’BrienCS184/284A

Consider A Camera Pointing in The World

98

u = up vector

v = view direction
e = eye point
(position of camera)

S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

99

u = up vector

v = view direction

Input: e, u & v given in world space coordinates
Output: transform matrix from world space
to standard camera space

e = eye point
(position of camera)

S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

“Look-At” transformation

100

S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

100

S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal

100

S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal

• Find right vector r = v × u

100

S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal

• Find right vector r = v × u

• Transform camera (e,r,u,v) to standard camera:

100

S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal

• Find right vector r = v × u

• Transform camera (e,r,u,v) to standard camera:

• located at the origin

100

S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal

• Find right vector r = v × u

• Transform camera (e,r,u,v) to standard camera:

• located at the origin

• looking down negative z axis

100

S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

“Look-At” transformation

• Given eye point e, up vector u, view direction v

• Assume u and v are orthonormal

• Find right vector r = v × u

• Transform camera (e,r,u,v) to standard camera:

• located at the origin

• looking down negative z axis

• up vector is y axis

100

S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

101

S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

Inverse: Matrix from standard camera to world space

101





rx ux −vx ex

ry uy −vy ey

rz uz −vz ez

0 0 0 1





S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

Inverse: Matrix from standard camera to world space
(Why? This is a coordinate frame transform to (e,r,u,-v))

101





rx ux −vx ex

ry uy −vy ey

rz uz −vz ez

0 0 0 1





S26 - O’BrienCS184/284A

Camera “Look-At” Transformation

Inverse: Matrix from standard camera to world space
(Why? This is a coordinate frame transform to (e,r,u,-v))

“Look-at” (world->camera) transform is the inverse of
above matrix:

101





rx ux −vx ex

ry uy −vy ey

rz uz −vz ez

0 0 0 1









rx ux −vx ex

ry uy −vy ey

rz uz −vz ez

0 0 0 1





−1

=





rx ry rz 0
ux uy uz 0
−vx −vy −vz 0
0 0 0 1



 ·





1 0 0 −ex

0 1 0 −ey

0 0 1 −ez

0 0 0 1





S26 - O’BrienCS184/284A

Transform Camera Space to Image Plane?

How to transform from 3D camera space to 2D image plane?

• One option: orthographic projection (just delete z)

• Useful, e.g. for engineering drawings

• But is this the whole story?

102

z

Perspective

103 Credit: jefflynchphoto.com

http://jefflynchphoto.com

S26 - O’BrienCS184/284A

Perspective in Art

104
Berlinghieri 1235

S26 - O’BrienCS184/284A

Perspective in Art

105
Giotto 1290

S26 - O’BrienCS184/284A

Perspective in Art

105
Giotto 1290

S26 - O’BrienCS184/284A

Perspective in Art

106
Giotto 1290

Something wrong here!

CS184/284A S26 - O’BrienCS184/284A

Perspective Composition = Camera Position + Angle of View

In this
sequence, angle
of view
decreases as
distance from
subject
increases, to
size of human
subject in
image.

Notice the
dramatic change
in background
perspective.

107

From Canon EF Lens Work III

CS184/284A S26 - O’BrienCS184/284A

Perspective Composition

108

16 mm (110°)

Up close and zoomed wide
with short focal length

CS184/284A S26 - O’BrienCS184/284A

Perspective Composition

109

200 mm (12°)

Walk back and zoom in
with long focal length

Pinhole Camera Model

110

S26 - O’BrienCS184/284A

Pinhole Camera

111

S26 - O’BrienCS184/284A

Projective Transform

112

C
-z

d

(x, y, z)Tx, y

Inverted image (as in real pinhole camera)

Scene point

Image
point

S26 - O’BrienCS184/284A

Pinhole Camera Projective Transform

113

C
-z

(x, y, z)Tx, y

Upright image

Scene point
Image
point

d

S26 - O’BrienCS184/284A

Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d

114

C -z

z = d

(x,y,z)T
x, y

S26 - O’BrienCS184/284A

Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d

114

C -z

z = d

(x,y,z)T
x, y 0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA ⇠=

x · d/z
y · d/z

!

S26 - O’BrienCS184/284A

Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d

114

C -z

z = d

(x,y,z)T
x, y

} ?

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA ⇠=

x · d/z
y · d/z

!

