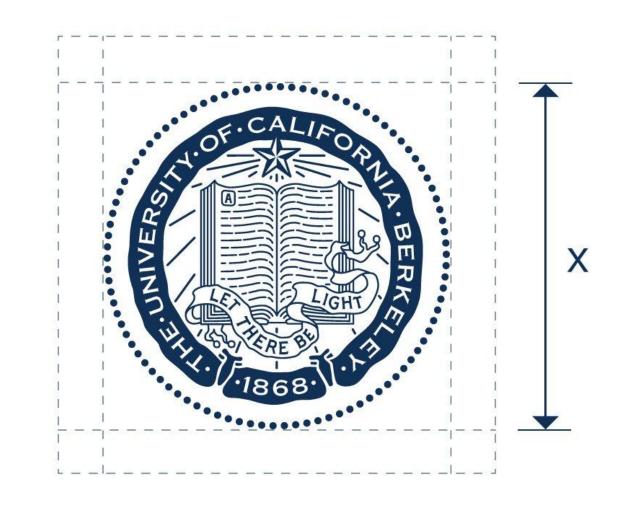
Lecture 7:

Introduction to Geometry



Computer Graphics and Imaging
UC Berkeley CS184

Course Roadmap

Rasterization Pipeline

Core Concepts

- Sampling
- Antialiasing
- Transforms

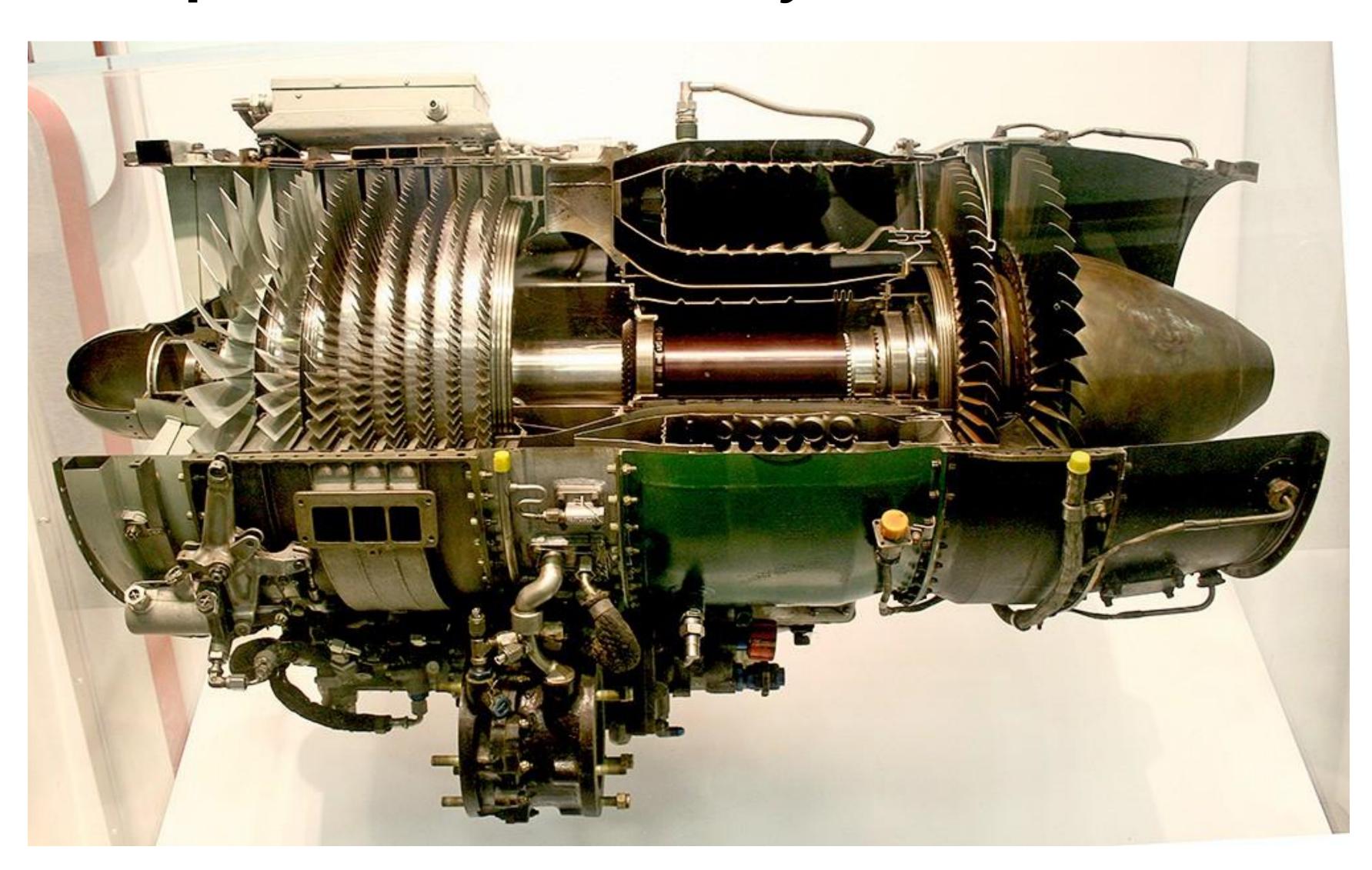
