Lecture 4:

Transforms

Computer Graphics and Imaging
UC Berkeley CS184/284A



Basic Transforms




Rotate
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Translate
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Scale
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Scale (Non-Uniform)
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What Are Transforms?

Just functions acting on points

o (x",y',z') = F(x,y,2)
* P' = F(P)
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Why Study Transforms?



Modeling A Robot Army

iRobot movie

Transforms can describe position of object instances

CS184/284A 526 - O'Brien




Posing a Character’s Skeleton

iRobot movie

Transforms can describe relative position of connected body parts
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Project Polygons in 3D to 2D Screen

https://www.youtube.com/watch?v=KWsbcBvYqN8


https://www.youtube.com/watch?v=KWsbcBvYqN8

Project Polygons in 3D to 2D Screen

https://www.youtube.com/watch?v=KWsbcBvYqN8


https://www.youtube.com/watch?v=KWsbcBvYqN8

Coordinate Systems are Arbitrary

So feel free to pick one you like!
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Coordinate Systems are Arb\i{trary

So feel free to pick one you like!

=
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Why Study Transforms?

Modeling

® Define shapes in convenient coordinates

® Enable multiple copies of the same object

e Efficiently represent hierarchical scenes
Viewing

® World coordinates to camera coordinates

® Parallel / perspective projections from 3D to 2D

Other

® Switching between coordinate systems
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Lecture Outline

How to think about and use transformations
® Types: rotate, translate, scale, ...
® Coordinate frames
® Composing multiple transformations
® Hierarchical transforms
® Perspective projection
How to implement?
® Represent transforms as matrices

¢ Homogeneous coordinates
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Linear Transforms = Matrices
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Scale Transform
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Scale Transform

x' = 0.5x
y' = 0.5y
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Scale Transform (non-uniform a.k.a anisotropic)

CS5S184/284A

S0.5.1.0
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Scale Transform (non-uniform a.k.a anisotropic)
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Reflection Transform
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Reflection Transform

x'=—1.0x
y p—
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Translation Transform
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Translation Transform

X'=x+)3
y:
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Shear Transform
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Shear Transform
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Linear Transforms = Matrices

v =ax+ by

y =cx+dy
| |a 0|z
Yy | e d||y
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Scale Matrix
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Scale Matrix
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Linear Transforms = Matrices

v =ax+ by
Y =cx+dy
b=M,;a
| |a 0|z ¢ = M,b
_y’___c d ||y d = Mjc
d = M;M,M,a
x' =M x d = (M;M,M,)a
Note: no translation (addition) yet. Will come later... d = Ma
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2D Coordinate Systems

L a
C

-
d || ¥y

0 X

“The x-axis of the plane’s
coordinate system [d]

expressed in the person’s
coordinate system."

Can interpret the columns of the matrix as the
x and y axes of the coordinate frame
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2D Coordinate Systems

¥ Y
| |a b ||z
Yy | e d||y
] ) ] - ) X
a | | a b 1 A
c| | c d|]|0 O .

“"The x-axis of the plane’s
coordinate system |U
expressed in the person’s
coordinate system."

Can interpret the columns of the matrix as the
x and y axes of the coordinate frame
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2D Coordinate Systems

=

™

b
d

a
C

O L

O K

b
d

b
d
b
d

X
) p.s
0 0 ’
- “"The x-axis of the plane’s
0 coordinate system |U
1 expressed in the person’s | ¢
_ coordinate system."

Can interpret the columns of the matrix as the
x and y axes of the coordinate frame
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2D Coordinate Systems

O L

b
d -

a
C

O L

O K

.
d -

.
d_
.
d_

— o O

Consider the inverse matrix...

CS5S184/284A
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Rotation Matrix
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Rotation Matrix
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Rotation Matrix

sin 6
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Rotation Matrix

—_—
cos ¢/ sin 6

cos§ —sinf

Ry = sinf  cosf
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Rotation Matrix

—_—
cos ¢/ sin 6

cos® —sinf

Ry = sinf  cosf
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Rotation Matrix

—_—
cos ¢/ sin 6

cos —sinf

Ry = sinf  cosf
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Rotation Matrix

sin 6

V V=VX+Vy

cosfl —sinéd t If you can figure out horizontal
R@ — sin 9 COS (9 ’ and vertical then you can do any

Where did this come from?

CS184/284A 526 - O'Brien
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2D Rotation Matrix: Another Way

A WEBCOMIC OF ROMANCE,
x ( SARCASM, MATH, AND LANGUAGE.

http://xkcd.com/184/
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2D Rotation Matrix: Another Way

A WEBCOMIC OF ROMANCE,
x ( SARCASM, MATH, AND LANGUAGE.

http://xkcd.com/184/
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2D Rotation Matrix: Another Way

A WEBCOMIC OF ROMANCE,
x ( SARCASM, MATH, AND LANGUAGE.

http://xkcd.com/184/

CS184/284A (What's wrong with this picture??) S26 - O'Brien



2D Rotation Matrix: Another Way

A WEBCOMIC OF ROMANCE,
x ( SARCASM, MATH, AND LANGUAGE.

http://xkcd.com/184/

CS184/284A (What's wrong with this picture??) S26 - O'Brien
(Left handed matrix!)



Translation??

T11
—_—
v =x+t,
y =y+t,
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Solution: Homogenous Coordinates

Add a third coordinate (w-coordinate)
® 2D point =(x,y, )T

® 2D vector =(x,y, O)T

CS184/284A 526 - O'Brien
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Solution: Homogenous Coordinates

Add a third coordinate (w-coordinate)
® 2D point =(x,y, )T

® 2D vector =(x,y, O)T

Now you can express translation as a matrix!!
x’ 1 L X x4+t
y | = |0 ty | -y = v+t
w'’ 0 1 1 1
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Homogenous Coordinates

If w is not zero but not one either

Equivalent
® Divide entire vector by w 64 37
® Generally you cando it later = [12| o g=| ©
30 15
2 1
d d
b b
M
¢ ¢ al3
3 3
v _ v 673
3 3 c/3

1
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Homogenous Coordinates

If w is not zero but not one either

Equivalent
® Divide entire vector by w 64 37
® Generally you cando it later = [12| o g=| ©
30 15
2 1

a a
b b
M
¢ ¢ al3
3 3
M _ ~M b/3
3 3 c/3

1
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Homogenous Coordinates

If w is not zero but not one either

Equivalent
® Divide entire vector by w 64 37
® Generally you cando it later = [12| o g=| ©
30 15
2 1

Valid operation if w-coordinate of resultis 1 or O

® vector + vector = vector
da d
b b
M

C C al3
3 3

M _ M b/3
3 3 c/3

1

CS184/284A 526 - O'Brien
32



Homogenous Coordinates

If w is not zero but not one either

Equivalent
® Divide entire vector by w 64 37
® Generally you cando it later = [12| o g=| ©
30 15
2 1

Valid operation if w-coordinate of resultis 1 or O

® vector + vector = vector
da d
® point - point = vector b M |2
& C al3
3 3
M _ M b/3
3 3 c/3

1
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Homogenous Coordinates

If w is not zero but not one either

Equivalent
® Divide entire vector by w 64 37
® Generally you cando it later = [12| o g=| ©
30 15
2 1

Valid operation if w-coordinate of resultis 1 or O

® vector + vector = vector
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® point - point = vector b M |2
o S ‘ - ¢ ¢ al3
oin vector = poin 3 3
P P M _ v | 273
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Homogenous Coordinates

If w is not zero but not one either
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® Divide entire vector by w 64 37
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Homogenous Coordinates

If w is not zero but not one either

Equivalent
® Divide entire vector by w 64 37
® Generally you cando it later = [12| o g=| ©
30 15
2 1
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Homogenous Coordinates

If w is not zero but not one either
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® Divide entire vector by w 64 37
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30 15
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Valid operation if w-coordinate of resultis 1 or O
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Homogenous Coordinates

If w is not zero but not one either
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30 15
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Homogenous Coordinates

If w is not zero but not one either

Equivalent
® Divide entire vector by w 64 37
® Generally you cando it later = [12| o g=| ©
30 15
2 1

Valid operation if w-coordinate of resultis 1 or O
® vector + vector = vector
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Homogenous Coordinates

If w is not zero but not one either

Equivalent
® Divide entire vector by w 64 37
® Generally you cando it later = [12| o g=| ©
30 15
2 1

Valid operation if w-coordinate of resultis 1 or O

® vector + vector = vector
® point - point = vector
® point + vector = point
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Homogenous Coordinates

If w is not zero but not one either

Equivalent
® Divide entire vector by w 64 37
® Generally you cando it later = [12| o g=| ©
30 15
2 1

Valid operation if w-coordinate of resultis 1 or O

® vector + vector = vector
® point - point = vector

® point + vector = point
® point + point =7??

