CS 184: FOUNDATIONS OF COMPUTER GRAPHICS

1 Sriram's Pendulum

Sriram is simulating a pendulum. Under the small-angle approximation, the angle between the vertical and the pendulum string, θ , is governed by the following differential equation.

$$\ddot{\theta} = -\frac{g}{L}\theta$$

 ${\it g}$ is acceleration due to gravity. ${\it L}$ is the length of the pendulum string.



- 1. Sriram plans to use the explicit Euler's method to approximate θ at future points in time. In terms of g, L, θ^t , and $\dot{\theta}^t$, derive the update equations for $\theta^{t+\Delta t}$ and $\dot{\theta}^{t+\Delta t}$.
- 2. Sriram approximates $g \approx 10 \, \text{m/s}^2$. The pendulum string has length $L=1 \, \text{m}$. The system's initial conditions are $\theta^0=0.1 \, \text{rad}$ and $\dot{\theta}^0=0 \, \text{rad/s}$. Fill in the table with the results of running three Euler updates for the given step sizes.

	$\Delta t = 0.1$	$\Delta t = 0.5$	$\Delta t = 1$
$\theta^{\Delta t}$			
$\dot{ heta}^{\Delta t}$			
$\theta^{2\Delta t}$			
$\dot{ heta}^{2\Delta t}$			
$\theta^{3\Delta t}$			
$\dot{\theta}^{3\Delta t}$			

3. How does increasing the step size affect the accuracy of Sriram's approximation of θ ?

4. Fill in the 2×2 matrix A below to express the explicit Euler's update — for a general step size Δt — in the form of a linear dynamical system. That is, express the update as:

$$\begin{bmatrix} \theta^{t+\Delta t} \\ \dot{\theta}^{t+\Delta t} \end{bmatrix} = A \begin{bmatrix} \theta^t \\ \dot{\theta}^t \end{bmatrix}$$

Fill in the matrix *A* below:

$$\begin{bmatrix} \theta^{t+\Delta t} \\ \dot{\theta}^{t+\Delta t} \end{bmatrix} = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & & \end{bmatrix} \begin{bmatrix} \theta^t \\ \dot{\theta}^t \end{bmatrix}$$

5. A linear dynamical system is guaranteed to be internally stable if the eigenvalues of matrix A satisfy $|\lambda_i| < 1$ for all i. Calculate the two eigenvalues of A. Is the condition for internal stability satisfiable?

2 Multitudes of Euler's Methods

We have a particle with mass 1 kg. It starts at position $x^0 = (0 \text{ m}, 1 \text{ m})$ with an initial velocity $\dot{x}^0 = (-1 \text{ m/s}, 0 \text{ m/s})$ and no initial acceleration. The particle is at one end of a spring, whose other end is fixed at (0 m, 0 m). Its spring constant is k = 1 N/m and rest length is 1 m.

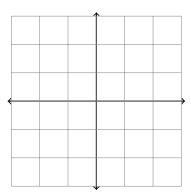
Recall the explicit Euler's method, which uses the following update rules

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \Delta t \dot{\boldsymbol{x}}^t$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \ddot{\boldsymbol{x}}^t$$

 $x^t, \dot{x}^t, \ddot{x}^t$ respectively denote the position, velocity, and acceleration at time t.

1. Calculate the particle's position at t=3 using the explicit Euler's method with timestep $\Delta t=1$. You might find it helpful to plot the particle on the provided grid.



2. For implicit Euler's method, the update rules are

$$x^{t+\Delta t} = x^t + \Delta t \dot{x}^{t+\Delta t}$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \ddot{\boldsymbol{x}}^{t+\Delta t}$$

Write the update step for calculating the particle's position at t = 1 using implicit Euler's method with timestep $\Delta t = 1$. Why might it be difficult to solve for x^{1} ?

3. For modifed Euler's method, the update rules are

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \frac{\Delta t}{2} (\dot{\boldsymbol{x}}^t + \dot{\boldsymbol{x}}^{t+\Delta t})$$

$$\boldsymbol{\dot{x}}^{t+\Delta t} = \boldsymbol{\dot{x}}^t + \Delta t \boldsymbol{\ddot{x}}^t$$

Calculate the particle's position at t=2 using modified Euler's method with timestep $\Delta t=1$.

4. For Verlet integration, the update rules are

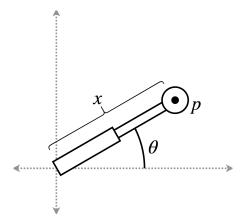
$$oldsymbol{x}^{t+\Delta t} = oldsymbol{x}^t + \Delta t \dot{oldsymbol{x}}^t + rac{1}{2} (\Delta t)^2 \ddot{oldsymbol{x}}^t$$

$$oldsymbol{\dot{x}}^{t+\Delta t} = rac{oldsymbol{x}^{t+\Delta t} - oldsymbol{x}^t}{\Delta t}$$

Use the particle's position at t=1 as calculated with modified Euler's method. Calculate the particle's position at t=2 using Verlet integration with timestep $\Delta t=1$.

 $5. \ \ What are some pros and cons of using the explicit Euler's method?$

Consider the piston as shown in the diagram below. For each x (piston displacement) and θ (piston rotation angle), the end of the piston is at some point p in the 2D plane. θ is constrained to $\theta \in (\frac{-\pi}{2}, \frac{\pi}{2})$.



- 1. x and θ are controllable parameters. Express p=(a,b) as a function of x and θ .
- 2. Given p = (a, b), express x and θ in terms of a and b.
- 3. What is the difference between forward and inverse kinematics?

- 4. Are inverse kinematics solutions of this system unique?
- 5. Why might linear interpolation between rotations (e.g., angles or quaternions) result in unnatural motion?