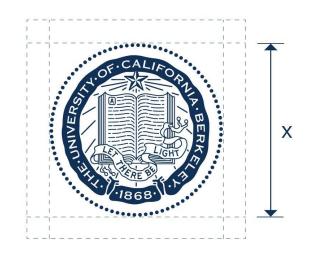
Lecture 3:

Intro to Signal Processing: Sampling and Aliasing



Computer Graphics and Imaging UC Berkeley CS184

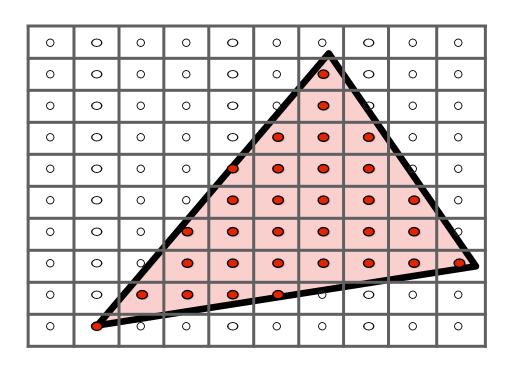
In nature, most signals are defined over continuous domain

Sampling is the process of transforming a continuous signal into a discrete one.

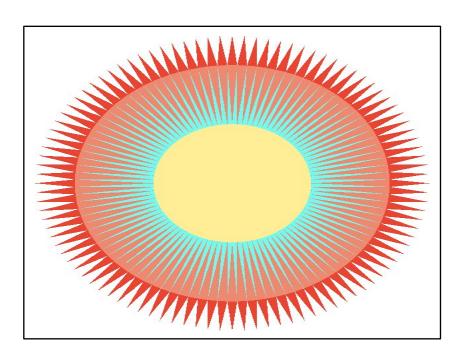
Antonio Torralba

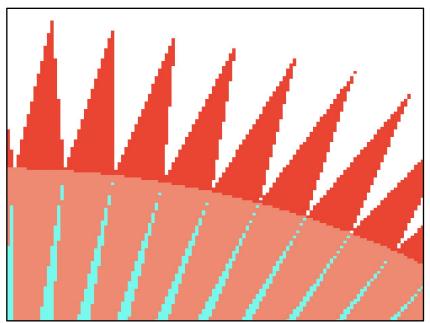
Sampling Artifacts in Computer Graphics and Imaging

Rasterization = Sample 2D Positions



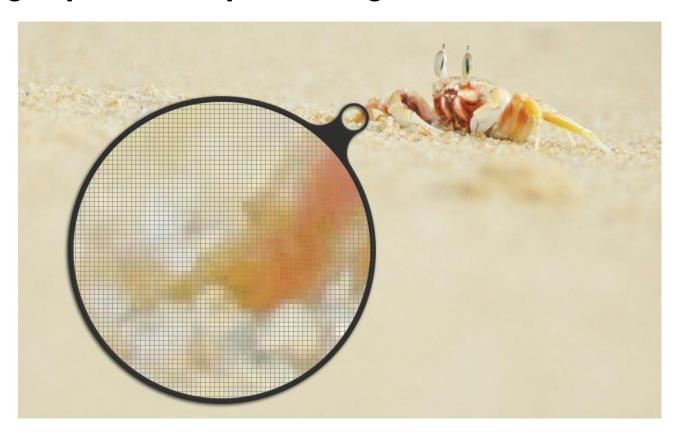
Jaggies (Staircase Pattern)



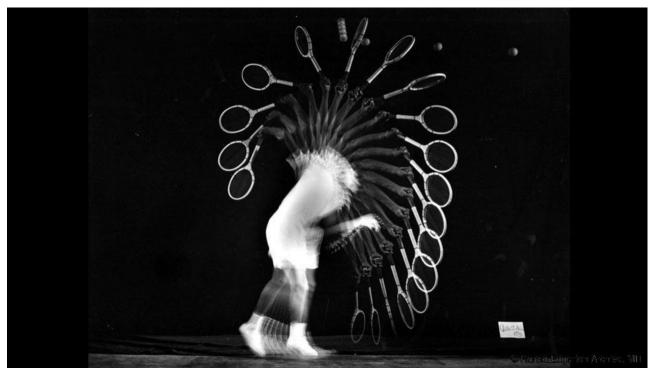


This is an example of "aliasing" - a sampling error

Photograph = Sample Image Sensor Plane

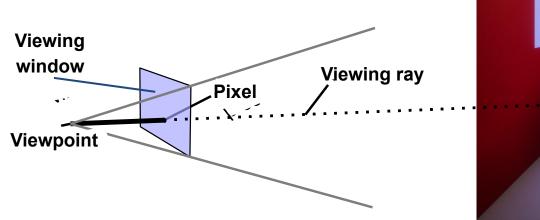


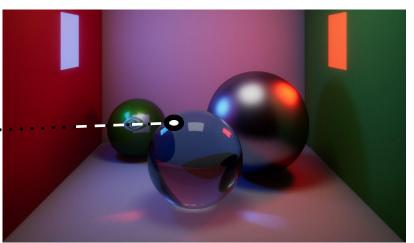
Video = Sample Time



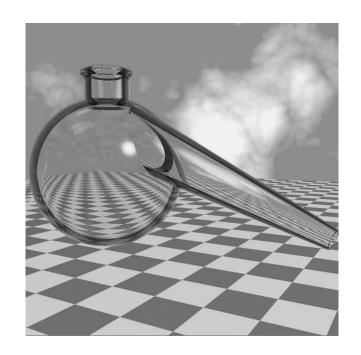
Harold Edgerton Archive, MIT

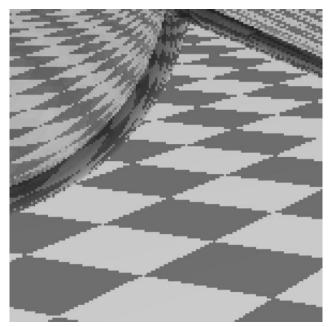
Ray Tracing = Sample Rays





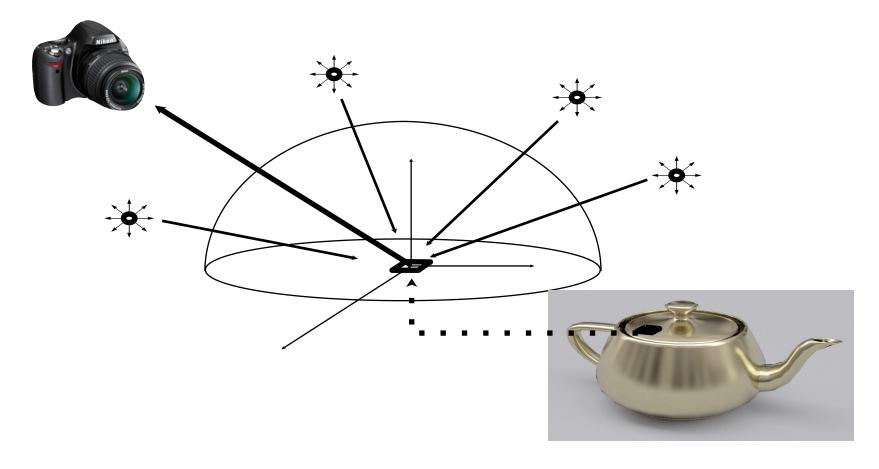
Jaggies (Staircase Pattern)