CS184/284A 526 - O'Brien
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Affine Transformations

Affine map = linear map + translation
'\ _ (a b\ [z N Ly
'] \e d Y t,

Using homogenous coordinates:

UNERRY

CS184/284A 526 - O'Brien
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2D Transformations
(homogenous coordinates)

Scale s. 0 0
S(Sz,8y) = | 0 s, O
0O 0 1
Rotation
cosae —sina 0
R(a) = | sina cosa 0
0 0 1
Translation
1 0 ¢,
T(ty t,) = [0 1 t,
0O 0 1
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2D Transformations
(homogenous coordinates)

Scale s. 0 0
S(Sz,8y) = | 0 s, O
0 0 1
Rotation
cosae —sina (0
R(a) = | sina cosa O
0 0 1
Translation
1 0 ¢,
T(ty,t,) = |0 1 ¢,
0 0 1
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2 D TranSfOrmatiOns “Projective Tral:lsform"
(homogenous coordinates) (any matrix)

Scale

s. 0 0
S(S.’L‘asy) — 0 Sy 0
0O 0 1
Rotation
cosae —sina (0
R(a) = | sina cosa 0
0 0 1
Translation
1 0 ¢,
0 0 1

CS184/284A 526 - O'Brien
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Inverse Transform
M—l

M ! is the inverse of transform M in both a matrix
and geometric sense

» Special cases:

* Translation: negate [ and fy
» Rotation: transpose

» Scale: Invert diagonal (axis-aligned scales)

e Others:

* |nvert matrix

e |Invert SVD matrices

CS184/284A 526 - O'Brien
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Composing Transforms



Composite Transform
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Translate Then Rotate?
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Translate Then Rotate?
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Translate Then Rotate?

1(1,0) Rys - 11,0
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Rotate Then Translate

CS184/284A 526 - O'Brien
40



Rotate Then Translate
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Rotate Then Translate

11,0y - Has5
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Transform Ordering Matters!
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Transform Ordering Matters!

Matrix multiplication is not commutative

Iigs - L(10) F 1(1,0) - LT45
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Transform Ordering Matters!

Matrix multiplication is not commutative

Iigs - L(10) F 1(1,0) - LT45

Recall the matrix math represented by these symbols:

CS184/284A

' cos 45°

sin 45°
0

— sin 45°
cos 45°
0

0

0
1

1
0
0

0
1

0

1

0
1

42

o O =

0 1
1 0
0 1

' cos 45°

sin 45°
0

— sin 45°
cos 45°
0

526 - O'Brien
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Transform Ordering Matters!

Matrix multiplication is not commutative

Iigs - L(10) F 1(1,0) - LT45

Recall the matrix math represented by these symbols:

' cos 45°
sin 45°
0

Note that matrices are applied right to left:

— sin 45°

— sin 45°
cos 45°
0

11,0y - Ras

CS184/284A

0

0
1

o O =

0 1
1 0
0 1

1 0

0 1
0 0

£

-
0
1_

42

o O =

' cos 45°

0 1
1 0
0 1

sin 45°
0

' cos 45°
sin 45°
0

cos 45°
0

—sin45° 0
cos4b® 0
0 1_
ol [z
01 |y
1_ _1_
526 - O'Brien




Composing Transforms

Sequence of transforms A4, Az, As, ...
® Compose by matrix multiplication
® Very important for performance!

® Very important for complexity!

CS184/284A 526 - O'Brien
43



Composing Transforms

Sequence of transforms A4, Az, As, ...
® Compose by matrix multiplication
® Very important for performance!

® Very important for complexity!

Ap(o . Ag(A1(x)) = Ay Ag- Al - (y)
1
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Composing Transforms

Sequence of transforms A4, Az, As, ...
® Compose by matrix multiplication
® Very important for performance!

® Very important for complexity!

X

| |
Pre-multiply n matrices to obtain a
single matrix representing combined transform
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Building Complex Transforms
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Building Complex Transforms

How to rotate around a given point ¢?
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Building Complex Transforms

How to rotate around a given point ¢?
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Building Complex Transforms
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Building Complex Transforms

How to rotate around a given point ¢?
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Building Complex Transforms

How to rotate around a given point ¢?
1. Translate center to origin
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Building Complex Transforms

How to rotate around a given point ¢?
1. Translate center to origin
2. Rotate
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Building Complex Transforms

How to rotate around a given point ¢?
1. Translate center to origin
2. Rotate
3. Translate back
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Building Complex Transforms

How to rotate around a given point ¢?
1. Translate center to origin
2. Rotate
3. Translate back

Matrix representation
T(c) - R(a) - T(—c)
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Building Complex Transforms

How to rotate around a given point ¢?
1. Translate center to origin
2. Rotate
3. Translate back

Matrix representation
Mcomposite — T(C) ' R(Oé) ' T(—C)
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Building Not-Axis-Aligned Scale Matrix
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Building Not-Axis-Aligned Scale Matrix
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Building Not-Axis-Aligned Scale Matrix
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Building Not-Axis-Aligned Scale Matrix
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Building Not-Axis-Aligned Scale Matrix
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Building Not-Axis-Aligned Scale Matrix
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Building Not-Axis-Aligned Scale Matrix

cos(45) —sin(45)]

sin(45)  cos(45) |
R(45)

CS5S184/284A

. _1 O_ .

_O 2_
s(1,2)

cos(—45) —sin(—45) 5

sin(—45) cos(—45) | 1
R(-45) -

46
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Building Not-Axis-Aligned Scale Matrix

cos(45) —sin(45)

R(45)

CS5S184/284A

sin(45)  cos(45) |

s(1,2)

cos(—45) —sin(—45)

[ sin(=45)  cos(—45)
R(-45)

47

1.5
—0.5

~05
1.5
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Useful Matrix Decompositions

Eigen system
Lambda is diagonal

Singular Value Decomposition (SVD)
S is diagonal
Q and R are orthonormal

Polar Decomposition
S is diagonal
P W and R are orthonormal

PR = Q

CS184/284A

48

A = VAV
A = QSR'
A = PRSR'

Note: V=Q=R if A symmetric and real
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Useful Matrix Decompositions

Eigen system
Lambda is diagonal

A = VAV

Singular Value Decomposition (SVD) . T
S is diagonal A T QSR
Q and R are orthonormal

Polar Decomposition
S is diagonal

P W and R are orthonormal
PR=Q Note: V=Q=R if A symmetric and real

A = PRSR'

Rotation Matrix =~ Orthonormal (det+1)

Axis-aligned Scale Matrix =~ Diagonal
Scale Matrix =~ OrthonormalTranspose . Diagonal . Orthonormal

CS184/284A 526 - O'Brien
48



Coordinate Systems

49



Coordinate System Transform

In general, a new coordinate frame is defined by an
origin (point) and two unit axes (vectors)

v

L

Given coordinates in the (o,u,v) reference frame, what
is the transform to coordinates in the (x,y) frame?