Geometric Modeling

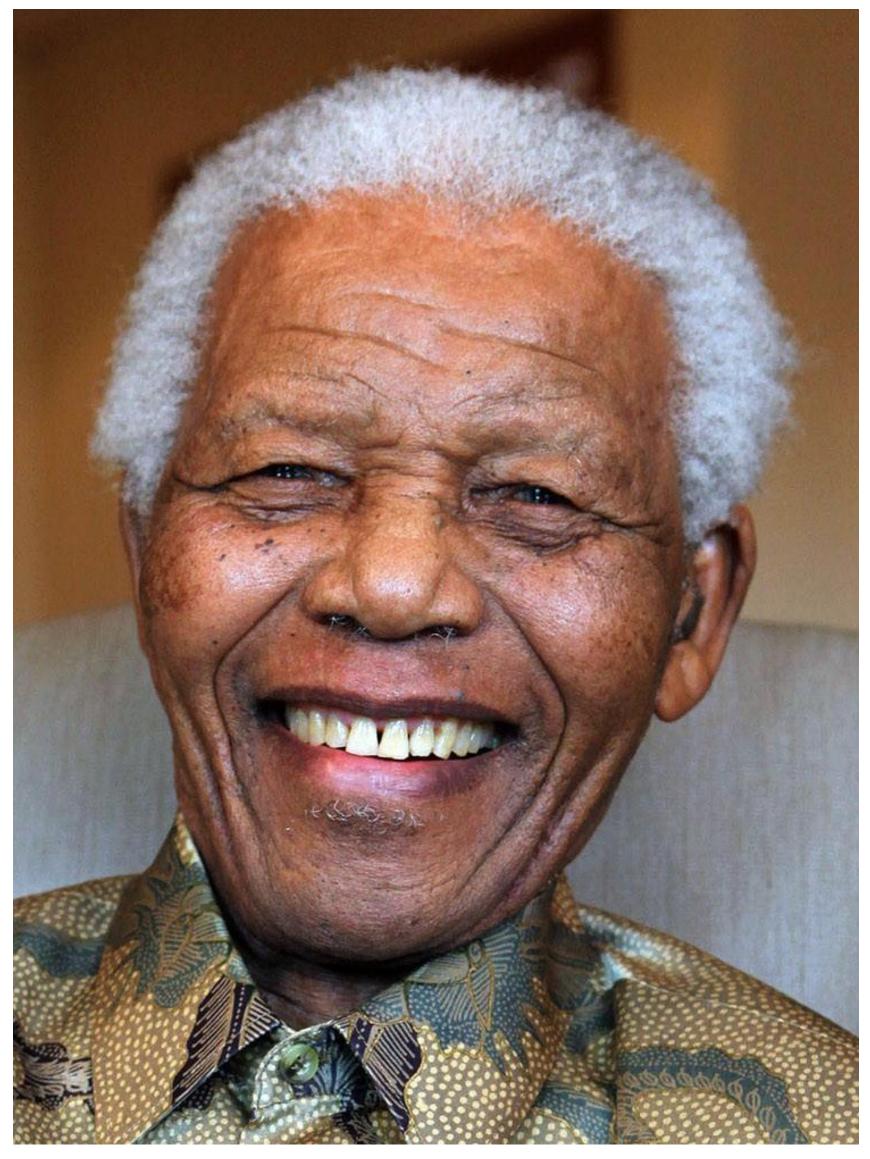
Lighting & Materials

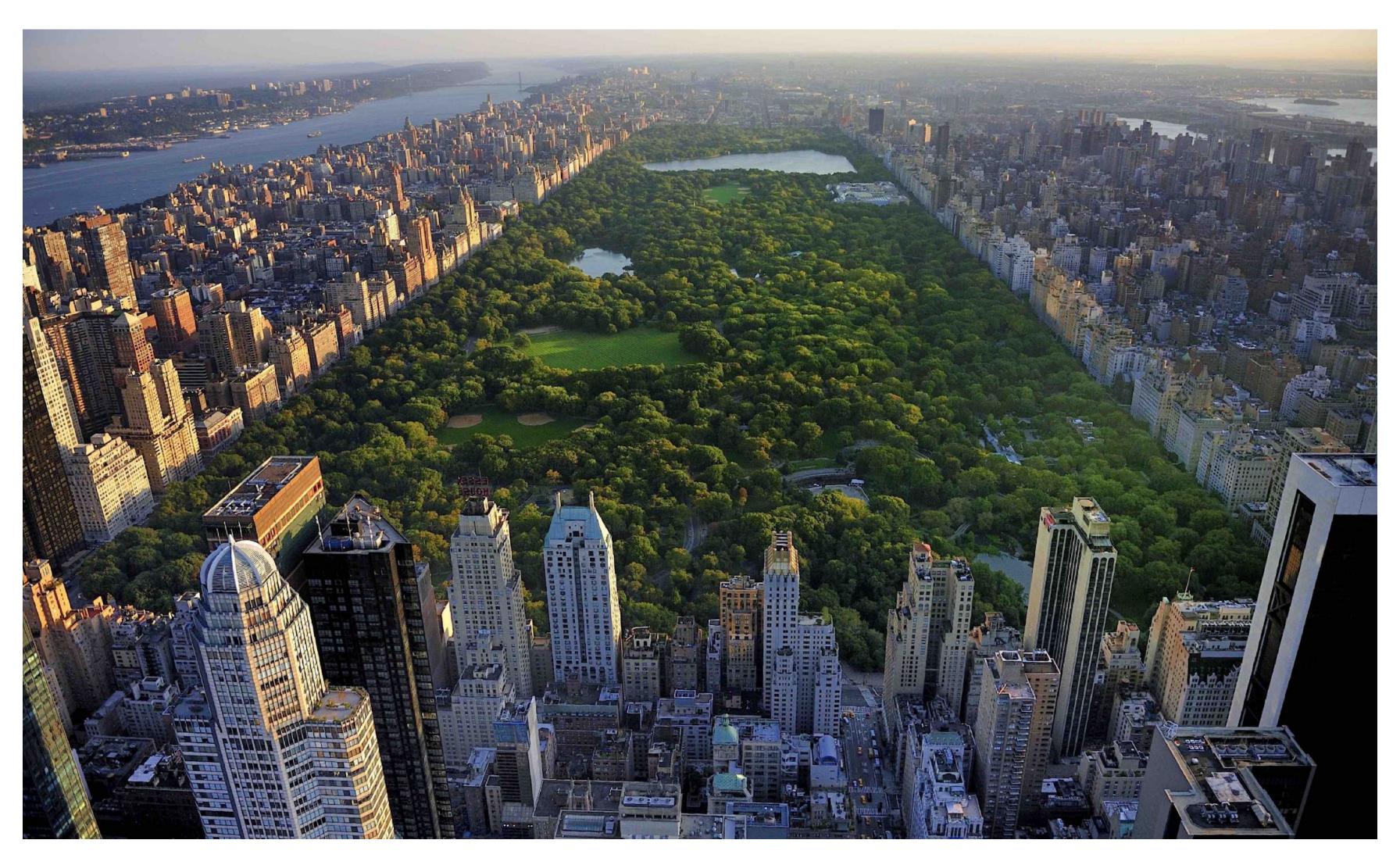
Cameras & Imaging

Intro Rasterization Transforms & Projection Texture Mapping Today: Visibility, Shading, Overall **Pipeline**