Retort by Don Mitchell

Lighting Integrals: Sample Incident Angles



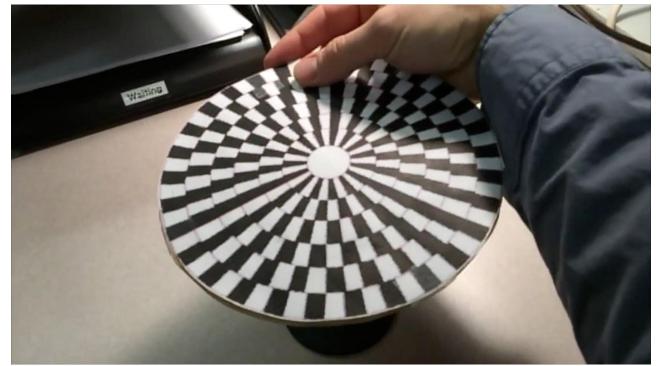
Video: Point Sampling vs Antialiased Sampling in Time

Thin stream of water from kitchen tap

Point in Time 1/4000 sec exposure

Motion Blurred 1/60 sec exposure

Wagon Wheel Illusion (False Motion)



Created by Jesse Mason, https://www.youtube.com/watch?v=QOwzkND_ooU

Moiré Patterns in Imaging

Read every sensor pixel

Skip odd rows and columns

Sampling Artifacts in Computer Graphics

Artifacts due to sampling - "Aliasing"

- Jaggies sampling in the spatial domain
- Wagon wheel effect sampling in time
- Moire undersampling images (and texture maps)
- [Many more] ...

* Aliasing is when we sample fast-changing signals (high frequency), too slowly

CS 184

Antialiasing Idea: Filter Out High Frequencies Before Sampling

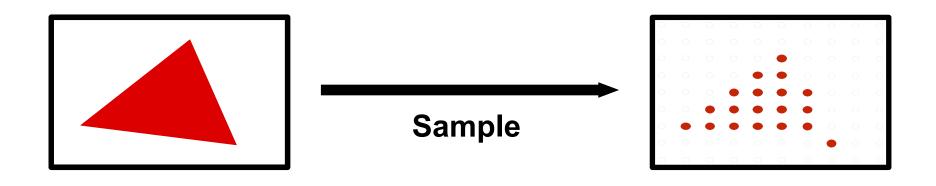
Video: Point Sampling in Time

60 fps video. 1/4000 second exposure is sharp in time, causes time aliasing.

Video: Motion-Blurred (Antialiased) Sampling in Time

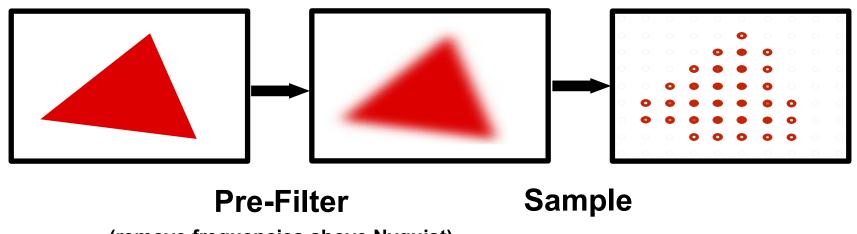
60 fps video. 1/60 second exposure is motion-blurred in time, no aliasing.

Rasterization: Point Sampling in Space



Note jaggies in rasterized triangle where pixel values are pure red or white

Rasterization: Antialiased Sampling

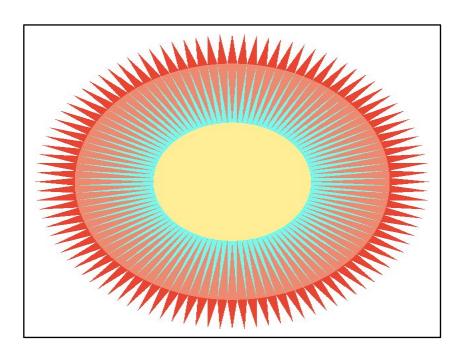


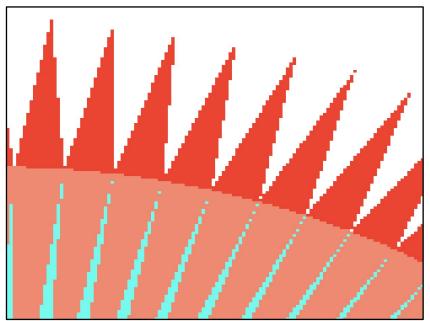
(remove frequencies above Nyquist)

Note antialiased edges in rasterized triangle where pixel values take intermediate values

CS184/284A Ren Ng

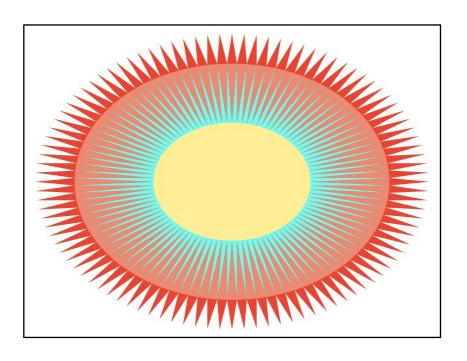
Point Sampling

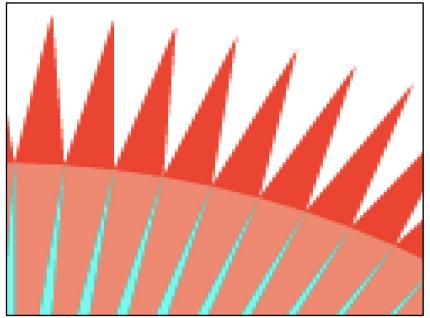




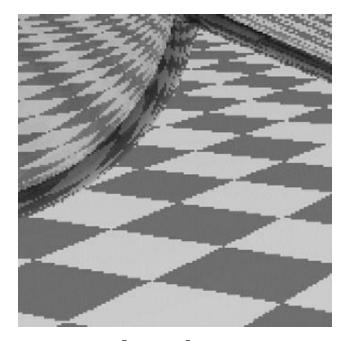
One sample per pixel

Antialiasing

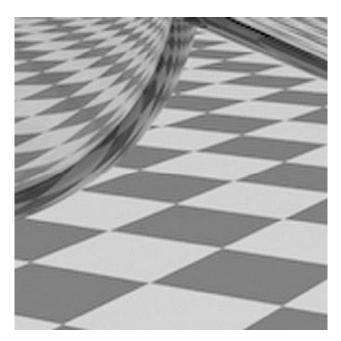




Point Sampling vs Antialiasing

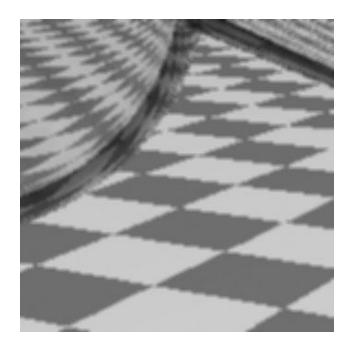


Jaggies

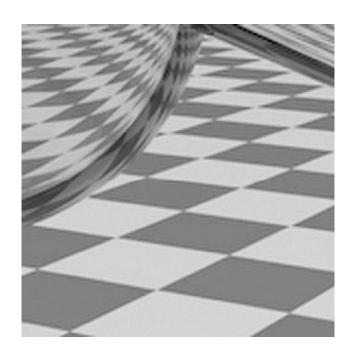


Pre-Filtered

Antialiasing vs Blurred Aliasing



Blurred Jaggies (Sample then filter)