CS184/284A 526 - O'Brien
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Coordinate System Transform Matrix

Uy Ur Og

u VvV O
F:[O 0 11: Uy Uy Oy
0 0 1

X ® Columns of matrix are defined
by the reference frame’s
- coordinates in the world

\
ﬁ ® Gives a new way to “read oft”
columns of matrix

O/

CS184/284A 526 - O'Brien
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Coordinate System Transform - Example

Write down a matrix T representing this transform:

.......................................... Yo © 6 6 6 o o o o6 o o o o o 0o 0o 0o o o 0
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Coordinate System Transform - Example

Write down a matrix T representing this transform:

.......................................... Yo © 6 6 6 o o o o6 o o o o o 0o 0o 0o o o 0
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Coordinate System Transform - Example

Write down a matrix T representing this transform:

&7

CS5S184/284A
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Coordinate System Transform - Example

Write down a matrix T representing this transform:

&7

CS5S184/284A

...............................................................



Coordinate System Transform - Example

Write down a matrix T representing this transform:

(ﬂﬂ) lu v 01
> 0O 0 1
T
—
V20 1
V2 _9 |
2
(0, =2) 0 0 1

CS184/284A 526 - O'Brien
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Two Interpretations of A Transform

Interpretation 1: Transforms object points

L~
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Two Interpretations of A Transform

Interpretation 1: Transforms object points

=

— T(-1,-1)
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Two Interpretations of A Transform

Interpretation 1: Transforms object points

=

— T(-1,-1)——S(0.5,0.5)
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Two Interpretations of A Transform

Interpretation 1: Transforms object points

e AT SR

— T(-1,-1) —— S(0.5,0.5) — R(450) ——
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Two Interpretations of A Transform

Interpretation 1: Transforms object points

S AU S .

— T(-1,-1) —5(0.5,0.5) — R(45°) —— T(1,1)—
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Two Interpretations of A Transform

Interpretation 1: Transforms object points

S AU S .

— T(-1,-1) —5(0.5,0.5) — R(45°) —— T(1,1)—

Interpretation 2: Transforms coordinate system
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Two Interpretations of A Transform

Interpretation 1: Transforms object points

S AU S .

— T(-1,-1) —5(0.5,0.5) — R(45°) —— T(1,1)—

Interpretation 2: Transforms coordinate system

L~
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Two Interpretations of A Transform

Interpretation 1: Transforms object points

S AU S .

— T(-1,-1) —5(0.5,0.5) — R(45°) —— T(1,1)—

Interpretation 2: Transforms coordinate system

3 L

— T(1,1)
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Two Interpretations of A Transform

Interpretation 1: Transforms object points

S AU S .

— T(-1,-1) —5(0.5,0.5) — R(45°) —— T(1,1)—

Interpretation 2: Transforms coordinate system

T

—T11,1)— S
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Two Interpretations of A Transform

Interpretation 1: Transforms object points

S AU S .

— T(-1,-1) —5(0.5,0.5) — R(45°) —— T(1,1)—

Interpretation 2: Transforms coordinate system

T

— T1(1,1) 1 S(2,2) — R(-45°) —MmM8M8Mm ™™™
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Two Interpretations of A Transform

Interpretation 1: Transforms object points

S AU S .

— T(-1,-1) —5(0.5,0.5) — R(45°) —— T(1,1)—

Interpretation 2: Transforms coordinate system

T

— T(1,1) — S(2,2) — R(-45°)

54
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3D Transforms




Attendance

If you are seated in class, go to this form and sign in:

® https://tinyurl.com/184class

i

Word of the day:

® rotations

CS184/284A S26 - O'Brien
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3D Transformations

s, 0 0 0
Scale 0 s 00
Sass:) = 1 g 0 5, 0
0 0 0 1
Translation
1 0 0 t,
0 1 0 ¢
Tlaortyta) =19 0 1 4.
0 0 0
Coordinate Change
(Frame-to-world)
u VvV W O
F(u,v,w,0) = 00 0 1

CS184/284A 526 - O'Brien
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3D Transformations

Use homogeneous coordinates again:
® 3D point =(x,y,z 1)7

e 3D vector = (x, y, z, O)T

Use 4x4 matrices for affine transformations

x’ a b c t, X
y| _ |d e [t Y
71 g h @ t, 2
1 0 O O 1

CS184/284A 526 - O'Brien
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Rotations

Rotations still orthonormal

Det(R) =1 # —1

Preserve lengths and distance to origin

3D rotations DO NOT COMMUTE!
Right-hand rule
Unique matrices

CS184/2BAA S26 - O'Brien
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2D and 3D Rotations

2D rotations implicitly rotate about a third
out-of-plane axis

(T D

CS184/2BAA S26 - O'Brien
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3D Transformations

Rotation around x-, y-, or z-axis

e Also known as “direction-cosine” matrices

CS184/284A

1 0 0
0 cosa —sina
0 sina cos«
0 0 0
cosax (0 sino
0 1
—sina 0 coso
0 0
cose —sina 0
sinoe cosa 0
0 0 1
0 0 0

61

Rotation
around
X-axis

— O O O
N

— O O O

— O O O
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3D Rotations

Compose any 3D rotation from R, R, R;?

Razyz (&7 0, ’7) = R, (CV) Ry (ﬁ) R (7)

A list of the Euler angles is NOT a vector!

CS184/284A 526 - O'Brien
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3D Rotations

Compose any 3D rotation from R, R, R;?

Razyz (@7 0, 7) = R, (CV) Ry (ﬁ) R. (7)
® So-called Euler angles

A list of the Euler angles is NOT a vector!

CS184/284A 526 - O'Brien
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3D Rotations

Compose any 3D rotation from R, R, R;?

R:I;yz (Qv 0, 7) = R, (CV) Ry (ﬁ) R. (AY)
® So-called Euler angles

® Often used in flight simulators: roll, pitch, yaw

A list of the Euler angles is NOT a vector!

CS184/284A 526 - O'Brien
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3D Rotations

Compose any 3D rotation from R, R, R;?

Razyz (@7 0, 7) = R, (CV) Ry (ﬁ) R. (7)
® So-called Euler angles

® Often used in flight simulators: roll, pitch, yaw

A list of the Euler angles is NOT a vector!

Center of
mass '

CS184/284A 526 - O'Brien
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3D Rotations

Compose any 3D rotation from R, R, R;?

Ra:yz (va 0, 7) = R, (a) Ry (ﬁ) R (V)

® So-called Euler angles

e Often used in flight simulators: roll, pitch, yaw

® Problems:
Gimbal Lock!
Not unique!
Ugly manifold!
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3D Rotations

Compose any 3D rotation from R, R, R;?

Ra:yz (&7 0, 7) = R, (a) Ry (ﬁ) R (V)

® So-called Euler angles

e Often used in flight simulators: roll, pitch, yaw

® Problems:
Gimbal Lock!
Not unique!
Ugly manifold!
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3D Rotation Around Arbitrary Axis
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3D Rotation Around Arbitrary Axis

 Easy to understand but less useful method:
. rotate about x axis to put w into the x-y plane
rotate about 7 axis aligh w with the x axis

rotate O degrees about x axis
undo #2 and then #1
composite together

Al O

How would you take a derivative w.r.t. w?