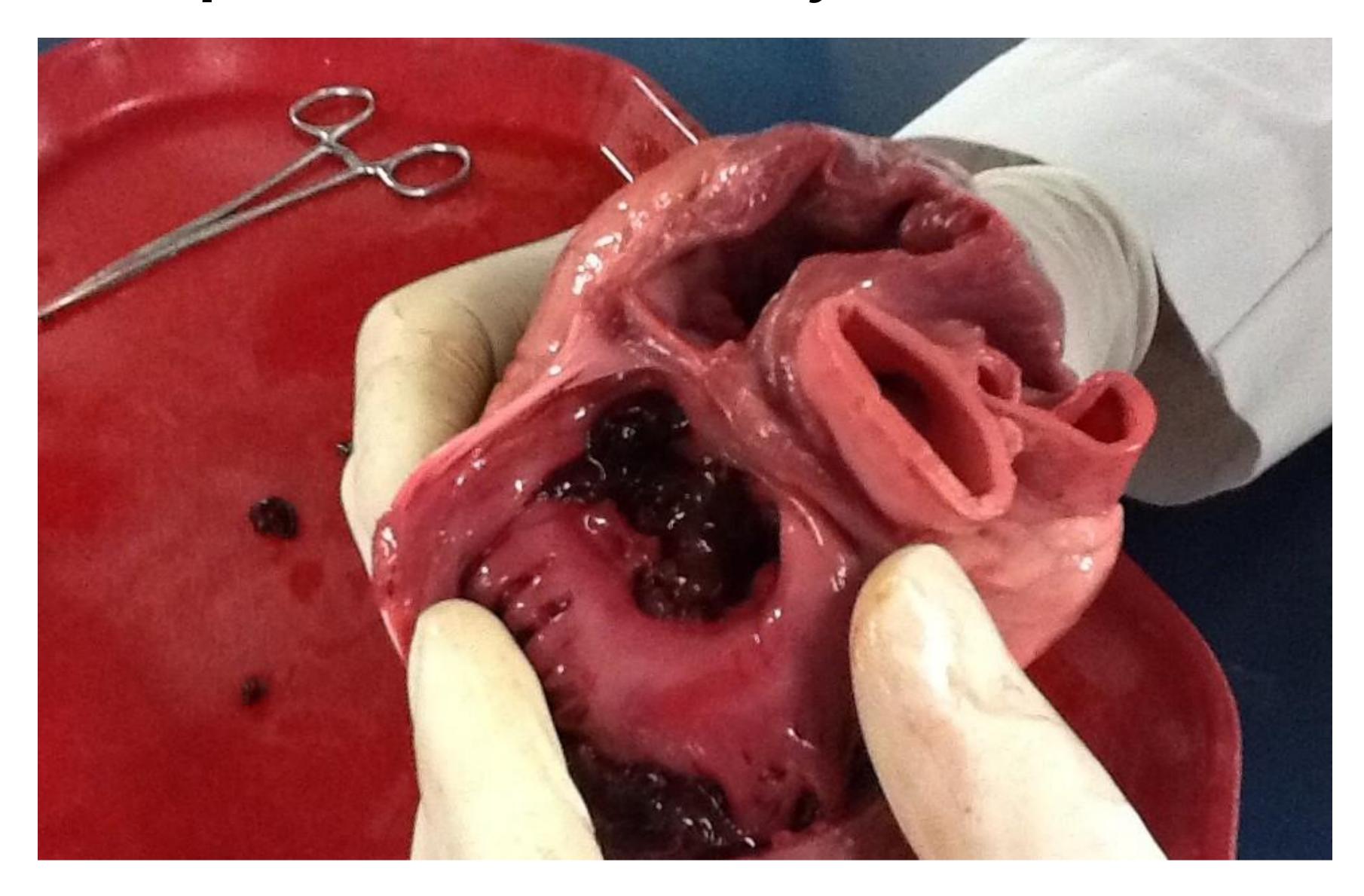
Today







CS184/284A Ren Ng



Many Ways to Represent Geometry

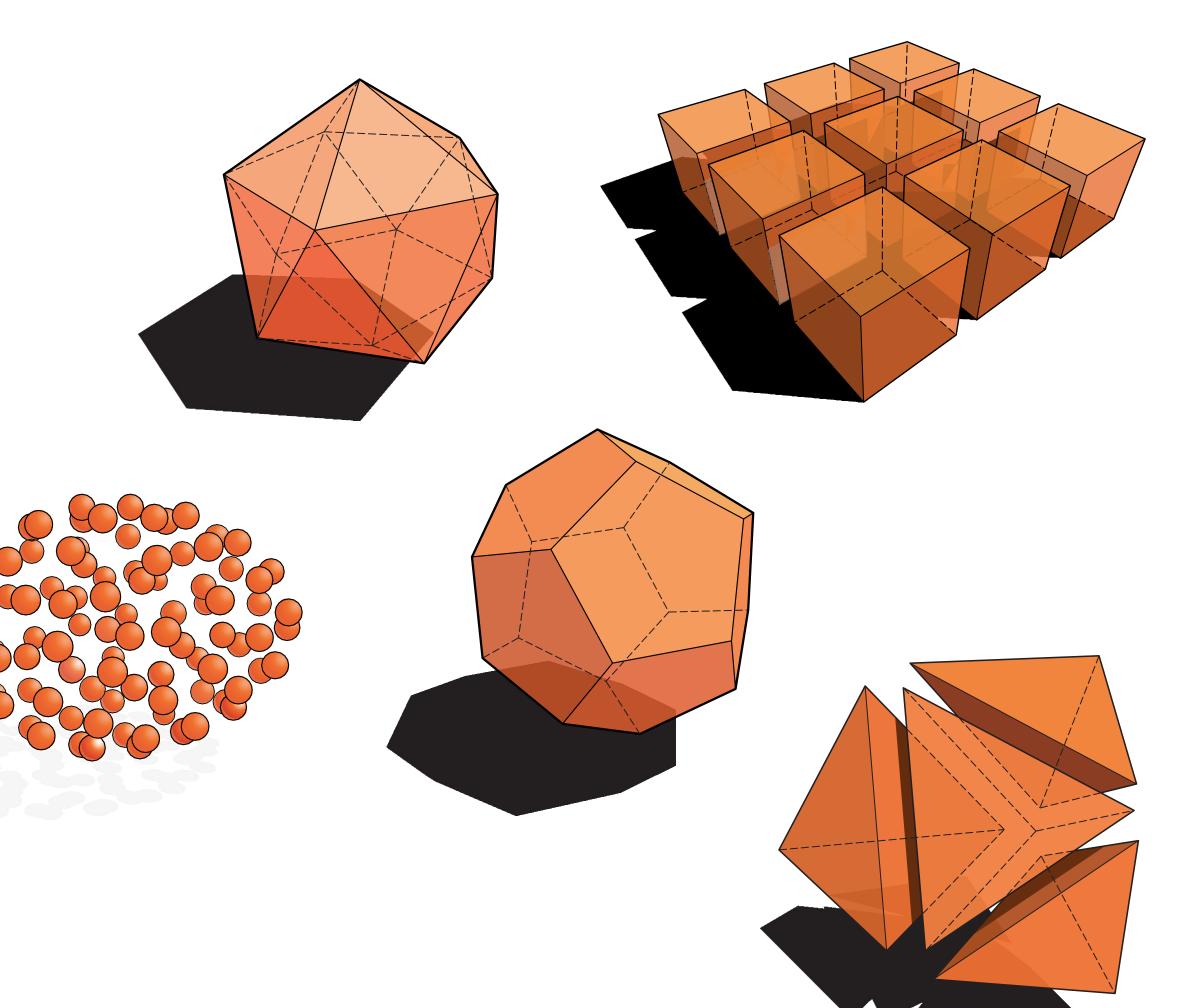
Explicit

- point cloud
- polygon mesh
- subdivision, NURBS

• . . .

Implicit

- level sets
- algebraic surface
- distance functions
- . . .



Each choice best suited to a different task/type of geometry

Smooth Curves

Smooth Curves and Surfaces

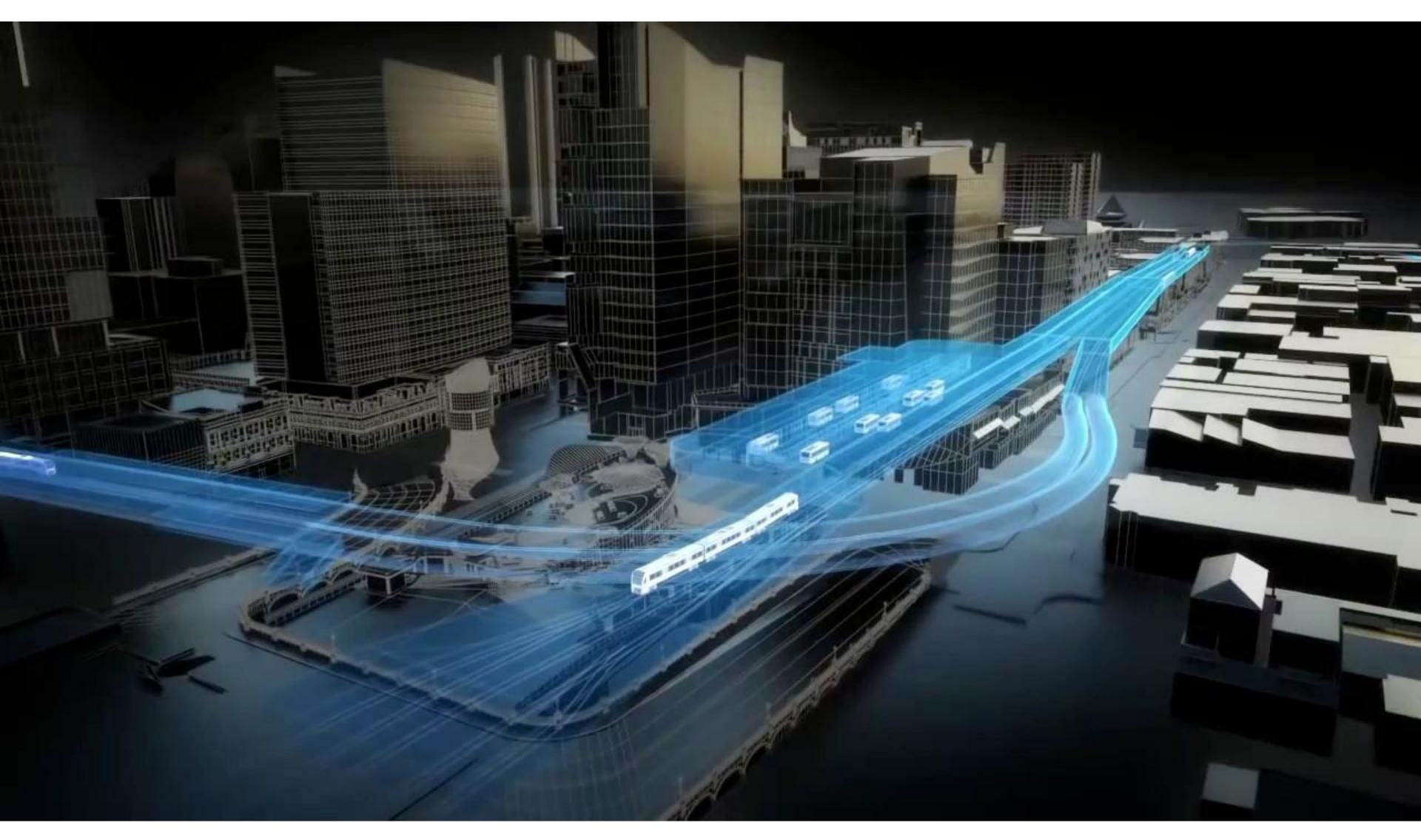
So far we can make:

- Things with corners (line, triangle, Cube, ...)
- Piecewise shapes (circle, ellipse, ...)