S26 - O’BrienCS184/284A

Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d

114

C -z

z = d

(x,y,z)T
x, y

} x} ?

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA ⇠=

x · d/z
y · d/z

!

S26 - O’BrienCS184/284A

Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d

114

C -z

z = d

(x,y,z)T
x, y

} x} ?

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA ⇠=

x · d/z
y · d/z

!

x

z
=

?

d

S26 - O’BrienCS184/284A

Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d

115

C -z

z = d

(x,y,z)T
x, y

} x} ?

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA ⇠=

x · d/z
y · d/z

!

x

z
=

?

d

S26 - O’BrienCS184/284A

Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d

116

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA

S26 - O’BrienCS184/284A

Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d

Perspective foreshortening

116

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA

S26 - O’BrienCS184/284A

Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d

Perspective foreshortening

• Need division by z

116

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA

S26 - O’BrienCS184/284A

Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d

Perspective foreshortening

• Need division by z

• Matrix representation?

116

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA

S26 - O’BrienCS184/284A

Projective Transforms

Standard perspective projection

• Center of projection: (0, 0, 0)T

• Image plane at z = d

Perspective foreshortening

• Need division by z

• Matrix representation?
➡Homogeneous coordinates!

116

0

@
x
y
z

1

A 7!

0

B@
x · d/z
y · d/z

d

1

CA

S26 - O’BrienCS184/284A

Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

S26 - O’BrienCS184/284A

Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA

S26 - O’BrienCS184/284A

Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA M =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

1

CCA

Note non-zero term in final row.
First time we have seen this.

S26 - O’BrienCS184/284A

Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA

q = M

0

BB@

x
y
z
1

1

CCA =

0

BB@

x
y
z

z/d

1

CCA

M =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

1

CCA

Note non-zero term in final row.
First time we have seen this.

S26 - O’BrienCS184/284A

Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA

0

BB@

xd/z
yd/z
d
1

1

CCAq = M

0

BB@

x
y
z
1

1

CCA =

0

BB@

x
y
z

z/d

1

CCA

M =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

1

CCA

Note non-zero term in final row.
First time we have seen this.

S26 - O’BrienCS184/284A

Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA

0

BB@

xd/z
yd/z
d
1

1

CCAq = M

0

BB@

x
y
z
1

1

CCA =

0

BB@

x
y
z

z/d

1

CCA

M =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

1

CCA

Note non-zero term in final row.
First time we have seen this.

S26 - O’BrienCS184/284A

Note zeros in 4th column.
We’ll change this later for
hidden surface determination.

Homogenous Coordinates (3D)

117

p =

0

BB@

wx
wy
wz
w

1

CCA

0

BB@

x
y
z
1

1

CCA

0

BB@

xd/z
yd/z
d
1

1

CCAq = M

0

BB@

x
y
z
1

1

CCA =

0

BB@

x
y
z

z/d

1

CCA

M =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

1

CCA

Note non-zero term in final row.
First time we have seen this.

S26 - O’BrienCS184/284A

Pinhole Camera Model

This mathematical model produces all linear
perspective effects!

• Converging lines + vanishing points

• Closer objects appear larger in images

• …

118

Specifying Real Camera Perspectives

119

S26 - O’BrienCS184/284A

Specifying Perspective Projection

120

From Angel and Shreiner, Interactive Computer Graphics

S26 - O’BrienCS184/284A

Specifying Perspective Projection

120

From Angel and Shreiner, Interactive Computer Graphics

S26 - O’BrienCS184/284A

Specifying Perspective Viewing Volume

121

From Angel and Shreiner, Interactive Computer Graphics

S26 - O’BrienCS184/284A

Specifying Perspective Viewing Volume

121

From Angel and Shreiner, Interactive Computer Graphics

S26 - O’BrienCS184/284A

Specifying Perspective Viewing Volume

Parameterized by

• fovy 		 	 	 	 : vertical angular field of view
• aspect ratio	 	 : width / height of field of view
• near 	 	 	 	 : depth of near clipping plane
• far 	 	 	 	 	 : depth of far clipping plane

Derived quantities

• top 		 	 	 	 = near * tan (fovy)
• bottom 	 	 	 = – top
• right 	 	 	 	 = top * aspect
• left 	 	 	 	 	 = – right

122

Perspective Projection Implementation

123

S26 - O’BrienCS184/284A
124

Perspective Projection Transform

Camera Coordinates Normalized Device Coords
“NDC”