CS184/284A 526 - O'Brien
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3D Rotation Around Arbitrary Axis
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3D Rotation Around Arbitrary Axis

Construct orthonormal frame
transformation F with p, u, v, w,
where p and w match the rotation axis
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3D Rotation Around Arbitrary Axis

Construct orthonormal frame
transformation F with p, u, v, w,
where p and w match the rotation axis

Apply the transform (F R,(0) F-)
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3D Rotation Around Arbitrary Axis

Construct orthonormal frame
transformation F with p, u, v, w,
where p and w match the rotation axis

Apply the transform (F R,(0) F-)

Interpretation:
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3D Rotation Around Arbitrary Axis

Construct orthonormal frame
transformation F with p, u, v, w,
where p and w match the rotation axis

Apply the transform (F R,(0) F-)

Interpretation:

® Rotate to Z axis, rotate, then move back

CS184/284A 526 - O'Brien
66



Rodrigues’ Rotation Formula

Rotation by angle a around axis n

0 —Ny Ty
R(n,a) = cos(a)I + (1 —cos(a))nn” + sin(a) | n. 0 —ng
—Ty Ny 0
S
N

Turn cross-product into
matrix multiplication!

nxv=Ny

Alternative notation

nxv=|nlv

nXxv=nx)v

CS184/284A 526 - O'Brien
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Rodrigues’ Rotation Formula

Rotation by angle a around axis n

0 —Ny Ty

R(n,a) = cos(a)I + (1 —cos(a))nn” + sin(a) | n. 0 —ng

—Ty Ny 0
S

N

How to prove this magic formula? Turn cross-product into
matrix multiplication!

nxXv=Ny

Alternative notation

nxv=|nlv

nXxv=nx)v
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Rodrigues’ Rotation Formula

Rotation by angle a around axis n

0 —Ny Ty
R(n,a) = cos(a)I + (1 —cos(a))nn” + sin(a) | n. 0 —ng
—Ty Ny 0
—_—— —_—_—
N
How to prove this magic formula? Turn cross-product into
matrix multiplication!
® Matrix N computes a cross-product: nxv=Nv

Alternative notation

nxv=|nlv

nXxv=nx)v
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Rodrigues’ Rotation Formula

Rotation by angle a around axis n

0 —Ny Ty
R(n,a) = cos(a)I + (1 —cos(a))nn” + sin(a) | n. 0 —ng
—Ty Ny 0
N——— e ——————
N
How to prove this magic formula? Turn cross-product into
matrix multiplication!
® Matrix N computes a cross-product: nxv=Nv
® Assume orthonormal system ey, €2, n Alternative notation

nxv=|nlv

nXxv=nx)v
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Rodrigues’ Rotation Formula

Rotation by angle a around axis n

0 —Ny Ty
R(n,a) = cos(a)I + (1 —cos(a))nn” + sin(a) | n. 0 —ng
—Ty Ny 0
N —
N
How to prove this magic formula? Turn cross-product into
matrix multiplication!
® Matrix N computes a cross-product: nxv=Nv
® Assume orthonormal system ey, €2, n Alternative notation
nxv=|nlv
Rn = n
, nXxv=nx)v
Re; = cosae;+sinaes
Re, = —sinaeq -+ cosaes

CS184/284A 526 - O'Brien
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Exponential Maps

* Direct representation of arbitrary rotation

» AKA: axis-angle, angular displacement
vector

* Rotate O degrees about some axis

* Encode O by length of vector

0= |r

CS184/2BAA S26 - O'Brien
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Exponential Maps

e Allows tumbling

* No gimbal-lock!

* Orientations are space within n-radius ball
* Nearly unique representation

* Singularities on shells at 2n

* Nice for interpolation

CS184/2BAA S26 - O'Brien
69



Note: Material on gray slides is optional for cs184.

-xponential Maps

CS

o 1al?
Why exponential I Ere el i

iIng once by 6,

et's do n smal

rotations of 8/n

184/284A

* Now the angle I1s small, so the

rotated X Is approximately

X + (0/n)r x x

i (I : (f';;w) X

* Do 1t n times and you get

B (I : (fz)e)nx

526 - O'Brien
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Note: Material on gray slides is optional for cs184.

-xponential Maps

x' = lim (I | (rx)@) X
n

nN—2 00

* Remind you of anything?

; a\"™ . A a
lim (1 | ) s a definition of €
n— oo n

» So the rotation we want is the exponential of (1x )8!
%/ — e(l’X)G’X
WG

Rotation matrix!

* In fact you can just plug it into the infinite series...
CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

-xponential Maps

* Why exponential!

. . X
» Recall series expansion of €

2 5

LRI
e = +1—!+2—!+3—!+-~

CS[184/284A S26 - O'Brien



Note: Material on gray slides is optional for cs184.

-xponential Maps

* Why exponential!
» Recall series expansion of e
* Euler: what happens If you put In ;@ for X

X

o -0 —ig® o
o ETRECTERNETRRT

ik 1|_62|64| ‘ 6|_63|
HETRbTRE RS TR

CS/184/284A eie o COS(6> ¥ lSlIl(e) 526 - O'Brien .




Note: Material on gray slides is optional for cs184.

-xponential Maps

SPE s me (rick with matrices!

#x) _ 1 (Ex)0  (Ex)?0° (Fx)’0° (Fx)*6*

o ETEREEPTRERNEE TR
But notice that: (f’><)3 = — (e

#x)8 _ 1. (Ex)0  (Ex)0° —(tx)®° —(tx)0*

- e ETEEETTEREE TR —

CS184/284A S26 - O'Brien ,



Note: Material on gray slides is optional for cs184.

-xponential Maps

#x) _ 1 (Fx)0  (Ex)?0° —(Ex)0° —(Fx)%0*

B 11 T o1 T o3
: 0 03 02 o
(Fx)0 _ (2 A SOAYA Bt

e —(l’X) (1' 31 )—I—I—I—(I’X) (Iz' A1 )

e T = (#x)sin(8) + I+ (F#x)%(1 — cos(0))

Compare to Rodrigue’s Formula
CS184/284A S26 - O'Brien .




Note: Material on gray slides is optional for cs184.

Rotation Matrices

* bigen system

* One real eigenvalue

 Real axis Is axis of rotation

* Imaginary values are 2D rotation as complex number

* Logarithmic formula

e 0
(tx) =In(R) = zsine(R—RT)
0 = cos ( > )

CS[184/284A Similar formulae as for exponsgat@Brien ..




Note: Material on gray slides is optional for cs184.

Quaternions

» More popular than exponential maps
« Natural extension of €' = cos(0) +isin(0)
* Due to Hamilton (1843)

* Interesting bit of drama....

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Quaternions

* [hree-Times-As-Complex Numbers

o (217Z27Z37S> o (Z7S>

q =121+ J2a + Kz +$

ij=k ji=—k
==k =—1 ik =3 ki
ki=j itk=—]

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Quaternions

» Multiplication natural consequence of dein.

a-p=(ZgSp+2ZpSq+2p X2 , SpSqg—12p-2g)
» Conjugate

q*:(—Z,S)
» Magnitude
2 2 %
q||" =Z-Z1+8 =q-q

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Quaternions

* Vectors as quaternions

v = (V,O)
* Rotations as quaternions
0 v,

r = (Fsin—,cos <)
» Rotating a vector 2

e *
)GV e e Cicel ¢

» Composing rotations

r —r1*rn <= (Compare to Exp. Map

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Quaternions

* No tumbling
* No gimbal-lock
» Orientations are “double unigue”

» Surface of a 3-sphere In 4D ||r|| =1

* Nice for interpolation

CS[184/284A S26 - O'Brien




Interpolation

Note: Material on gray slides is optional for cs184.

CS

Euler angles

Exponential maps or quaternions

82



Interpolation

Note: Material on gray slides is optional for cs184.