Many applications require smooth shapes

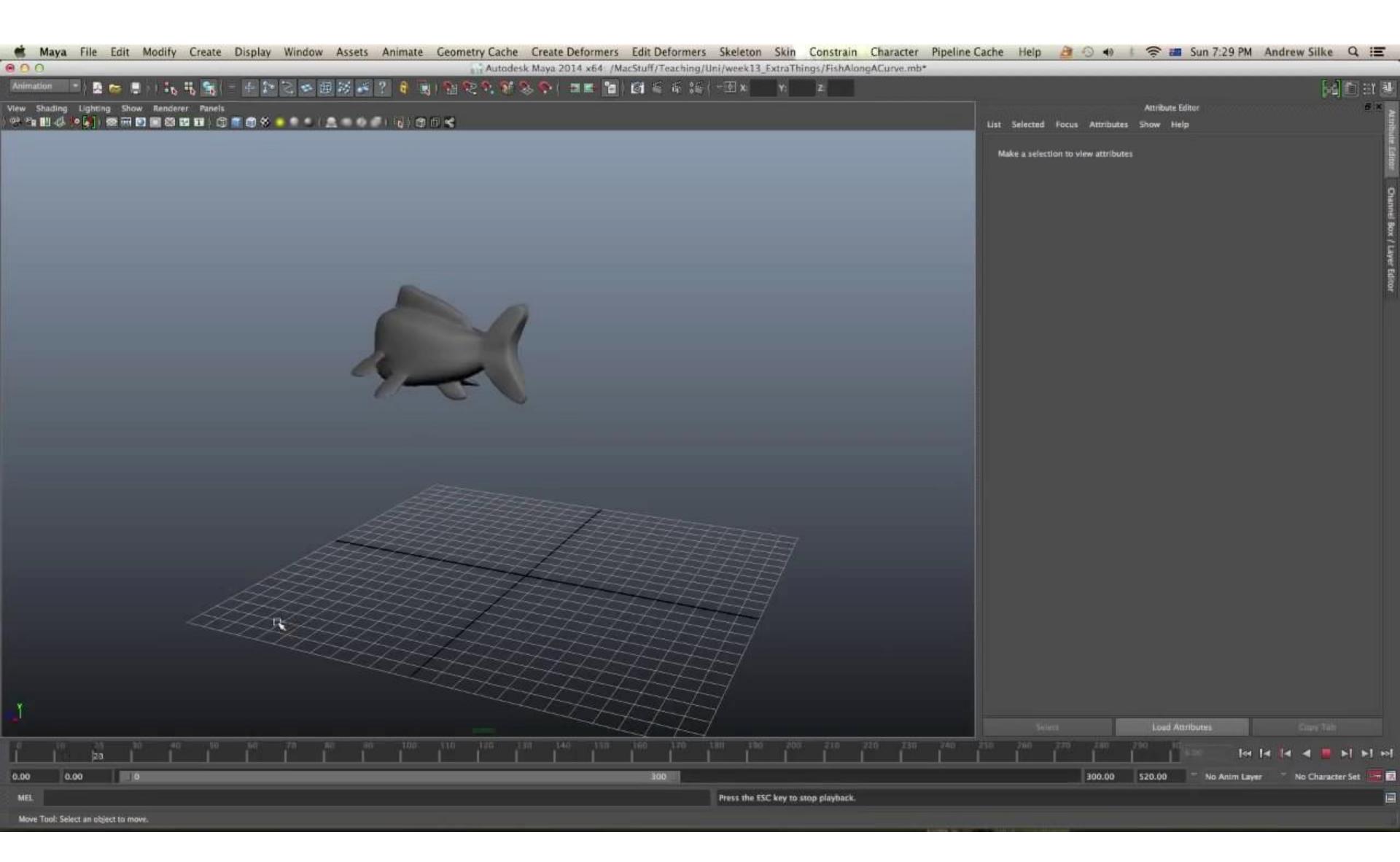
- Camera paths, vector fonts, ...
- CAD design, object modeling, ...
- Resampling filter functions