(left, bottom, –near)

(right, top, –near)

(1, 1, 1)

(–1, –1, –1) z = –near

z = –far

Later we will “flatten and scale ” NDC to get framebuffer coordinates

S26 - O’BrienCS184/284A

Perspective Projection Transform

Notes:

• Need not be
symmetric about z-
axis, but for
simplicity here we
assume so

• This transform will
preserve depth
information
(ordering) in NDC

125

S26 - O’BrienCS184/284A

Perspective Transform Matrix

126

P =

2

664

near
right 0 0 0
0 near

top 0 0

0 0 � far+near
far�near

�2far⇤near
far�near

0 0 �1 0

3

775

2

664

right
top

�near
1

3

775

=

2

664

near
near

near ⇤ far+near
far�near � 2far⇤near

far�near

near

3

775

=

2

664

1
1

�far+near
far�near

1

3

775

=

2

664

1
1
�1
1

3

775

S26 - O’BrienCS184/284A

Perspective Transform Matrix

126

P =

2

664

near
right 0 0 0
0 near

top 0 0

0 0 � far+near
far�near

�2far⇤near
far�near

0 0 �1 0

3

775

2

664

right
top

�near
1

3

775

=

2

664

near
near

near ⇤ far+near
far�near � 2far⇤near

far�near

near

3

775

=

2

664

1
1

�far+near
far�near

1

3

775

=

2

664

1
1
�1
1

3

775

Note entry in 4th column

S26 - O’BrienCS184/284A

Perspective Transform Matrix Example

127

P =

2

664

near
right 0 0 0
0 near

top 0 0

0 0 � far+near
far�near

�2far⇤near
far�near

0 0 �1 0

3

775

2

664

right
top

�near
1

3

775

=

2

664

near
near

near ⇤ far+near
far�near � 2far⇤near

far�near

near

3

775

=

2

664

1
1

�far+near
far�near

1

3

775

=

2

664

1
1
�1
1

3

775

S26 - O’BrienCS184/284A

Perspective Transform Matrix Example

127

P =

2

664

near
right 0 0 0
0 near

top 0 0

0 0 � far+near
far�near

�2far⇤near
far�near

0 0 �1 0

3

775

2

664

right
top

�near
1

3

775

=

2

664

near
near

near ⇤ far+near
far�near � 2far⇤near

far�near

near

3

775

=

2

664

1
1

�far+near
far�near

1

3

775

=

2

664

1
1
�1
1

3

775

P =

2

664

near
right 0 0 0
0 near

top 0 0

0 0 � far+near
far�near

�2far⇤near
far�near

0 0 �1 0

3

775

2

664

right
top

�near
1

3

775

=

2

664

near
near

near ⇤ far+near
far�near � 2far⇤near

far�near

near

3

775

=

2

664

1
1

�far+near
far�near

1

3

775

=

2

664

1
1
�1
1

3

775

S26 - O’BrienCS184/284A

Fr
om

 S
hir

ley
 te

xt
bo

ok
.

Perspective Projection

128

Z-Values do not swap order!

S26 - O’BrienCS184/284A

Perspective Projection Alternatives

129

View
Up

Distance to image plane
i

Y

-Z

Top
t

Bottom
b

Near
n

Far
f

Center

CS184/284A S26 - O’BrienCS184/284A

Perspective Tricks

130

S26 - O’BrienCS184/284A

Attendance
If you are seated in class, go to this form and sign in:

• https://tinyurl.com/184class

Word of the day:

• ????

131

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Perspective Projection Alternatives

132

View
Up

Distance to image plane
i

Y

-Z

Top
t

Bottom
b

Near
n

Far
f

Center

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 133

• Step 1: Translate center to origin

Y

-Z

Perspective Projection Alternatives

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 134

• Step 1: Translate center to origin
• Step 2: Rotate view to -Z, up to +Y

Y

-Z

Perspective Projection Alternatives

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 135

• Step 1: Translate center to origin
• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis

Y

-Z

Perspective Projection Alternatives

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 136

• Step 1: Translate center to origin
• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective

-Z

Perspective Projection Alternatives

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 136

• Step 1: Translate center to origin
• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective

-Z

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

−

+

0100

00
0010
0001

i

f
i
fi

Perspective Projection Alternatives

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 137

• Step 4: Perspective
• Points at z=-i stay at z=-i
• Points at z=-f stay at z=-f
• Points at z=0 goto z=±∞
• Points at z=-∞ goto z=-(i+f)

• x and y values divided by -z/i

• Straight lines stay straight
• Depth ordering preserved in [-i,-f]

• Movement along lines distorted

-Z

Perspective Projection Alternatives

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 137

• Step 4: Perspective
• Points at z=-i stay at z=-i
• Points at z=-f stay at z=-f
• Points at z=0 goto z=±∞
• Points at z=-∞ goto z=-(i+f)

• x and y values divided by -z/i

• Straight lines stay straight
• Depth ordering preserved in [-i,-f]

• Movement along lines distorted

-Z

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

−

+

0100

00
0010
0001

i

f
i
fi

Perspective Projection Alternatives

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 138

• Step 1: Translate center to orange
• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective
• Step 5: center view volume
• Step 6: scale to canonical size

-Z

Perspective Projection Alternatives

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 139

• Step 1: Translate center to orange
• Step 2: Rotate view to -Z, up to +Y
• Step 3: Shear center-line to -Z axis
• Step 4: Perspective
• Step 5: center view volume
• Step 6: scale to canonical size

-ZM=Mo ·Mp ·Mv

Mo

Mp

Mv}

}

}

Perspective Projection Alternatives

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 140

• There are other ways to set up the projection matrix
• View plane at z=0 zero
• Looking down another axis
• etc...

• Functionally equivalent

Perspective Projection Alternatives

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 141

r(t) = p+ t d

Vanishing Points
• Consider a ray:

dp

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 142

Vanishing Points
• Ignore Z part of matrix
• X and Y will give location in image plane

• Assume image plane at z=-i

!
!
!
!

"

#

$
$
$
$

%

&

− 0100

0010
0001

!
!
!

"

#

$
$
$

%

&

!
!
!

"

#

$
$
$

%

&

−

=

!
!
!

"

#

$
$
$

%

&

z
y
x

I
I
I

w

y

x

100
010
001

whatever

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 143

Vanishing Points

!
!
!

"

#

$
$
$

%

&

−

=

!
!
!

"

#

$
$
$

%

&

!
!
!

"

#

$
$
$

%

&

−

=

!
!
!

"

#

$
$
$

%

&

z
y
x

z
y
x

I
I
I

w

y

x

100
010
001

!
"

#
$
%

&

−

−
=!

"

#
$
%

&

zy
zx

II
II

wy

wx

/
/

/
/

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 144

Vanishing Points
• Assume

dz =�1

!
!
!
!

"

#

$
$
$
$

%

&

+−

+
+−

+

=!
"

#
$
%

&

−

−
=!

"

#
$
%

&

tp
tdp
tp

tdp

zy
zx

II
II

z

yy

z

xx

wy

wx

/
/

/
/

!
"

#
$
%

&
=

±∞→ y

x

d
d

t
Lim

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 145

Vanishing Points

• All lines in direction d converge to same point in the image
plane -- the vanishing point

• Every point in plane is a v.p. for some set of lines
• Lines parallel to image plane () vanish at infinity

!
"

#
$
%

&
=

±∞→ y

x

d
d

t
Lim

dz = 0

What’s a horizon?

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 146

Perspective Projection

ẑ

“Eye” plane

Top

Near Far

So
me h

ori
zon

tal
line

s

View vector
Camera

3D Version

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 147

Perspective Projection

ẑ

“Eye” plane

Top

Near Far

So
me h

ori
zon

tal
line

s

View vector
Camera

Projected View

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 148

Perspective Projection

ẑ

Visualizing division of x and y but not z

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 149

Perspective Projection

ẑ

Motion in x,y

Projected View

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 150

Perspective Projection

ẑ

Linear interpolation requires straight
lines should stay straight!

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 150

Perspective Projection

ẑ

Linear interpolation requires straight
lines should stay straight!