Pre-Filtered (Filter then sample)

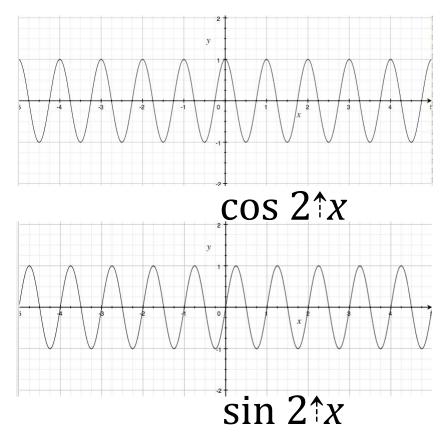
This Lecture

Let's dig into the fundamental reasons why this works And

look at how to implement antialiased rasterization

Frequency Space

Sines and Cosines



Frequencies $\cos 2^{\uparrow}fx$

$$f = \frac{1}{T}$$

$$\cos 2^{\uparrow}x$$

$$\cos 4^{\uparrow}x$$

$$f = 1$$

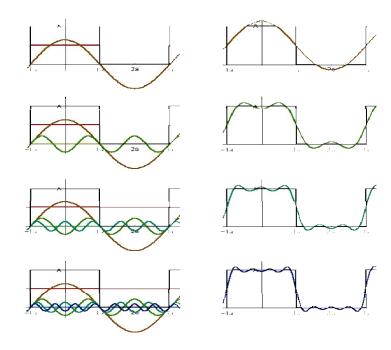
$$f = 2$$

Fourier Transform

Represent a function as a weighted sum of sines and cosines

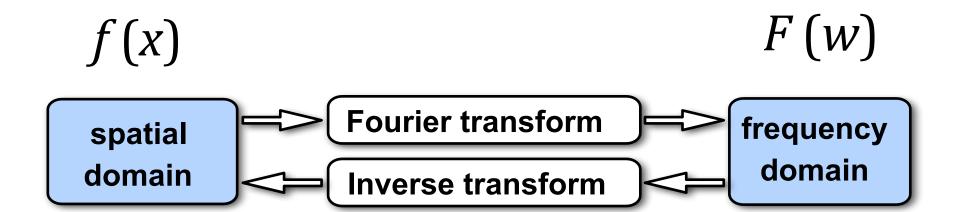
Joseph Fourier 1768 - 1830

$$f(x) = \frac{A}{2} \frac{2A\cos(tw)}{\pi} - \frac{2A\cos(3tw)}{3\pi} + \frac{2A\cos(5tw)}{5\pi} - \frac{2A\cos(5tw)}{5\pi}$$

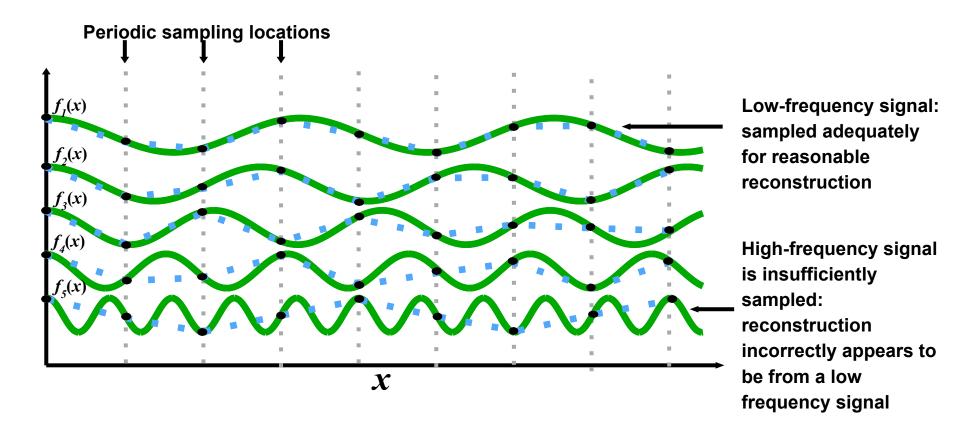


$$\frac{2A\cos(5tw)}{5\pi} - \frac{2A\cos(7tw)}{7\pi} + \cdots$$

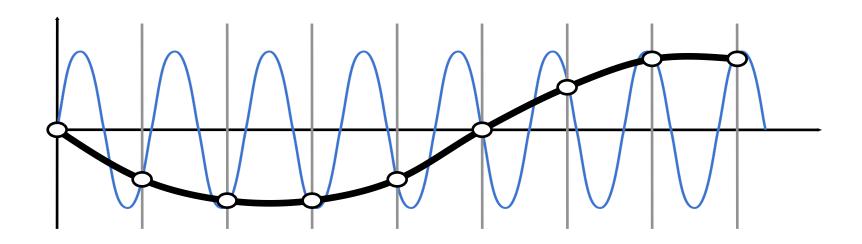
Fourier Transform Decomposes A Signal Into Frequencies



Higher Frequencies Need Faster Sampling



Undersampling Creates Frequency Aliases



High-frequency signal is insufficiently sampled: samples erroneously appear to be from a low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are called "aliases"

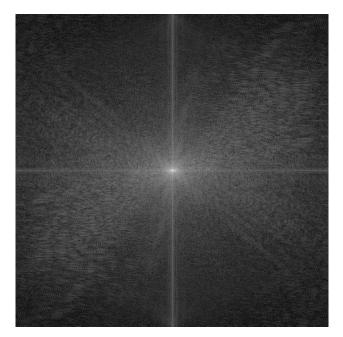
"Alias" = False Identity

"Batman" = Bruce Wayne's alias to hide his true identity

CS184/284A Ren Ng

Visualization of Frequency Space

2D Frequency Space

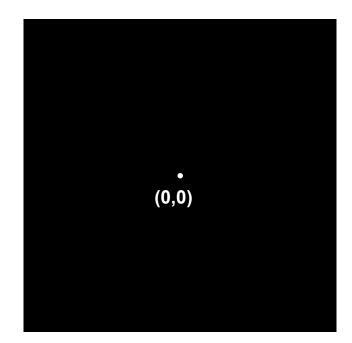


Spatial DomainFrequency Domain

Note: Frequency domain also known as frequency space, Fourier domain, spectrum, ...