Camera Paths



Flythrough of proposed Perth Citylink subway, https://youtu.be/rIJMuQPwr3E

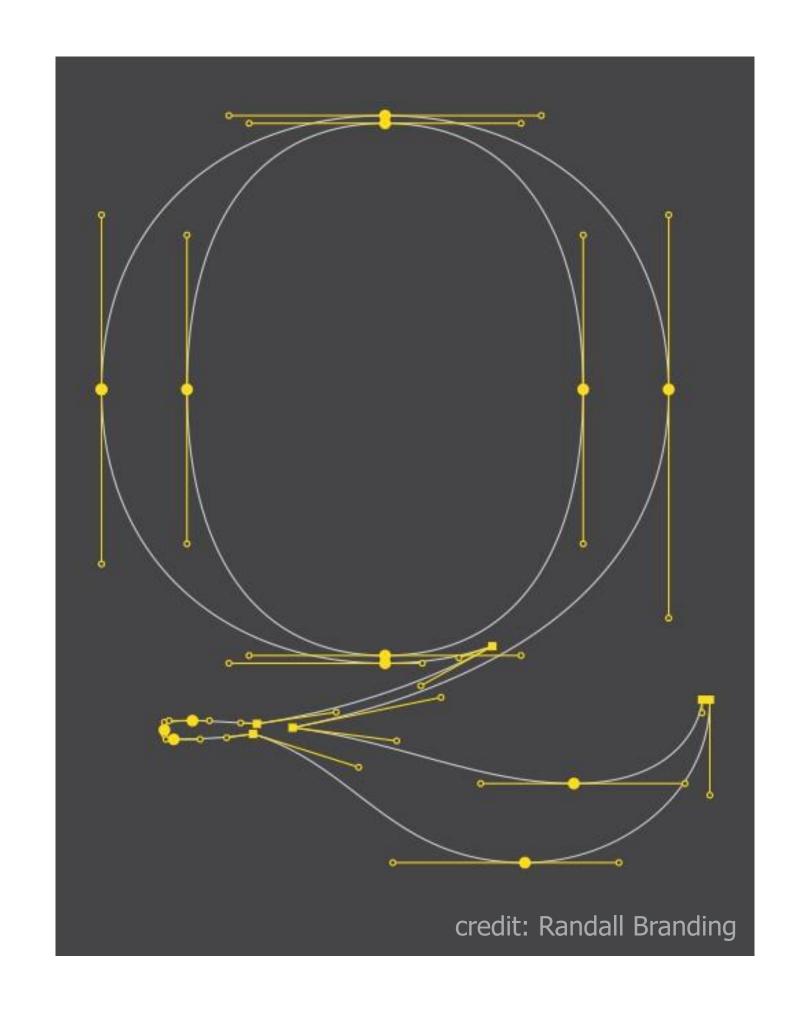
Animation Curves



Vector Fonts

The Quick Brown
Fox Jumps Over
The Lazy Dog

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 0123456789



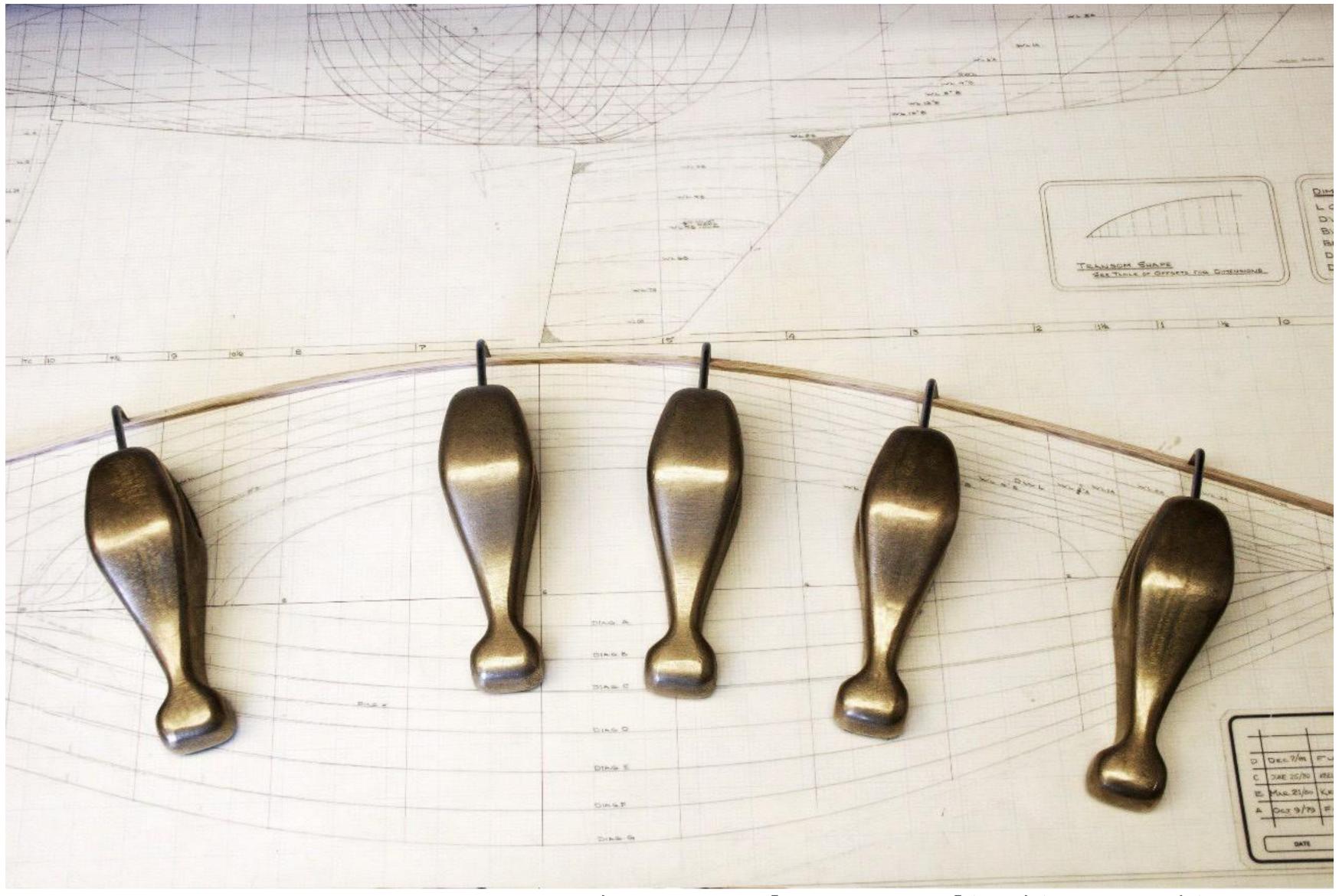
Baskerville font - represented as cubic Bézier splines

CAD Design

3D Car Modeling with Rhinoceros

Splines

Physical Spline for Hand-Drafting

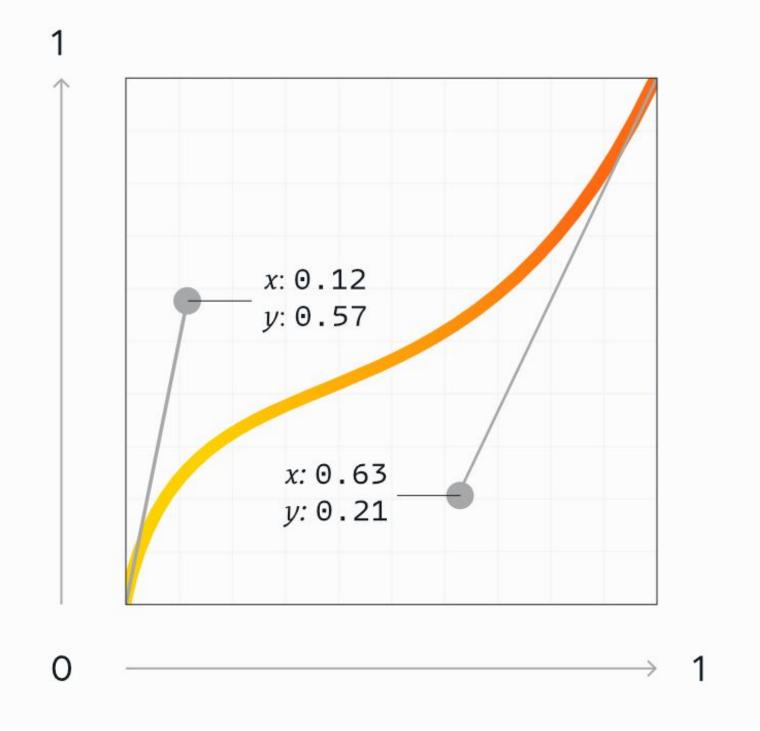


http://www.alatown.com/spline-history-architecture/

Spline Topics

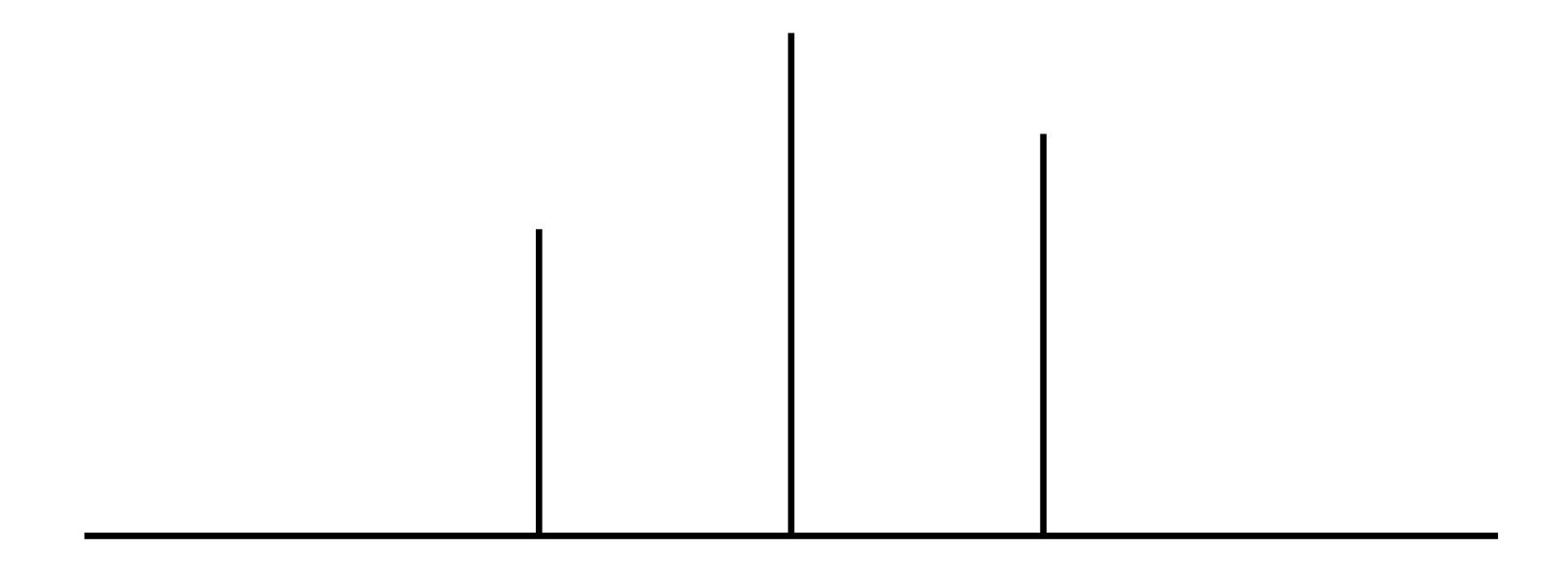
Interpolation

- Cubic Hermite interpolation
- Catmull-Rom interpolation
- Bezier curves
- Bezier surfaces