Crossover problem

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 151

Perspective Projection

ẑ

Projection matrix changes Z also…

�∞

P =

2

664

near
right 0 0 0
0 near

top 0 0

0 0 � far+near
far�near

�2far⇤near
far�near

0 0 �1 0

3

775

2

664

right
top

�near
1

3

775

=

2

664

near
near

near ⇤ far+near
far�near � 2far⇤near

far�near

near

3

775

=

2

664

1
1

�far+near
far�near

1

3

775

=

2

664

1
1
�1
1

3

775

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 152

Perspective Projection

ẑ

Total motion

Projected View

S26 - O’BrienCS184/284A

Fr
om

 S
hir

ley
 te

xt
bo

ok
.

Perspective Projection

153

Z-Values do not swap order!

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 154

Perspective Projection

ẑ

Note that points on near plane fixed

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 155

Perspective Projection

ẑ

Recall that points on far plane will
stay there...

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 156

Perspective Projection

ẑ

Lines extend outside view volume

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 157

Perspective Projection

ẑ

Motion in z

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 158

Perspective Projection

ẑ

Motion in z

�∞

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Perspective Tricks

159

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Right Looks Wrong (Sometimes)

160

Correction of Geometric Perceptual Distortions in Pictures.

Denis Zorin, Alan H. Barr

California Institute of Technology, Pasadena, CA 91125

Abstract
We suggest an approachfor correcting several types of perceived

geometric distortions in computer-generated and photographic im-
ages. The approach is based on a mathematical formalization of
desirable properties of pictures.

From a small set of simple assumptions we obtain perceptually
preferable viewing transformations and show that these transforma-
tions can be decomposed into a perspective or parallel projection
followed by a planar transformation. The decomposition is eas-
ily implemented and provides a convenient framework for further
analysis of the image mapping.

We prove that two perceptually important properties are incom-
patible and cannot be satisfied simultaneously. It is impossible to
construct a viewing transformation such that the images of all lines
are straight and the images of all spheres are exact circles. Percep-
tually preferable tradeoffs between these two types of distortions
can depend on the content of the picture. We construct parametric
families of transformations with parameters representing the rela-
tive importance of the perceptual characteristics. By adjusting the
settings of the parameters we can minimize the overall distortion of
the picture.

It turns out that a simple family of transformations produces
results that are sufficiently close to optimal. We implement the pro-
posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
and computer-generated animations.
Keywords: Perception, distortion, viewing transformations,

perspective.

The process of realistic image synthesis can be subdivided into
two stages: modeling the physics of light propagation in three-
dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
mation.”) While the first stage is relatively independent of our
understanding of visual perception, the viewing transformations are
based on the fact that we are able to perceive two-dimensional
patterns - pictures - as reasonably accurate representations of three-
dimensional objects. We can evaluate the quality of modeling the
propagationof light objectively, by comparing calculatedphotomet-
ric values with experimental measurements. For viewing transfor-
mations the quality is much more subjective.

a.

b.

Figure 1. a. Wide-angle pinhole photograph taken on the roof of the Church

of St. Ignatzio in Rome, classical example of perspective distortions from

[Pir70]; reprinted with the permission of Cambridge University Press. b.

Corrected version of the picture with transformation applied.

The perspective projection 1 is the viewing transformation that
has been primarily used for producing realistic images, in art, pho-
tography and in computer graphics.

One motivation for using perspective projection in computer

1By perspective projection or linear perspective we mean either central projection
or parallel projection into a plane.











 257

Correction of Geometric Perceptual Distortions in Pictures.

Denis Zorin, Alan H. Barr

California Institute of Technology, Pasadena, CA 91125

Abstract
We suggest an approachfor correcting several types of perceived

geometric distortions in computer-generated and photographic im-
ages. The approach is based on a mathematical formalization of
desirable properties of pictures.

From a small set of simple assumptions we obtain perceptually
preferable viewing transformations and show that these transforma-
tions can be decomposed into a perspective or parallel projection
followed by a planar transformation. The decomposition is eas-
ily implemented and provides a convenient framework for further
analysis of the image mapping.

We prove that two perceptually important properties are incom-
patible and cannot be satisfied simultaneously. It is impossible to
construct a viewing transformation such that the images of all lines
are straight and the images of all spheres are exact circles. Percep-
tually preferable tradeoffs between these two types of distortions
can depend on the content of the picture. We construct parametric
families of transformations with parameters representing the rela-
tive importance of the perceptual characteristics. By adjusting the
settings of the parameters we can minimize the overall distortion of
the picture.