CS

Euler angles

Exponential maps or quaternions

82



Hierarchical Transforms

83



Skeleton - Linear Representation

head

torso

right upper arm
right lower arm
right hand

left upper arm
left lower arm
left hand

right upper leg
right lower leg
right foot

left upper leg
left lower leg
left foot

CS184/284A
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Linear Representation

Each shape associated with its own transform
A single edit can require updating many transforms

® E.g. raising arm requires updating transforms for
all arm parts

CS184/284A 526 - O'Brien
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Skeleton - Hierarchical Representation

torso
head
right arm
upper arm
lower arm
hand
left arm
upper arm
lower arm
hand
right leg
upper leg
lower leg
foot
left leg
upper leg
lower leg
foot

CS184/284A
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Skeleton - Hierarchical Representation

torso
head
right arm
upper arm
lower arm
hand
left arm
upper arm
lower arm
hand
right leg
upper leg
lower leg
foot
left leg
upper leg
lower leg
foot

CS5S184/284A
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Hierarchical Representation

CS184/284A 526 - O'Brien
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Hierarchical Representation

Grouped representation (tree)

CS184/284A 526 - O'Brien
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Hierarchical Representation

Grouped representation (tree)

® Each group contains subgroups and/or shapes
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Hierarchical Representation

Grouped representation (tree)
® Each group contains subgroups and/or shapes

® Each group is associated with a transform relative to
parent group
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Hierarchical Representation

Grouped representation (tree)
® Each group contains subgroups and/or shapes

® Each group is associated with a transform relative to
parent group

® Transform on leaf-node shape is concatenation of all
transforms on path from root node to leaf
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Hierarchical Representation

Grouped representation (tree)
® Each group contains subgroups and/or shapes

® Each group is associated with a transform relative to
parent group

® Transform on leaf-node shape is concatenation of all
transforms on path from root node to leaf

® Changing a group’s transform affects all parts
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Hierarchical Representation

Grouped representation (tree)
® Each group contains subgroups and/or shapes

® Each group is associated with a transform relative to
parent group

® Transform on leaf-node shape is concatenation of all
transforms on path from root node to leaf

® Changing a group’s transform affects all parts

® Allows high level editing by changing only one node
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Hierarchical Representation

Grouped representation (tree)
® Each group contains subgroups and/or shapes

® Each group is associated with a transform relative to
parent group

® Transform on leaf-node shape is concatenation of all
transforms on path from root node to leaf

® Changing a group’s transform affects all parts
® Allows high level editing by changing only one node

® E.g. raising left arm requires changing only one
transform for that group

CS184/284A 526 - O'Brien
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Skeleton - Hierarchical Representation

translate(0, 10);

CS184/284A 526 - O'Brien
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Skeleton - Hierarchical Representation

translate(0, 10);
drawTorso();

CS184/284A 526 - O'Brien
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Skeleton - Hierarchical Representation

translate(0, 10);

drawTorso();
pushmatrix(); // push a copy of transform onto stack

translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform

drawHead();
popmatrix(); // pop current transform off stack

CS184/284A 526 - O'Brien
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Skeleton - Hierarchical Representation

translate(0, 10);

drawTorso();
pushmatrix(); // push a copy of transform onto stack

translate(0, 5); // right-multiply onto current transform

rotate(headRotation); // right-multiply onto current transform
drawHead();
popmatrix(); // pop current transform off stack
pushmatrix();
translate(-2, 3);
rotate(rightShoulderRotation);
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Skeleton - Hierarchical Representation

translate(0, 10);

drawTorso();
pushmatrix(); // push a copy of transform onto stack

translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform D

drawHead();
popmatrix(); // pop current transform off stack

pushmatrix();
translate(-2, 3);

rotate(rightShoulderRotation);
pushmatrix();
translate(0, -3);
rotate(elbowRotation);

CS184/284A 526 - O'Brien
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Skeleton - Hierarchical Representation

translate(0, 10);

drawTorso();
pushmatrix(); // push a copy of transform onto stack

translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform D

drawHead();
popmatrix(); // pop current transform off stack

pushmatrix();
translate(-2, 3);

rotate(rightShoulderRotation);
pushmatrix();
translate(0, -3);
rotate(elbowRotation); ~

pushmatrix();
translate(0, -3);
rotate(wristRotation);
drawHand();

popmatrix();

CS184/284A 526 - O'Brien
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Skeleton - Hierarchical Representation

translate(0, 10);

drawTorso();
pushmatrix(); // push a copy of transform onto stack

translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform D

drawHead();
popmatrix(); // pop current transform off stack

pushmatrix();
translate(-2, 3);

rotate(rightShoulderRotation);
pushmatrix();
translate(0, -3);
rotate(elbowRotation); Q

pushmatrix();
translate(0, -3);
rotate(wristRotation);

popmatrix();
popmatrix();
popmatrix();
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Skeleton - Hierarchical Representation

translate(0, 10);

drawTorso();
pushmatrix(); // push a copy of transform onto stack

translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform D

drawHead();
popmatrix(); // pop current transform off stack

pushmatrix();
translate(-2, 3);

rotate(rightShoulderRotation);
pushmatrix();
translate(0, -3);
rotate(elbowRotation); Q

pushmatrix(); ---------
translate(O, -3); .
rotate(wristRotation); Fl g ht

hand

popmatrix(); ---------
popmatrix();
popmatrix();
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Skeleton - Hierarchical Representation

translate(0, 10);

pushmatrix(); // push a copy of transform onto stack

translate(0, 5); // right-multiply onto current transform

rotate(headRotation); // right-multiply onto current transform D

popmatrix(); // pop current transform off stack
pushmatrix();
translate(-2, 3);
rotate(rightShoulderRotation);

pushmatrix(); ---------------—--—--—--
translate(0, -3);
rotate(elbowRotation);

pushmatrix(); --------- I"Ig ht
translate(0, -3); . h |OW€I"
rotate(wristRotation); g t arm

popmatrix(); ---------
popmatrix(); ------------------------

popmatrix();

CS184/284A
89

{
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Skeleton - Hierarchical Representation

translate(0, 10);

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform

rotate(headRotation); // right-multiply onto current transform
popmatrix(); // pop current transform off stack
pushmatrix(); ------------------------------"----------
translate(-2, 3);
rotate(rightShoulderRotation);

pushmatrix(); ---------------—--—--—--
translate(0, -3);

rotate(elbowRotation); :
pushmatrix(); --------- I"ight
translate(0, -3); :ah lower I"Ig ht
rotate(wristRotation); I':\Ig C.it arm arm
an
rou
popmatrix(); --------- 9 P group
popmatrix(); ------------------------
popmatrix(); --------------------------oo oo
CS184/284A S26 - O'Brien
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Skeleton - Hierarchical Representation

translate(0, 10);

pushmatrix(); // push a copy of transform onto stack
translate(0, 5); // right-multiply onto current transform
rotate(headRotation); // right-multiply onto current transform

popmatrix(); // pop current transform off stack

pushmatrix(); -------------------m
translate(-2, 3);

= rotate(rightShoulderRotation); “

pushmatrix(); ---------------—--—--—--
translate(0, -3);
rotate(elbowRotation);

pushmatrix(); --------- I’Ig ht
translate(0, -3); i +h lower r|g ht
rotate(wristRotation); L‘g (.jt arm arm
an
rou
popmatrix(); --------- 9 P group
popmatrix(); ------------------------
popmatrix(); -------------------
CS184/284A S26 - O'Brien
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Viewing and Perspective




Viewing and Perspective Transforms

7 (0,0) (w,0)
° °

\
A
B

(0,h)® ® (w;h)

Scene modeling Rasterization
3D world coordinates 2D screen coordinates

CS184/284A 526 - O'Brien
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Camera Space
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“Standard” Camera Space

We will use this convention for
"standard” camera coordinates:

® camera located at the origin
® |looking down negative z-axis

® vertical vector is y-axis

® (x-axis) orthogonal toy & z

CS184/284A 526 - O'Brien
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"Standard” Camera Coordinates

Resulting image

CS184/284A 526 - O'Brien
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"Standard” Camera Coordinates
y

Resulting image

(z-axis pointing away from scene)

CS184/284A 526 - O'Brien
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Consider A Camera Pointing in The World
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Consider A Camera Pointing in The V\[pﬂd..