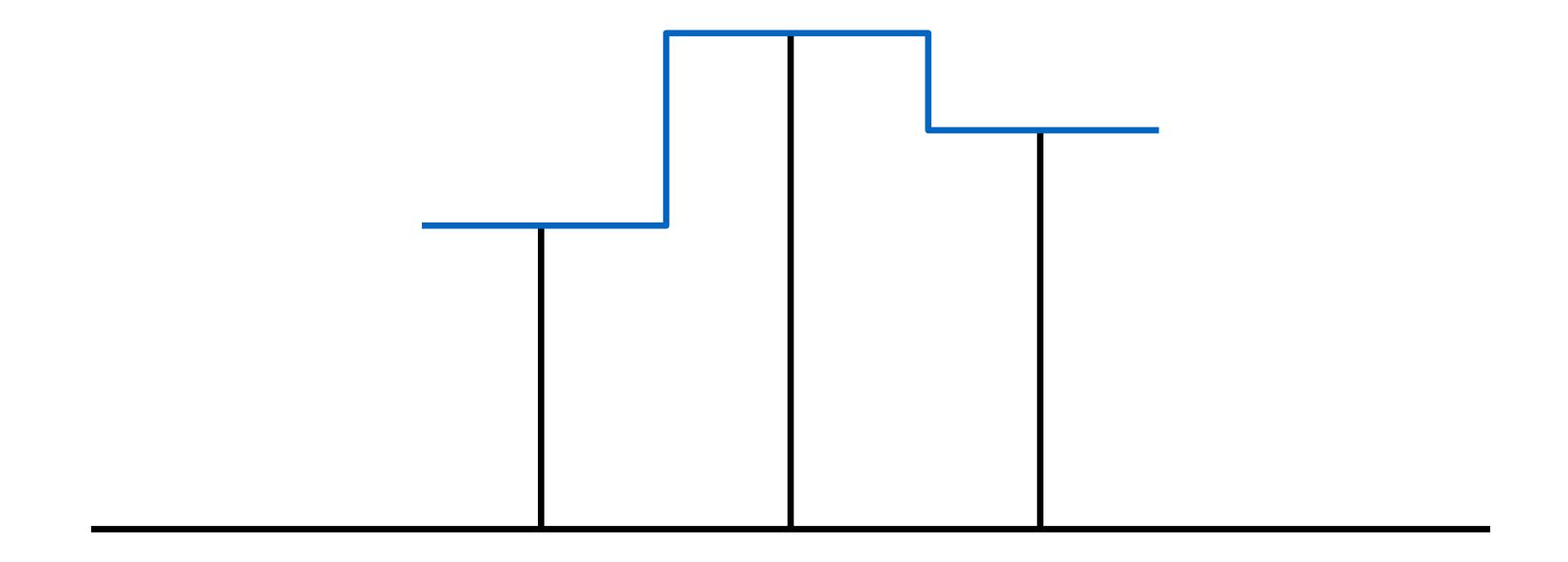


Cubic Hermite Interpolation

Goal: Interpolate Values

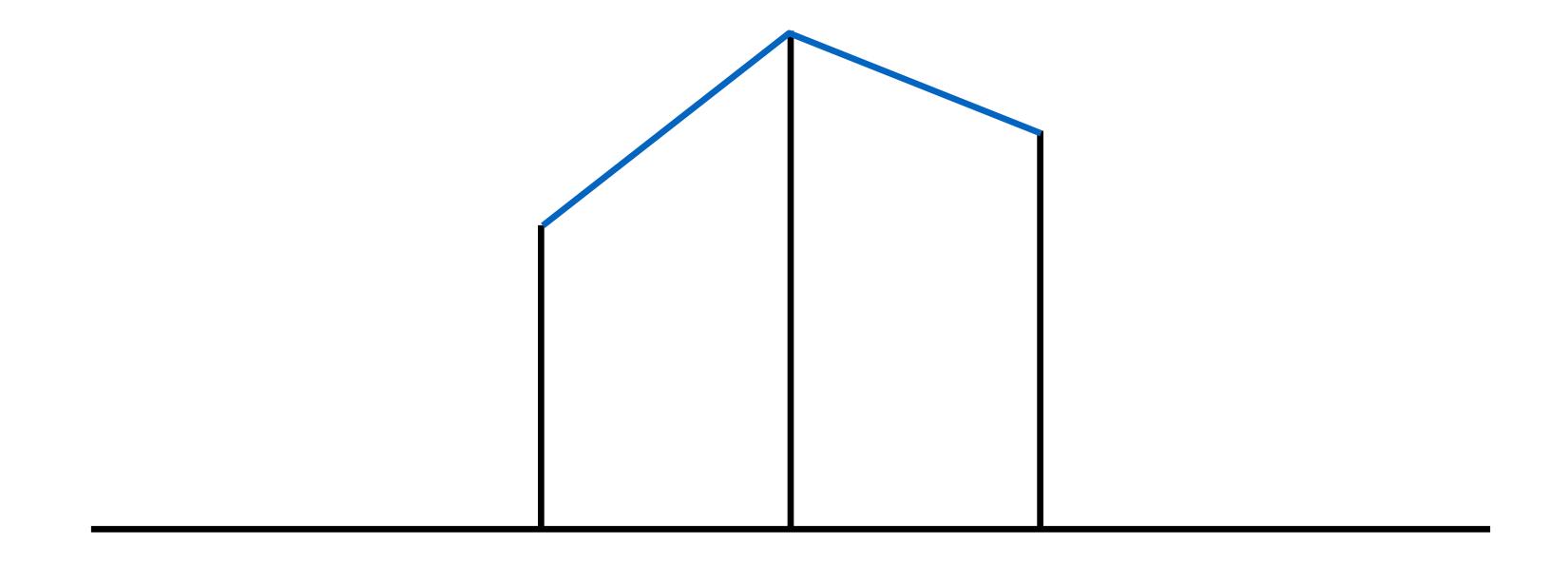


Nearest Neighbor Interpolation



Problem: values not continuous

Linear Interpolation

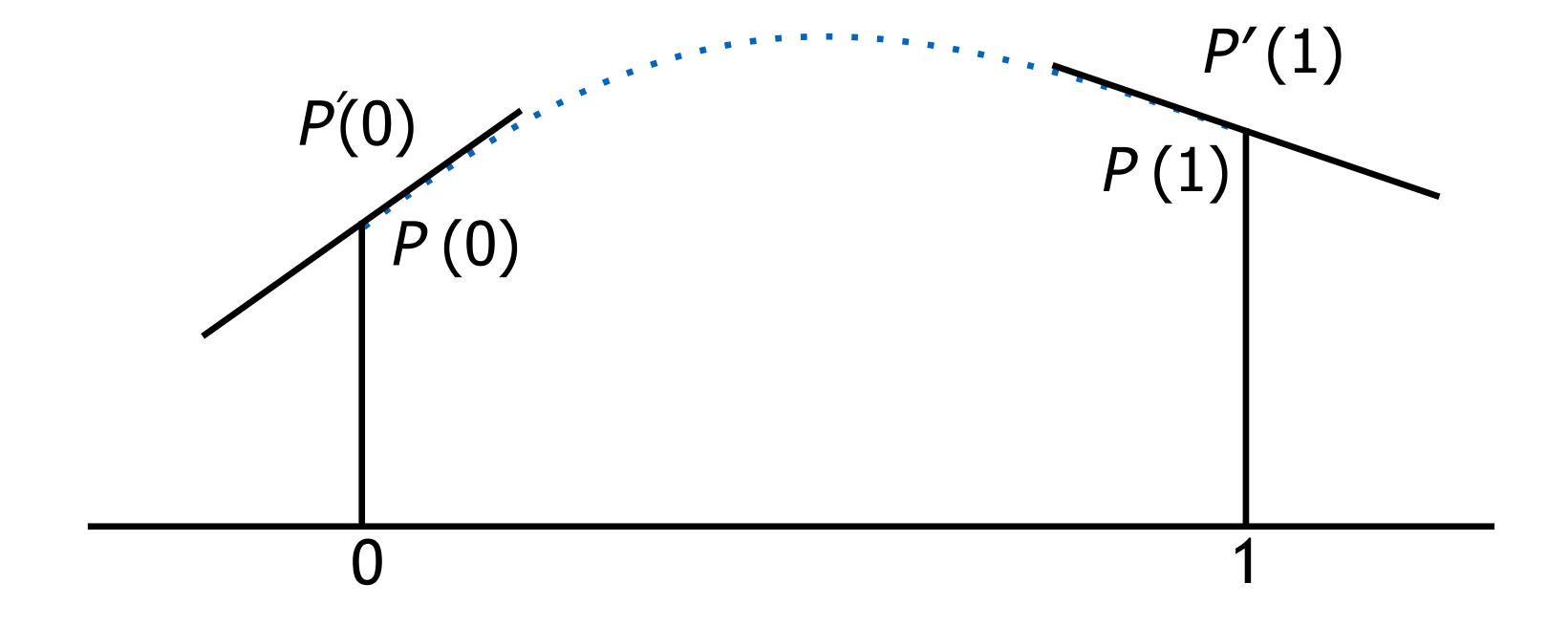


Problem: derivatives not continuous

Smooth Interpolation?