It turns out that a simple family of transformations produces
results that are sufficiently close to optimal. We implement the pro-
posed transformations and apply them to computer-generated and
photographic perspective projection images. Our transformations
can considerably reduce distortion in wide-angle motion pictures
and computer-generated animations.
Keywords: Perception, distortion, viewing transformations,

perspective.

The process of realistic image synthesis can be subdivided into
two stages: modeling the physics of light propagation in three-
dimensional environments and projecting the geometry of three-
dimensional space into the picture plane (the “viewing transfor-
mation.”) While the first stage is relatively independent of our
understanding of visual perception, the viewing transformations are
based on the fact that we are able to perceive two-dimensional
patterns - pictures - as reasonably accurate representations of three-
dimensional objects. We can evaluate the quality of modeling the
propagationof light objectively, by comparing calculatedphotomet-
ric values with experimental measurements. For viewing transfor-
mations the quality is much more subjective.

a.

b.

Figure 1. a. Wide-angle pinhole photograph taken on the roof of the Church

of St. Ignatzio in Rome, classical example of perspective distortions from

[Pir70]; reprinted with the permission of Cambridge University Press. b.

Corrected version of the picture with transformation applied.

The perspective projection 1 is the viewing transformation that
has been primarily used for producing realistic images, in art, pho-
tography and in computer graphics.

One motivation for using perspective projection in computer

1By perspective projection or linear perspective we mean either central projection
or parallel projection into a plane.











 257

From Correction of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Right Looks Wrong (Sometimes)

161

From WIRED Magazine

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Strangeness

162

The Ambassadors
by Hans Holbein the Younger

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A

Strangeness

163

The Ambassadors
by Hans Holbein the Younger

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 164

Ray Picking
• Pick object by picking point on screen

• Compute ray from pixel coordinates.

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 165

Ray Picking
• Transform from World to Screen is:

• Inverse:

• What Z value?

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

w

z

y

x

w

z

y

x

W
W
W
W

I
I
I
I

M

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

−

w

z

y

x

w

z

y

x

I
I
I
I

W
W
W
W

1M

Note: Material on gray slides is optional for cs184.

S26 - O’BrienCS184/284A 166

r(t) = aw+ t(bw�aw) bs = [sx,sy,� f]

as = [sx,sy,�i]

Ray Picking
• Recall that:

• Points at z=-i stay at z=-i
• Points at z=-f stay at z=-f

r(t) = p+ t d

Depends on screen details, YMMV
General idea should translate...

Transforms Recap

167

S26 - O’BrienCS184/284A

Transforms Recap

Coordinate Systems
• Object coordinates

• Apply modeling transforms…
• World (scene) coordinates

• Apply viewing transform…
• Camera (eye) coordinates

• Apply perspective transform + homog. divide…
• Normalized device coordinates

• Apply 2D screen transform…
• Screen coordinates

168

S26 - O’BrienCS184/284A

Transforms Recap

Object coords World coords

169

Modeling
transforms

S26 - O’BrienCS184/284A

Transforms Recap

World coords

170

S26 - O’BrienCS184/284A

Transforms Recap

World coords Camera coords

170

Viewing
transform

S26 - O’BrienCS184/284A
171

Camera coords

Transforms Recap

S26 - O’BrienCS184/284A
171

Camera coords NDC

(1, 1, 1)

(–1, –1, –1)

Perspective
projection

and
homogeneous

divide

Transforms Recap

S26 - O’BrienCS184/284A

Transforms Recap

NDC Screen coords

172

(0, 0)

(w, h)

Screen
transform

(1, 1, 1)

(–1, –1, –1)

S26 - O’BrienCS184/284A

Transforms Recap

173

Screen coords(0, 0)

(w, h)

Rasterization

S26 - O’BrienCS184/284A

Things to Remember

Transform uses

• Basic transforms: rotate, scale, translate, …

• Modeling, viewing, projection, perspective

• Change in coordinate system

• Hierarchical scene descriptions by push/pop
Implementing transforms

• Linear transforms = matrices

• Transform composition = matrix multiplication

• Homogeneous coordinates for translation, projection

174

S26 - O’BrienCS184/284A

Acknowledgments

This slide set contain contributions from:

• Kayvon Fatahalian

• David Forsyth

• Pat Hanrahan

• Angjoo Kanazawa

• Ren Ng

• James O’Brien

• Mark Pauly

175