U = up vector

1

vV =view direction

-3 — —

e =eye pomt
(position of ca_mera)

—~.--

— h - — -




E e p——
- -

Camera “Look-At” Transformation

= up vector

v=viewdirection . . ..
E—— o = eye pomt — ——
- - (position of eamera) :

-~
.

= In|c;ut’° e, u&v given’ in world space coofdinates ;
Output transform matrlx from world space .
to standa'rd camera space ‘.4- .

. 7

29

- - ” - = | A\'



Camera "Look-At"” Transformation

"Look-At" transformation

CS184/284A 526 - O'Brien
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Camera "Look-At"” Transformation

"Look-At" transformation

® Given eye point e, up vector u, view direction v

CS184/284A 526 - O'Brien
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Camera "Look-At"” Transformation

"Look-At" transformation

® Given eye point e, up vector u, view direction v

® Assume u and v are orthonormal

CS184/284A 526 - O'Brien
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Camera "Look-At"” Transformation

"Look-At" transformation

® Given eye point e, up vector u, view direction v
® Assume u and v are orthonormal

® Find right vectorr = v x u

CS184/284A 526 - O'Brien
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Camera "Look-At"” Transformation

"Look-At" transformation

® Given eye point e, up vector u, view direction v
® Assume u and v are orthonormal

® Find right vectorr = v x u

® Transform camera (e,r,u,v) to standard camera:
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Camera "Look-At"” Transformation

"Look-At" transformation

® Given eye point e, up vector u, view direction v
® Assume u and v are orthonormal

® Find right vectorr = v x u

® Transform camera (e,r,u,v) to standard camera:

® |ocated at the origin
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Camera "Look-At"” Transformation

"Look-At" transformation

® Given eye point e, up vector u, view direction v
® Assume u and v are orthonormal

® Find right vectorr=v x u
® Transform camera (e,r,u,v) to standard camera:
® |ocated at the origin

® |ooking down negative z axis
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Camera "Look-At"” Transformation

"Look-At" transformation

® Given eye point e, up vector u, view direction v
® Assume u and v are orthonormal

® Find right vectorr = v x u

® Transform camera (e,r,u,v) to standard camera:
® |ocated at the origin
® |ooking down negative z axis

® up vector is y axis

CS184/284A 526 - O'Brien
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Camera "Look-At"” Transformation

CS184/284A 526 - O'Brien
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Camera "Look-At"” Transformation

Inverse: Matrix from standard camera to world space

T Uy — Uy Cr
Fy Uy —Uy €y
T~ U 5 — Uy €

CS184/284A 526 - O'Brien
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Camera "Look-At"” Transformation

Inverse: Matrix from standard camera to world space
(Why? This is a coordinate frame transform to (e,r,u,-v))

T Uy — Uy Cr
Fy Uy —Uy €y
T~ U 5 — Uy €

CS184/284A 526 - O'Brien
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Camera "Look-At"” Transformation

Inverse: Matrix from standard camera to world space
(Why? This is a coordinate frame transform to (e,r,u,-v))

T Uy — Uy Cr
Fy Uy —Uy €y
T~ U 5 — Uy €

"Look-at” (world->camera) transform is the inverse of
above matrix:

re Uy —Vyp Eop T Ty r, 0 1 0 0 —e,
Ty Uy —VUy €y B Uy Uy u, 0 0 1 0 —ey
r, U, —VU, €, | v, —v, —v, O 0 0 1 —e,
0 0 0 1 0 0 0 1 0O 0 O 1

CS184/284A 526 - O'Brien
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Transform Camera Space to Image Plane?

How to transform from 3D camera space to 2D image plane?
® One option: orthographic projection (just delete 2)
e Useful, e.g. for engineering drawings
® But is this the whole story?

CS184/284A 526 - O'Brien
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Perspective in Art

CS5S184/284A
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Perspective in Art

VA e

T
= B
v Ty ST 1 P Dy R v

CS184/284A Giotto 1290
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Perspective Composition = Camera Position + Angle of View

1iB6mm 24mm

In this
sequence, angle
of view
decreases as
distance from
subject
Increases, to
size of human
subject in
Image.

50mm

Notice the
dramatic change
in background
perspective.

From Canon E Lens Wr 1
CS184/2B4A S26 - O'Brien
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\

16 mm (110°)

3

Up close and zoomed wide

with short focal length

526 - O'Brien
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Perspective Composition

Walk back and zoom in
200 mm (12°) with long focal length

CS184/2BAA S26 - O'Brien
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Pinhole Camera Model



Pinhole Camera

@

A
N

PINHOLE
F1G. 131.—How Light and a Pinhole Form an Image.

\/

REAL ,CANDLE
THE |MAGE

CS184/284A 526 - O'Brien
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Projective Transform

o (x,y,2)T
I C
Scene point
E ¢
| <
Image 4 C
point !

Inverted image (as in real pinhole camera)

CS184/284A 526 - O'Brien
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Pinhole Camera Projective Transform

(x,y,2)T

|
|
|
I o
! Scene point
S
o e
. I
T i 7
e C :
r ]
| |
| |
: @ ﬂ.
d
Upright image
CS184/284A 526 - O'Brien
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Projective Transforms

Standard perspective projection

® Center of projection: (0,0, 0)T

® Image plane atz=d

CS184/284A 526 - O'Brien
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Projective Transforms

Standard perspective projection

® Center of projection: (0,0, 0)T

® Image plane atz=d
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Projective Transforms

Standard perspective projection

® Center of projection: (0,0, 0)T

® Image plane atz=d
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Projective Transforms

Standard perspective projection

® Center of projection: (0,0, 0)T

® Image plane atz=d
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Projective Transforms
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Projective Transforms

Standard perspective projection

® Center of projection: (0,0, 0)T

® Image plane atz=d
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Projective Transforms

Standard perspective projection r-d/
X
® Center of projection: (0,0, 0)T (y> — | y-d/z

® Image plane atz=d

CS184/284A 526 - O'Brien
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Projective Transforms

Standard perspective projection
® Center of projection: (0,0, 0)T

® Image plane atz=d

Perspective foreshortening

CS184/284A
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Projective Transforms

Standard perspective projection
® Center of projection: (0,0, 0)T

® Image plane atz=d

Perspective foreshortening

® Need division by 7
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Projective Transforms

Standard perspective projection
® Center of projection: (0,0, 0)T

® Image plane atz=d

Perspective foreshortening
® Need division by 7

® Matrix representation?
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Projective Transforms

Standard perspective projection
® Center of projection: (0,0, 0)T

® Image plane atz=d

Perspective foreshortening
® Need division by 7
® Matrix representation?

= Homogeneous coordinates!