Cubic Hermite Interpolation



Inputs: values and derivatives at endpoints

Cubic Polynomial Interpolation

Cubic polynomial

$$P(t) = at^3 + bt^2 + ct + d$$

Why cubic?

We have 4 input constraints – need 4 degrees of freedom:

$$P(0) = h_0$$
 $P(1) = h_1$
 $P'(0) = h_2$
 $P'(1) = h_3$

Cubic Polynomial Interpolation

Cubic polynomial

$$P(t) = at^3 + bt^2 + ct + d$$

 $P'(t) = 3at^2 + 2bt + c$

Set up constraint equations

$$P(o) = h_o = d$$
 $P(1) = h_1 = a + b + c + d$
 $P'(o) = h_2 = c$
 $P'(1) = h_3 = 3a + 2b + c$

Hermite Basis Functions

$$P(t) = [t^{3} \quad t^{2} \quad t \quad 1] \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = [H_{0}(t) \quad H_{1}(t) \quad H_{2}(t) \quad H_{3}(t)] \begin{bmatrix} h_{0} \\ h_{1} \\ h_{2} \\ h_{3} \end{bmatrix}$$

$$t^3$$

$$H_0(t) = 2t^3 - 3t^2 + 1$$

$$t^2$$

$$H_1(t) = -2t^3 + 3t^2$$

$$t$$

$$H_2(t) = t^3 - 2t^2 + t$$

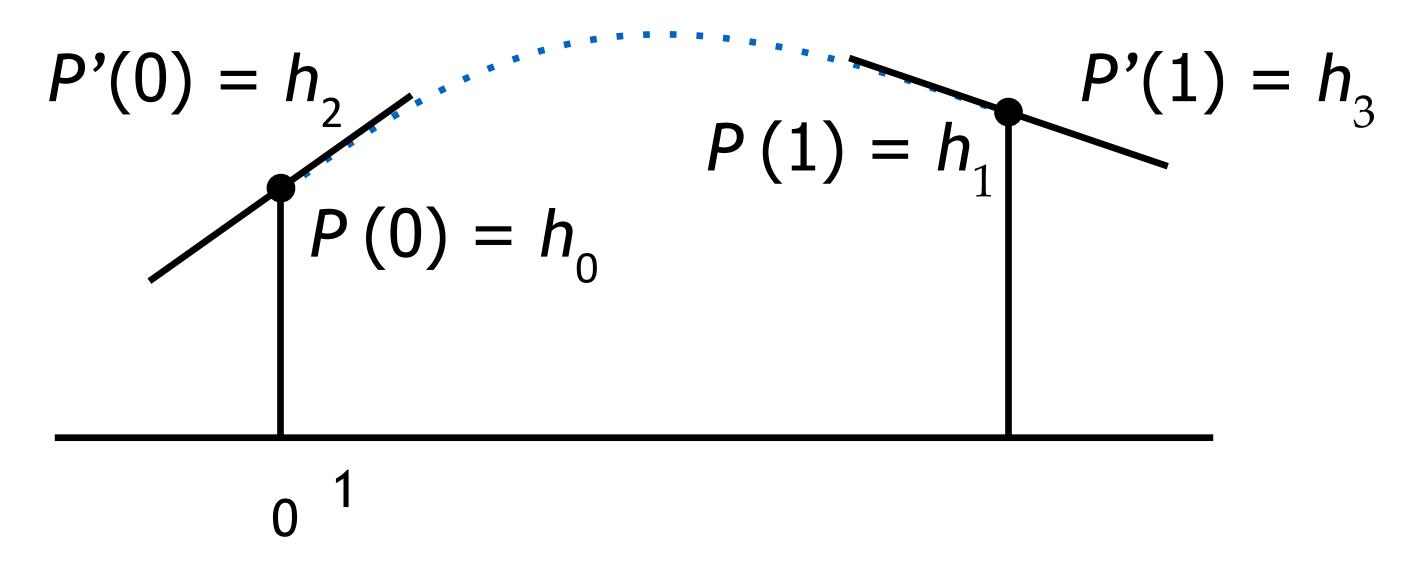
$$H_3(t) = t^3 - t^2$$

Basis functions for cubic polynomials

Hermite basis functions for cubic polynomials

Either basis can represent any cubic polynomial through linear combination

Recap: Cubic Hermite Interpolation



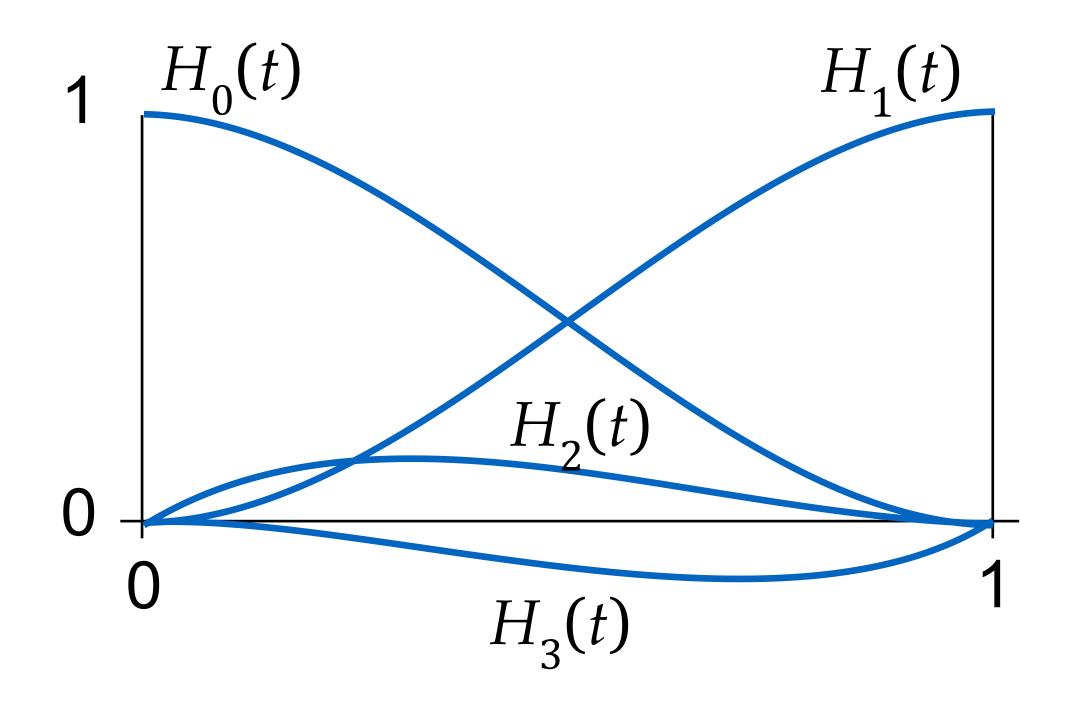
Inputs: values and derivatives at endpoints