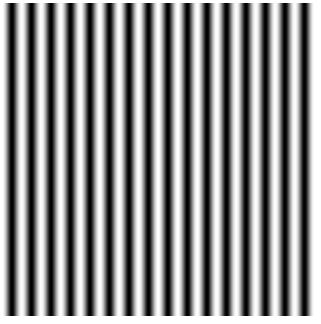
Constant

Spatial Domain



Frequency Domain

$\sin(2^{\uparrow}/32)x$ frequency 1/32; 32 pixels per cycle

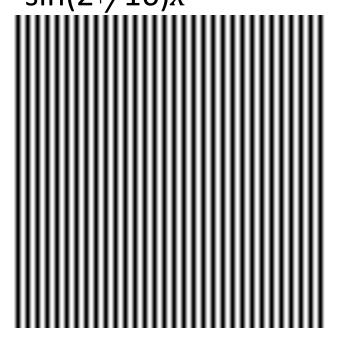


Spatial Domain

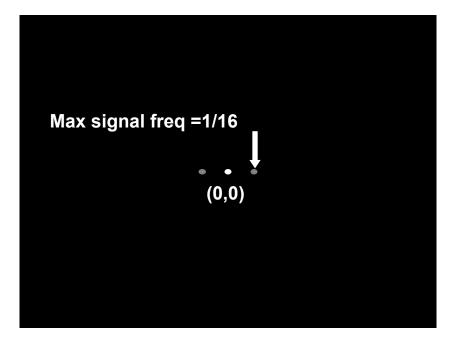


Frequency Domain

$\sin(2^{\uparrow}/16)x$ — frequency 1/16; 16 pixels per cycle

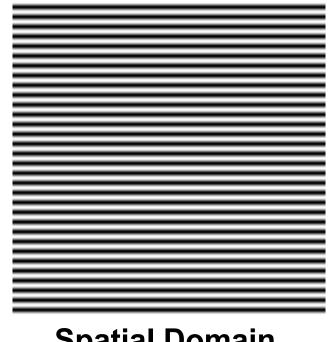


Spatial Domain

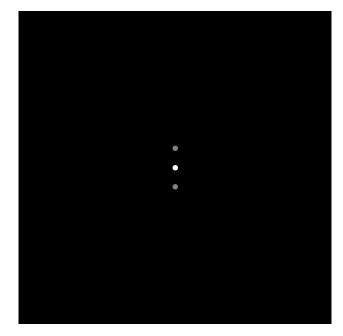


Frequency Domain

$\sin(2\uparrow/16)y$

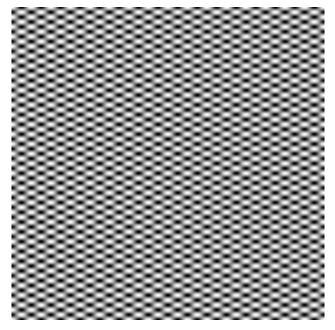


Spatial Domain

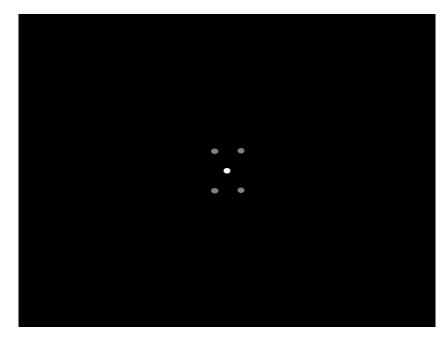


Frequency Domain

$\sin(2\uparrow/32)x \rightarrow \sin(2\uparrow/16)y$

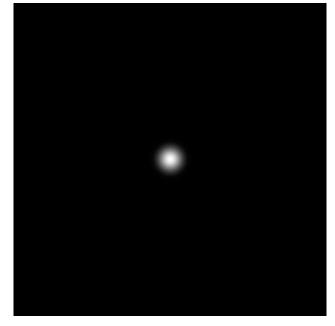


Spatial Domain



Frequency Domain

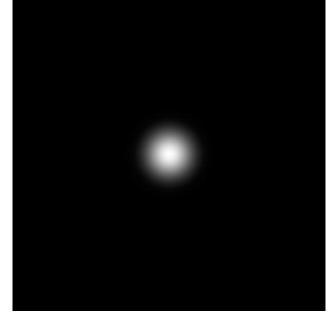
$$\exp(-r^2/16^2)$$



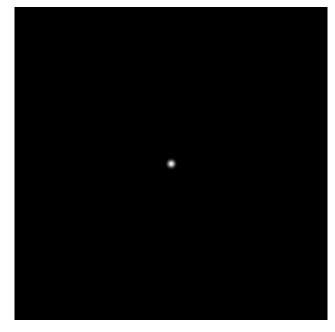
Spatial Domain

Frequency Domain

$$\exp(-r^2/32^2)$$

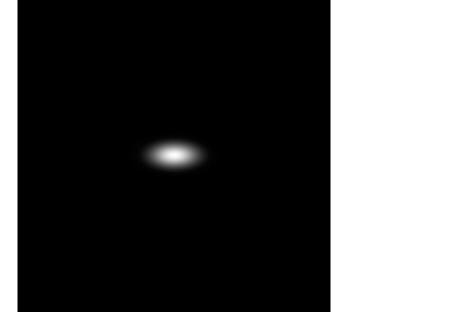


Spatial Domain



Frequency Domain

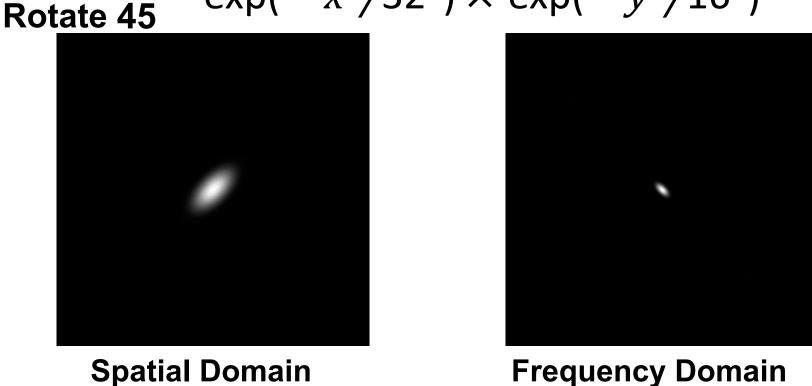
$$\exp(-x^2/32^2) \times \exp(-y^2/16^2)$$