CS184/284A
116
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Homogenous Coordinates (3D)

W
wy
Wz
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Homogenous Coordinates (3D)

W
wy
Wz

— N L R
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Homogenous Coordinates (3D)

wr L 1 0 0 O

| wy Y 101 0 0
P = W2 ~ M = 0 O 1 0
W 1 0 0 1/d 0

T

Note non-zero term in final row.
First time we have seen this.
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Homogenous Coordinates (3D)

wr X 1 0 0 O
| wy Y 101 0 0
P=1..1 " |. M=100 1 o0
W 1 0 0 1/d 0
7 7 Note non-zero term in final row.
y y First time we have seen this.
— M —
9 < 2
1 z/d

CS184/284A 526 - O'Brien
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Homogenous Coordinates (3D)

Wit T 1 0 0 0
| wy Y (o1 0 o
P w2 2 M="100 1 o0
W 1 0 0 1/d O
T T rd / > Note non-zero term in final row.
v ’ Y p /Z First time we have seen this.
— M — < ,
9 z z d
1 z/d 1

CS184/284A 526 - O'Brien
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Homogenous Coordinates (3D)

i & 1 0 0 0
| wy g o1 0 o
P wz 2 M=100 1 o
W 1 0 0 1/d O
T T rd / > Note non-zero term in final row.
v ’ Y p /Z First time we have seen this.
— M — 4—)
1 Z Z d
1 z/d 1
» Modelview - » Projection - - rerspective | ==

division
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Homogenous Coordinates (3D)

wax X 1 0 0 O
wyY Y O 1 0 O
— +t—> M —
p Wz Z 0O 0 1 0
W 1 0 0 1/d O
T T rd / > Note non-zero term in final row.
p / First time we have seen this.
<
a=M|Y=| ¥ | — |Y
< & d Note zeros in 4th column.
1 > / d 1 We'll change this later for
hidden surface determination.
» Modelview - B Projection - - rerspective | ==

division

CS184/284A 526 - O'Brien
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Pinhole Camera Model

This mathematical model produces all linear
perspective effects!

® Converging lines + vanishing points

® Closer objects appear larger in images

CS184/284A 526 - O'Brien
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Specifying Real Camera Perspectives
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Specifying Perspective Projection

Angle of view

From Angel and Shreiner, Interactive Computer Graphics

CS184/284A 526 - O'Brien
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Specifying Perspective Projection

View volume

Angle of view

View
plane

- -
s 2
T el
' -

cor

e
Y
#
’
7’
’
7’
P -
-
T
/’ - -
7 ”~ -~
P &
7’
/ L~
7’
’ S Tus
7’ /,’ ” = o
’ o - Clil In
‘ e i ront
7 ,/ ,/ -
4 ” - ”
P - -
- ”
-
-
-
-

Back

clipping plane
plane

From Angel and Shreiner, Interactive Computer Graphics

CS5S184/284A
120
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Specifying Perspective Viewing Volume

Ll

z=-near \

e \(right,top,—neor)

(left, bottom, —near)

- X

Z

From Angel and Shreiner, Interactive Computer Graphics

CS184/284A 526 - O'Brien
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Specifying Perspective Viewing Volume

—
>

fovy

o z=-near \

e amre \(right,top,—neor)

Ll

(left, bottom, —near)

- X

Z

From Angel and Shreiner, Interactive Computer Graphics

CS184/284A 526 - O'Brien
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Specifying Perspective Viewing Volume

Parameterized by

e fovy

® aspect ratio
® near

® far

Derived quantities

® top

® bottom
® right

o |eft

CS184/284A

vertical angular field of view
width / height of field of view
depth of near clipping plane
depth of far clipping plane

near * tan (fovy)
- top

top * aspect

— right

526 - O'Brien
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Perspective Projection Implementation

123



Perspective Projection Transform

(right; top, —near)
o

o
(left, bottom, —near)

Z = —Nhear

Camera Coordinates Normalized Device Coords
IINDCII

Later we will “flatten and scale ” NDC to get framebuffer coordinates

CS184/284A 526 - O'Brien
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Perspective Projection Transform

Notes:

® Need not be
symmetric about z-
axis, but for
simplicity here we O
assume SO 3 ---------------------

(left, bottom, —near) z = —far

(1,1, 1)

Z = —hear (_1’ _1’ _1)

® This transform will

—_—
preserve depth Camera Coordinates Normalized Device Coords
information “NDC”
(ordering) in NDC

CS184/284A S26 - O'Brien
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Perspective Transform Matrix

CS184/284A

near

right

0
0

0

near

top

0
0

0
0

far+near

far—near

—1

126

0
0

—2farxnear

far—near

0

526 - O'Brien



Perspective Transform Matrix

near
right U U 0
near
|0 e 0 0
T 0 0 far+near —2farxnear
far—near far—near

0 0 —1 / 0
Note entry in 4th column

CS184/284A 526 - O'Brien
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Perspective Transform Matrix Example

Crighi U 0 0 7 [ right”
near
P _ O top O O tOp
0 0 far+near —2farxnear —near
far—near far—near
0 0 ~1 o JL 1 _
(right, top, —near) (+1,[+1, -1)
” i
—_—
Camera Coordinates Normalized Device Coords
llNDCI’
CS184/284A 526 - O'Brien
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Perspective Transform Matrix Example

- near 1 . -
right 0 0 0 nght
near
P — 0 top 0 0 top
_ 0 0 far+near —2farxnear —near
far—near far—near
0 0 ~1 o JL 1 _
i near ]
near
— far+near 2farxnear
near x far—near far—near
I near _
- 1 -
1
— — far+near :
¥ ar_ln car (right, tO.P: —near) -------------- ( +1 +1,-1)
1
— _—
—1
1 Camera Coordinates Normalized Device Coords
- - MNDC"
CS184/284A 526 - O'Brien
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Perspective Projection

¢ Z-Values do not swap order!

From Shirley textbook.

CS184/284A 526 - O'Brien
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Perspective Projection Alternatives

Center
Distance to 1mage plane

D>

-7 l
CS184/284A 526 - O'Brien
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Perspective Tricks

CS184/28B4A S26 - O'Brien
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Attendance

If you are seated in class, go to this form and sign in:

® https://tinyurl.com/184class

i

Word of the day:

o 7777

CS184/284A S26 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection Alternatives

Center
Distance to image plane

-7 l
CS[184/284A S26 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection Alternatives

- Step |: Iranslate center to origin
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Note: Material on gray slides is optional for cs184.

Perspective Projection Alternatives

- Step |: Iranslate center to origin
* Step 2: Rotate view to -Z, up to +Y

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection Alternatives

- Step |: Iranslate center to origin
* Step 2: Rotate view to -Z, up to +Y

* Step 3: Shear center-line to -Z axis

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.
Perspective Projection Alternatives
- Step |: Iranslate center to origin
* Step 2: Rotate view to -Z, up to +Y
* Step 3: Shear center-line to -Z axis
» Step 4: Perspective
"
CS[184/284A S26 - O'Brien .,




Note: Material on gray slides is optional for cs184.
Perspective Projection Alternatives
- Step |: Iranslate center to origin
* Step 2: Rotate view to -Z, up to +Y
* Step 3: Shear center-line to -Z axis 1 0 0.
» Step 4: Perspective 0- 1 7 O/
0 0 L
l
00 —
l
"
CS[184/284A S26 - O'Brien .,




Note: Material on gray slides is optional for cs184.

Perspective Projection Alternatives

» Step 4: Perspective

* Points at z=-i stay at z=-i

* Points at z=-f stay at z=-f

* Points at z=0 goto z==©

* Points at z=-% goto z=-(i+f)

* x and y values divided by -z/i

» Straight lines stay straight

» Depth ordering preserved in [-i,-f]

» Movement along lines distorted

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.
Perspective Projection Alternatives
» Step 4: Perspective
* Points at z=-i stay at z=-i
* Points at z=-f stay at z=-f
* Points at z=0 goto 7= :
* Points at z=-% goto z=-(i+f)
* x and y values divided by -z/i
» Straight lines stay straight 10 0
* Depth ordering preserved in [-i,-f | 0 1 -0= =t
0 0 i+ f 7
» Movement along lines distorted ]
0 O _—1 0
CS[184/284A i 1 526 - O[Brien




Note: Material on gray slides is optional for cs184.