Spatial Domain

Frequency Domain

$\exp(-x^2/32^2) \times \exp(-y^2/16^2)$

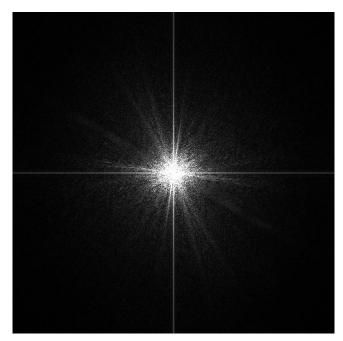


Frequency Domain

Filtering

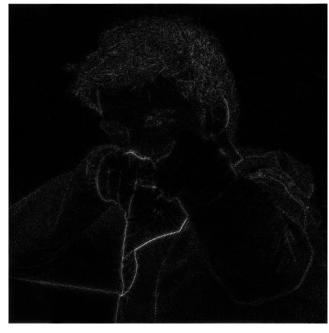
Visualizing Image Frequency Content

Spatial Domain

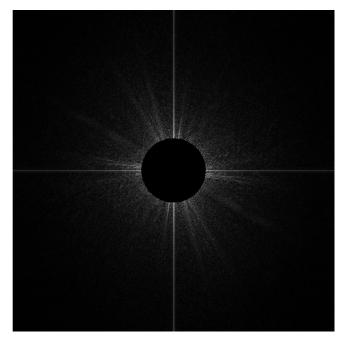


Frequency Domain

Filter Out Low Frequencies Only (Edges)



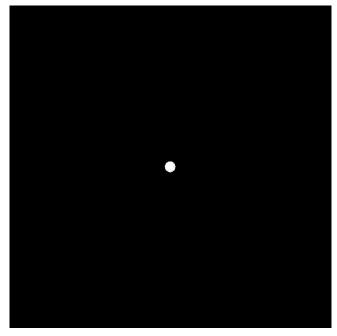
Spatial Domain



Frequency Domain

Filter Out High Frequencies (Blur)

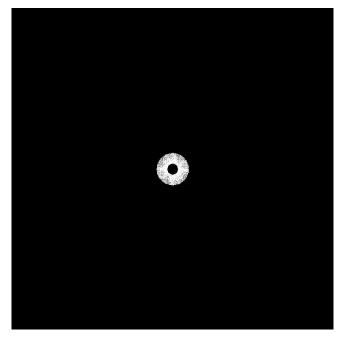
Spatial Domain



Frequency Domain

Filter Out Low and High Frequencies

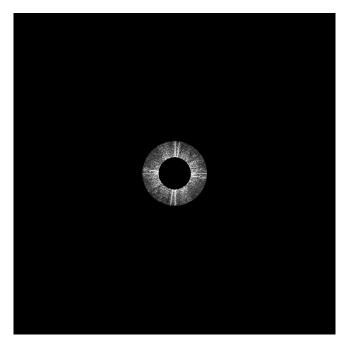
Spatial Domain



Frequency Domain

Filter Out Low and High Frequencies

Spatial Domain



Frequency Domain

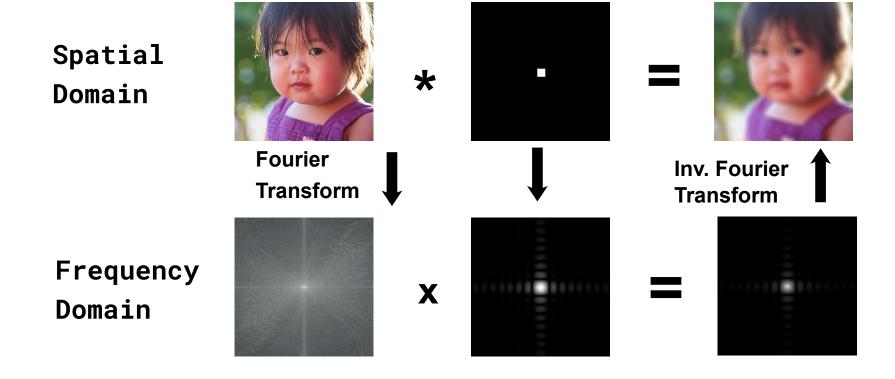
Filtering = Convolution

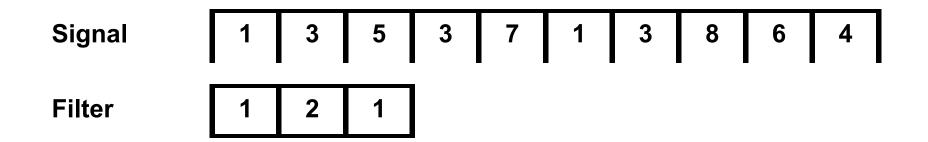
Convolution Theorem

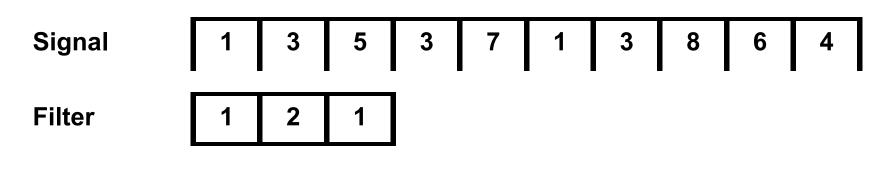
Convolution in the spatial domain is equal to multiplication in the frequency domain, and vice versa

- Option 1:
 - Filter by convolution in the spatial domain
- Option 2:
 - Transform to frequency domain (Fourier transform)
 - Multiply by Fourier transform of convolution kernel
 - Transform back to spatial domain (inverse Fourier)

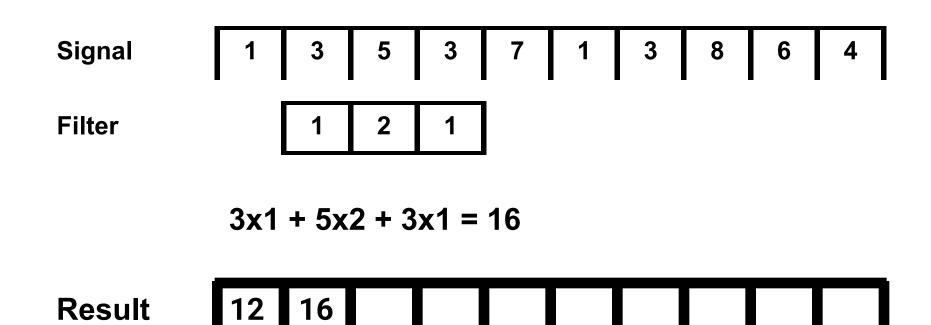
Convolution Theorem

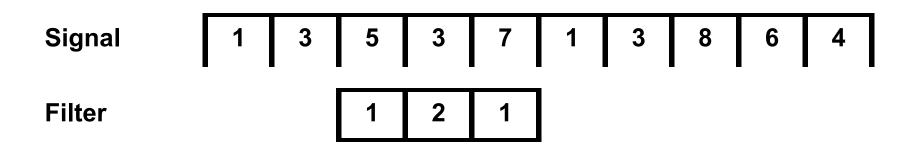






$$1x1 + 3x2 + 5x1 = 12$$





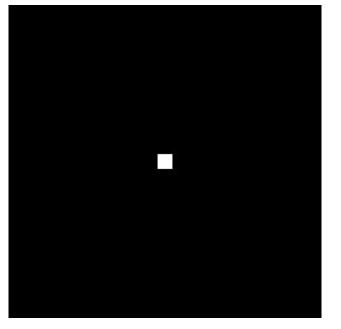
$$5x1 + 3x2 + 7x1 = 18$$

Box Filter

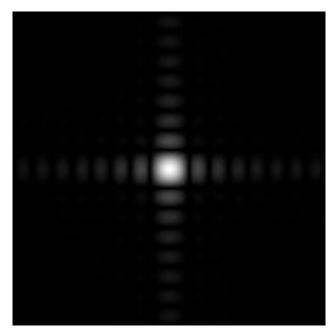
9	1	1	1
	1	1	1
	1	1	1

Example: 3x3 box filter

Box Function = "Low Pass" Filter

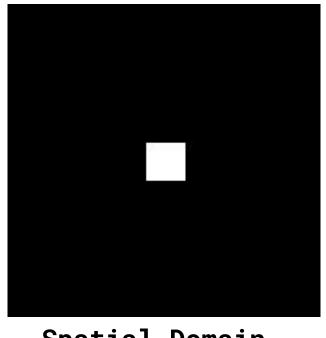


Spatial Domain

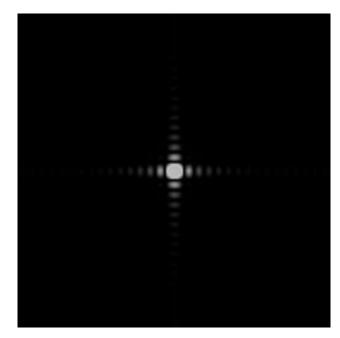


Frequency Domain

Wider Filter Kernel = Lower Frequencies



Spatial Domain



Frequency Domain

Wider Filter Kernel = Lower Frequencies

As a filter is localized in the spatial domain, it spreads out in frequency domain.

Conversely, as a filter is localized in frequency domain, it spreads out in the spatial domain

Efficiency

When is it faster to implement a filter by convolution in the spatial domain?

When is it faster to implement a filter by multiplication in the frequency domain?

Nyquist Frequency & Antialiasing

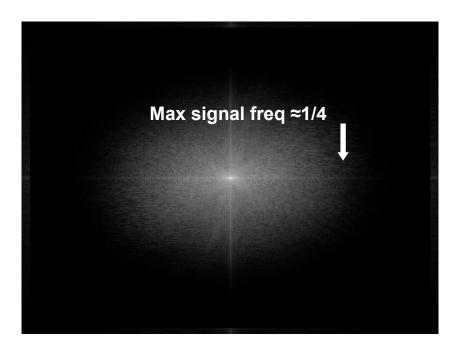
Nyquist Theorem

Theorem: We get no aliasing from frequencies in the signal that are less than the Nyquist frequency (which is defined as half the sampling frequency) *

* Based on Shannon sampling theorem

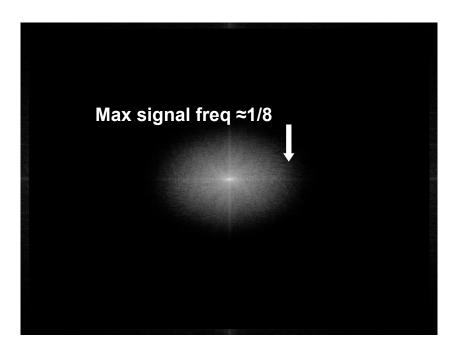
Example: if a signal is sampled at 100 Hz, the Nyquist frequency is 50 Hz.

Spatial Domain



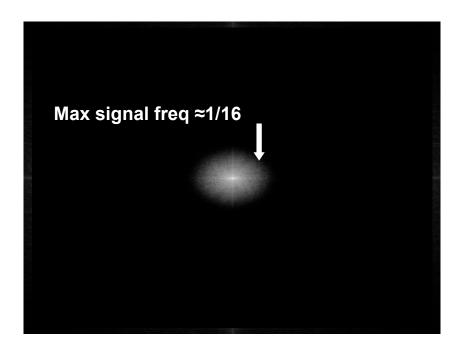
Frequency Domain

Spatial Domain



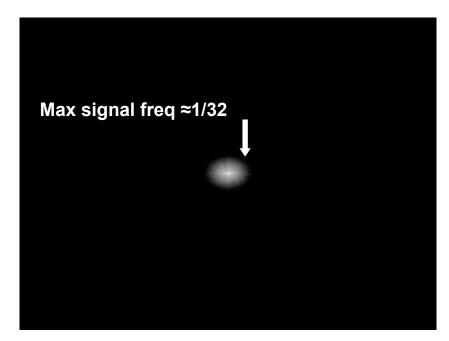
Frequency Domain

Spatial Domain



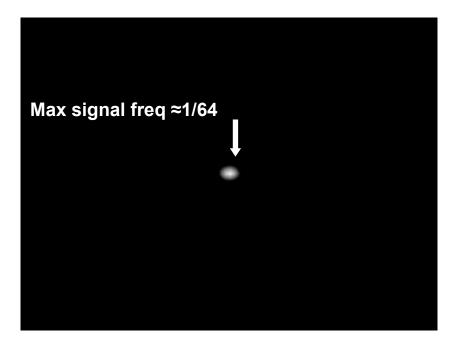
Frequency Domain

Spatial Domain



Frequency Domain

Spatial Domain



Frequency Domain

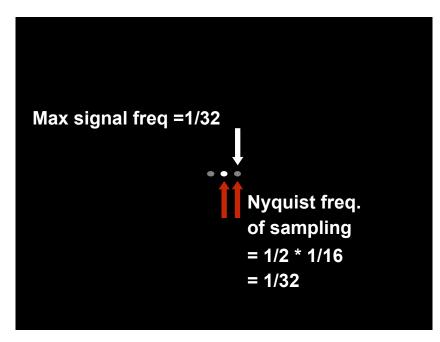
Nyquist Frequency: Visual Example

In next sequence:

- Visualize sampling an image every 16 pixels
- Visualize when image is blurred enough that image frequencies match Nyquist frequency (no aliasing)

Signal vs Nyquist Frequency: Example

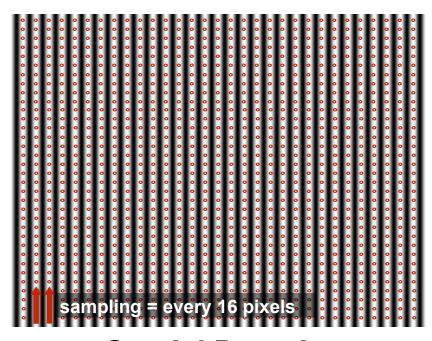
Spatial Domain



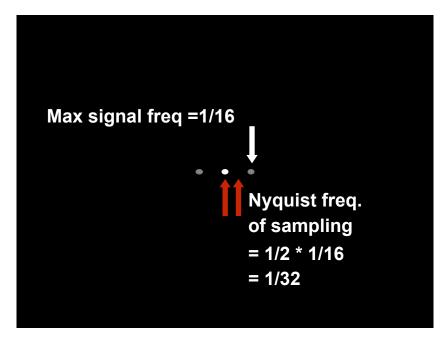
Frequency Domain

No Aliasing!

Signal vs Nyquist Frequency: Example



Spatial Domain



Frequency Domain

Aliasing!