Perspective Projection Alternatives

» Step |: Translate center to orange
* Step 2: Rotate view to -Z, up to +Y

* Step 3: Shear center-line to -Z axis

» Step 4: Perspective
» Step 5: center view volume

» Step 6: scale to canonical size

>

-/

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection Alternatives

» Step |: Translate center to orange
* Step 2: Rotate view to -Z, up to +Y

d Step 3: Shear center-line to -Z axis

d Step 4: Perspective

ep O. Center view volume

» Step 6: scale to canonical size

M=M, M, M, ° |

CS5[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection Alternatives

* [ here are other ways to set up the projection matrix

i P plane at z=0 zero
* Looking down another axis

erClLC...

* Functionally equivalent

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Vanishing Points

» Consider a ray:

CS[184/284A S26 - O'Brien



Note: Material on gray slides is optional for cs184.

Vanishing Points

* lonore Z part of matrix
* X and Y will give location in image plane

* Assume Image plane at z=-1

Bl 0 O e T
B I 1 0 Ofx
whatever gt

[O . L]WJ [O 0 —1_ z

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Vanishing Points
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Note: Material on gray slides is optional for cs184.

Vanishing Points

¢ Assume

CS|184/284A 526 - O Brien



Note: Material on gray slides is optional for cs184.

Vanishing Points

[Lim d

[ — +00 dy

X

* All lines in direction d converge to same point in the Image
plane -- the vanishing point

* Every point in plane is a v.p. for some set of lines

» Lines parallel to image plane ( d, = Qanish at infinity

CS184/284A What’s d hOI”iZOI’].7 S26 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection

3D Version

"Eye” plane

Top

Near Far

Camera

View vector

3 2

~
>

<

CS184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection

Projected View
O O O O O O O

"Eye” plane

Top O O O O O O O
O O O O O O O
Near T
@‘9
‘\\{\
N
('\\/
A9
{\
a
@\i\
s
Camera
View vector

~
>

CS184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection

Visualizing division of x and y but not z

}

CS184/284A : S26 - O'Brien |,




Note: Material on gray slides is optional for cs1

Perspective Projection

84.

CS

Projected View

Motion In x,y SK—C\ . %

0/5/% o \\\

IR

~

184/284A

A\

<

S26 - O'Brien .



Note: Material on gray slides is optional for cs184.

Perspective Projection

Linear interpolation requires straight
' sht!
ines should stay straight AL N\

e (e

o4

CS184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection

Linear interpolation requires straight
' sht!
ines should stay straight AL N\

e (e

Crossover problem

CS184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection

CS

Projection matrix changes Z also...

P =

.h
~
~
.h
~

...
~
L]
-~
L]

N
——
-

near

0

184/284A

0 0
0 0
far4+near  — 2 far«near
far—near
0
— 00
S26 - O'Brien

|5 ]



Note: Material on gray slides is optional for cs184.

Perspective Projection

Projected View

lotal motion Sé\ A

Que O e

QA:/J NN

m\\

...
~
L]
-~
L]

N
——
-

\

CS184/284A 526 - O'Brien
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Perspective Projection

¢ Z-Values do not swap order!

From Shirley textbook.

CS184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection

Note that points on near plane fixec

CS[184/284A $26 - O'Brien .




Note: Material on gray slides is optional for cs184.

Perspective Projection

Recall that points on far plane will
stay there...

CS184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Perspective Projection

| Ines extend outside view volume

.h
~
~
..
~

...
~
L ]
-~
L]

N
——
-

156
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Note: Material on gray slides is optional for cs184.

Perspective Projection

Motion In z

.h
~
~
.h
~

...
~
L]
-~
L]

N
——
-

|57
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Note: Material on gray slides is optional for cs184.

Perspective Projection

Motion In z

.h
~
~
.h
~

...
~
L]
-~
L]

N
——
-

CSN4/284A : S26 - O'Brien |,




Note: Material on gray slides is optional for cs184.

Perspective [ricks

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Right Looks Wrong (Sometimes)

From Corrgction of Geometric Perceptual Distortions in Pictures, Zorin and Barr SIGGRAPH 1995

CS[184/284A 526 - O'Brien
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ght Looks

Note: Material on gray slides is optional for cs184.

rong (Sometimes)

From WIR

CS

-D Magazine

184/284A

That LPhowne Marketshare Chart: WTF?

U.S. SmartPhone Marketshare US. SmartPhone Marketst
mart¥none Marketshare

Bngadget’s photo. Since when

”
is 19.5% bigger than 21 2%? /

/

non |\

’———> I: @ 4

Yow! The pie chart itself is distorded,
and the tPhone’s chunk Ls
woved to the front! /

A

Let’s corvect the photo pers'pective.

Chart Perspective fixed

Here it is overlaid with a pie chart using the same data.
There's no funny business here — except for the
perspective tricks!

Brien
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Note: Material on gray slides is optional for cs184.

Strangeness

The Ambassadors
by Hans Holbein the Younger

526 - O'Brien

P
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Note: Material on gray slides is optional for cs184.

Strangeness

The Ambassadors
by Hans Holbein the Younger

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Ray Picking

* Pick object by picking point on screen

» Compute ray from pixel coordinates.

CS[184/284A 526 - O'Brien
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Note: Material on gray slides is optional for cs184.

Ray Picking

* Transform from World to Screen is:

7 W
]y olt M Wy
I, W.

 |nverse:
]W WW
-Wx ; -]x
Wy = M—l ]y

* What Z value! |w g
WW [W

CS[184/284A §26=0'Brien




Note: Material on gray slides is optional for cs184.

Ray Picking

. RecaH that: Depend; on screen detalls, YMMV
(General idea should translate...

* Points at z=-i stay at z=-i
* Points at z=-f stay at z=-f
aS — I:Sx, Sy, _i]
r(t) =p+td

() =a,+1(b,—a,) | P SoS =l

CS5[184/284A

|
S26 - O'Brien ,
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Transforms Recap

167



Transforms Recap

Coordinate Systems
® Object coordinates
® Apply modeling transforms...
® World (scene) coordinates
® Apply viewing transform...
® Camera (eye) coordinates
® Apply perspective transform + homog. divide...
® Normalized device coordinates
® Apply 2D screen transform...

® Screen coordinates

CS184/284A 526 - O'Brien
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Transforms Recap

 ——

Modeling
transforms

Object coords World coords

CS184/284A 526 - O'Brien
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Transforms Recap

World coords

CS184/284A 526 - O'Brien
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Transforms Recap

World coords

CS5S184/284A

Viewing
transform

170

Camera coords

526 - O'Brien



Transforms Recap

Camera coords

CS184/284A 526 - O'Brien
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Transforms Recap

1,1, 1)

 ——

Perspective
projection
\ and (4, =1.41)
*. |homogeneous

1 divide

Camera coords NDC

CS184/284A 526 - O'Brien
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Transforms Recap

1,1, 1)

Screen .
transform ) B U
=< l/“
A —4
NDC ©9" Screen coords

CS184/284A 526 - O'Brien
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Transforms Recap

A

Screen coords

(0, 0)

CS5S184/284A

(w, h)

173

Rasterization

S
e
‘e

hC
.
Qo

o
0..
.
3

v
e
‘e
o

*
‘e
.

-
O..
-
L

.
0..
.
L

g
0..
.
o

3
0..
.
L

v
O..
-

----
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Things to Remember

Transform uses

® Basic transforms: rotate, scale, translate, ...

® Modeling, viewing, projection, perspective

® Change in coordinate system

® Hierarchical scene descriptions by push/pop
Implementing transforms

® Linear transforms = matrices

® Transform composition = matrix multiplication

® Homogeneous coordinates for translation, projection

CS184/284A 526 - O'Brien
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