Signal vs Nyquist Frequency: Example



Spatial Domain

Frequency Domain

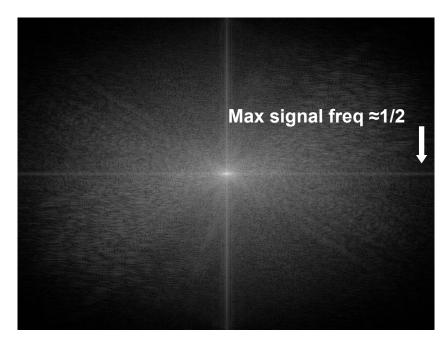
No Aliasing!

Image Frequency: Visual Example

In the following image sequence:

- Image is 512x512 pixels
- We will progressively blur the image, see how the frequency spectrum shrinks, and see what the maximum frequency is

Spatial Domain



Frequency Domain

CS184/284A Ren Ng

Max signal freq ≈1/2 Nyq. freq = 1/32

Spatial Domain

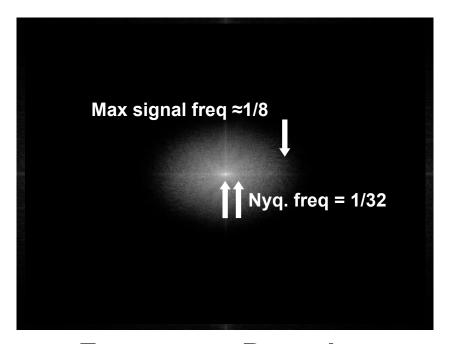
Frequency Domain

Max signal freq ≈1/4 Nyq. freq = 1/32

Spatial Domain

Frequency Domain

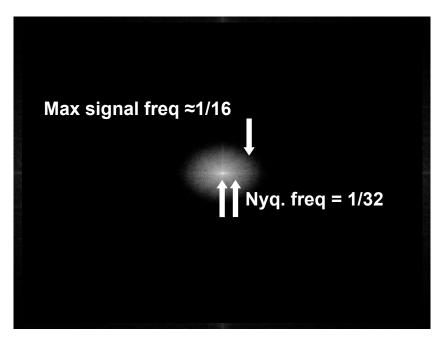
CS184/284A Ren Ng



Spatial Domain

Frequency Domain

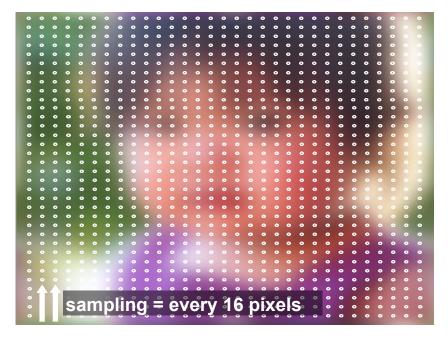
CS184/284A

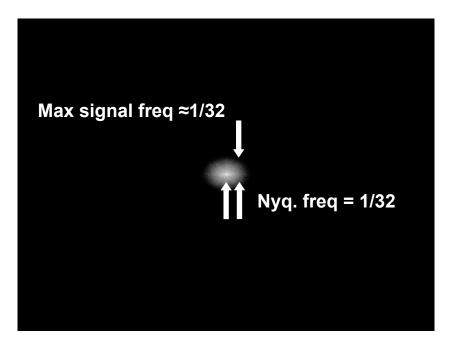


Spatial Domain

Frequency Domain

CS184/284A

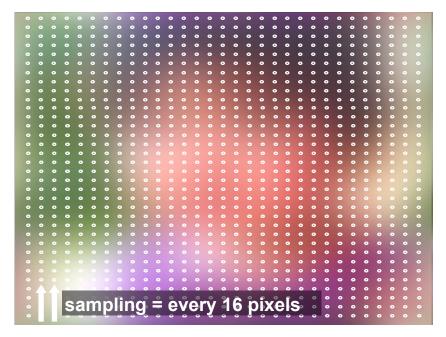




Spatial Domain

Frequency Domain

CS184/284A



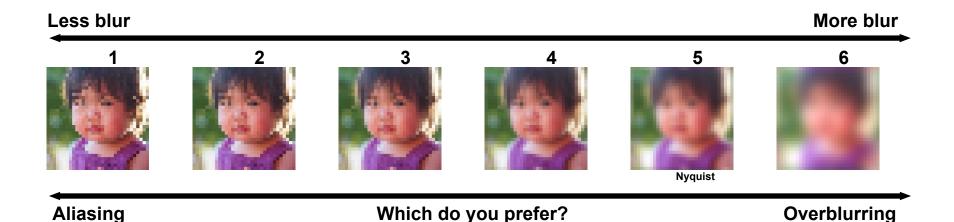
Max signal freq ≈1/64 Nyq. freq = 1/32

Spatial Domain

Frequency Domain

Recap:

- Filter (blur) original image to reduce maximum signal frequency
- Create low-resolution image by sampling only every 16 pixels
- (Sampling frequency is 1/16, and Nyquist frequency is 1/32)



Recap:

- Filter (blur) original image to reduce maximum signal frequency
- Create low-resolution image by sampling only every 16 pixels
 - (Sampling frequency is 1/16, and Nyquist frequency is 1/32)

 Less blur

 1 2 3 4 5

 More blur

 Aliasing

 Which do you prefer?

 Overblurring

Aliasing and over blurring can be objectionable even at small image sizes

CS184/284A Ren Ng

Antialiasing

How Can We Reduce Aliasing Error?

Increase sampling rate (increase Nyquist frequency)

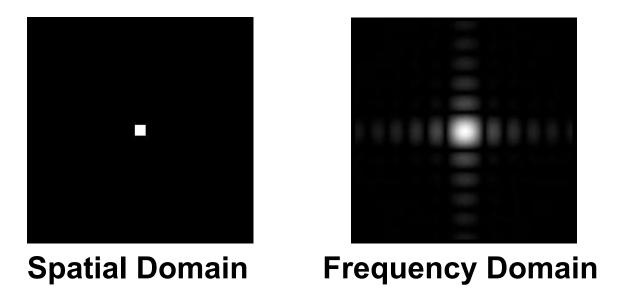
- Higher resolution displays, sensors, framebuffers...
- But: costly & may need very high resolution

Antialiasing

- Simple idea: remove (or reduce) signal frequencies above the Nyquist frequency before sampling
- How? Filter out high frequencies before sampling.

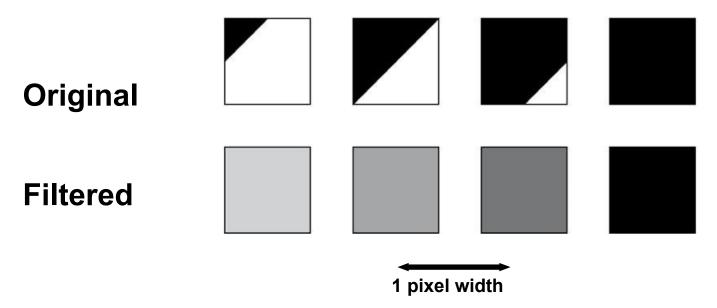
A Practical Pre-Filter

A 1 pixel-width box filter will attenuate frequencies whose period is less than or equal to 1 pixel-width



Antialiasing by Computing Average Pixel Value

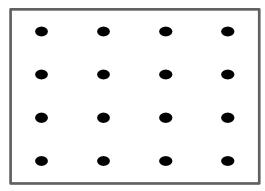
In rasterizing one triangle, the average value inside a pixel area of f(x,y) = inside(triangle,x,y) is equal to the area of the pixel covered by the triangle.



Antialiasing By Supersampling

Supersampling

We can approximate the effect of the 1-pixel box filter by sampling multiple locations within a pixel and averaging their values:

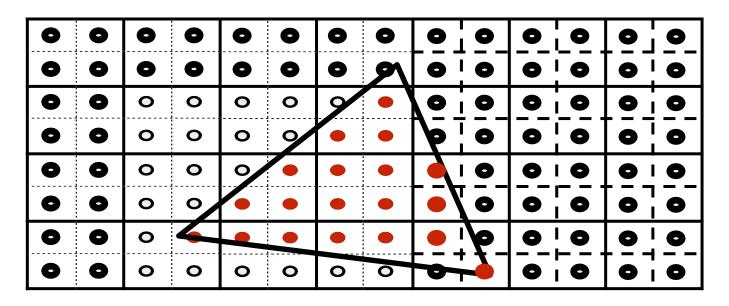


4x4 supersampling

Point Sampling: One Sample Per Pixel

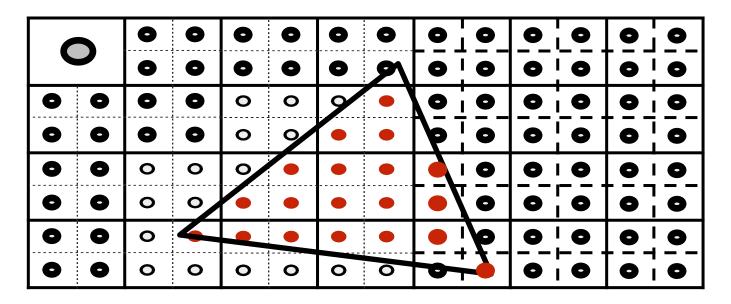


Take NxN samples in each pixel.



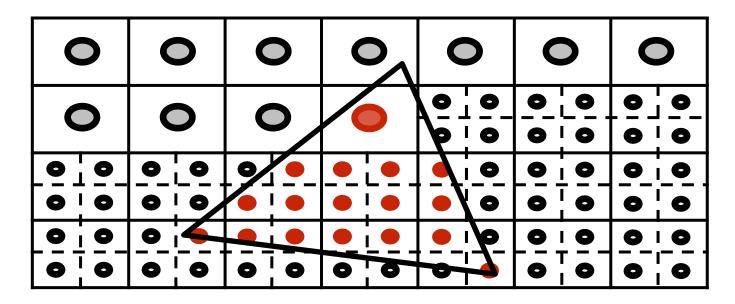
2x2 supersampling

Average the NxN samples "inside" each pixel.



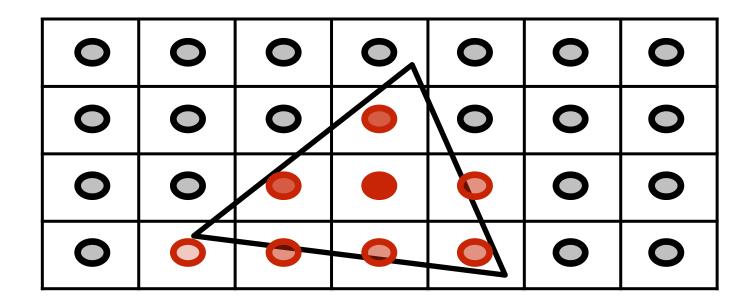
Averaging down

Average the NxN samples "inside" each pixel.



Averaging down

Average the NxN samples "inside" each pixel.

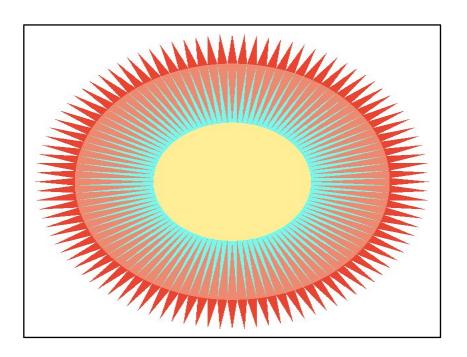


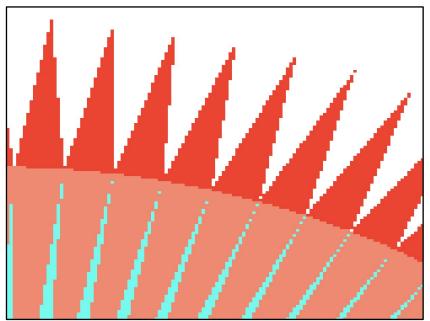
Supersampling: Result

This is the corresponding signal emitted by the display

		75%		
	75%	100%	50%	
25%	50%	50%	50%	

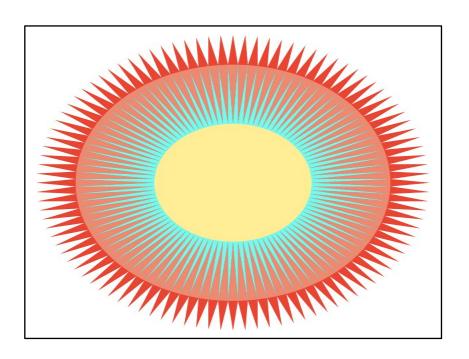
Point Sampling

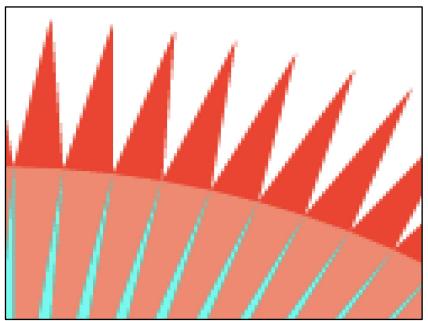




One sample per pixel

4x4 Supersampling + Downsampling





Pixel value is average of 4x4 samples per pixel

Antialiasing By Supersampling - Summary

- Antialiasing = remove frequencies above Nyquist before sampling
- We can attenuate these frequencies quite well with a 1-pixel box filter (convolution)
- We approximated the 1-pixel box sampling by supersampling and averaging
- Simple, good idea high image quality, but costly
- May feel "right", but can get even higher quality!

Things to Remember

Signal processing key concepts:

- Frequency domain vs spatial domain
- Filters in the frequency domain scale frequencies
- Filters in the sampling domain = convolution

Sampling and aliasing:

- Image generation involves sampling
- Nyquist frequency is half the sampling rate
- Frequencies above Nyquist appear as aliasing artifacts
- Antialiasing = filter out high frequencies before sampling
- Interpret supersampling as (approx) box pre-filter antialiasing

Acknowledgments

Thanks to Kayvon Fatahalian, Pat Hanrahan, Mark Pauly and Steve Marschner for slide resources.