Output: cubic polynomial that interpolates

Solution: weighted sum of Hermite basis functions

$$P(t) = h_0 H_0(t) + h_1 H_1(t) + h_2 H_2(t) + h_3 H_3(t)$$

Hermite Basis Functions



$$H_0(t) = 2t^3 - 3t^2 + 1$$

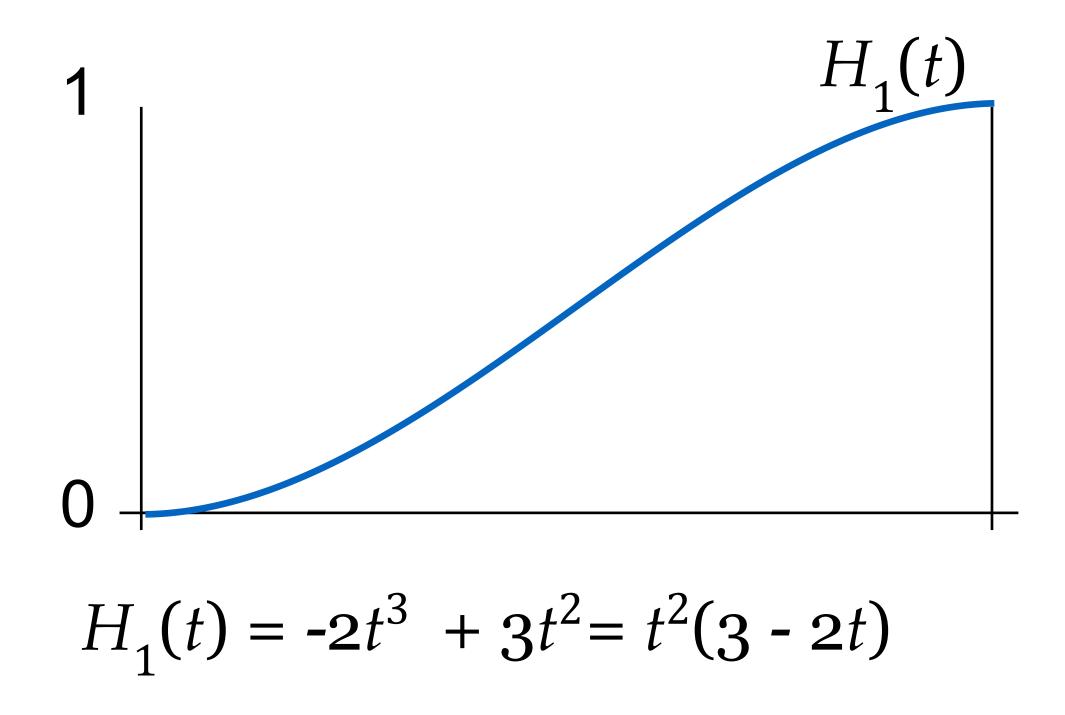
$$H_1(t) = -2t^3 + 3t^2$$

$$H_2(t) = t^3 - 2t^2 + t$$

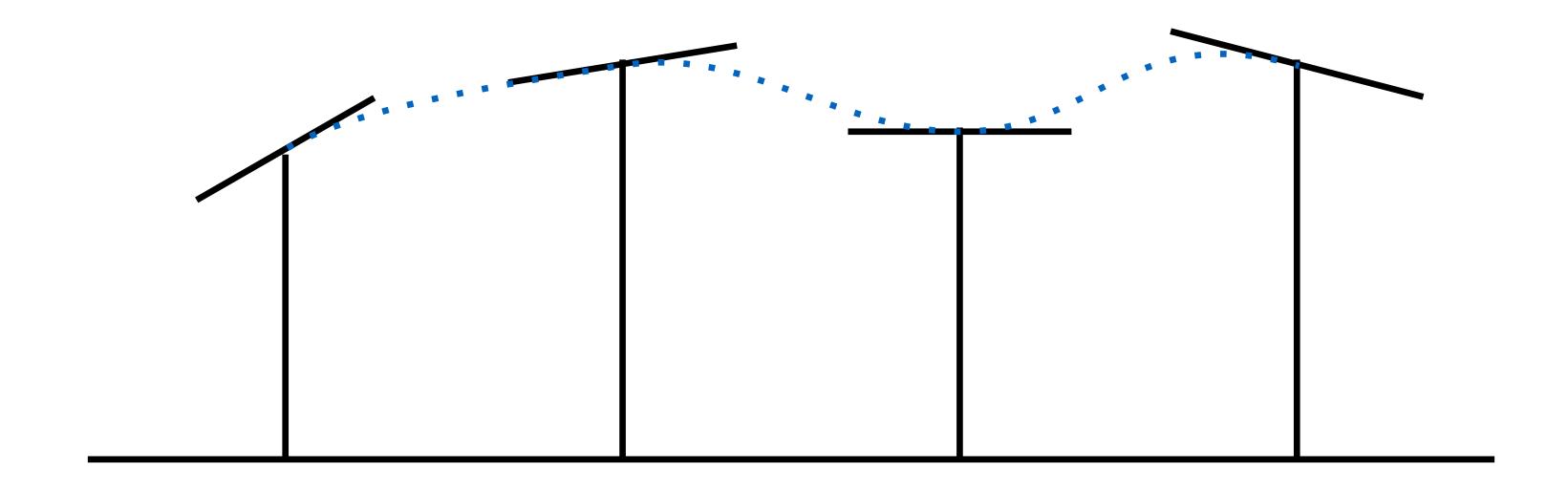
$$H_3(t) = t^3 - t^2$$

Ease Function

A very useful function in animation, start and stop gently (zero velocity)



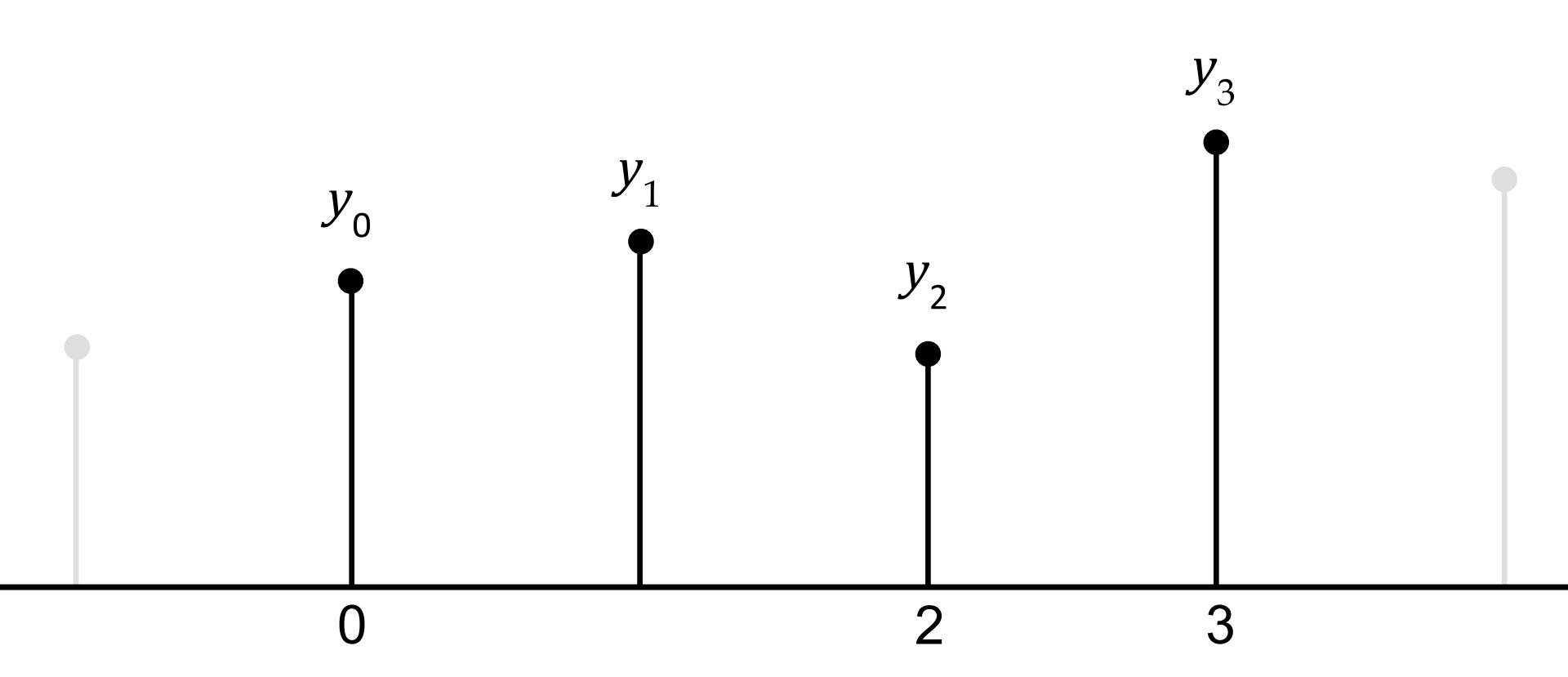
Hermite Spline Interpolation



Inputs: sequence of values and derivatives

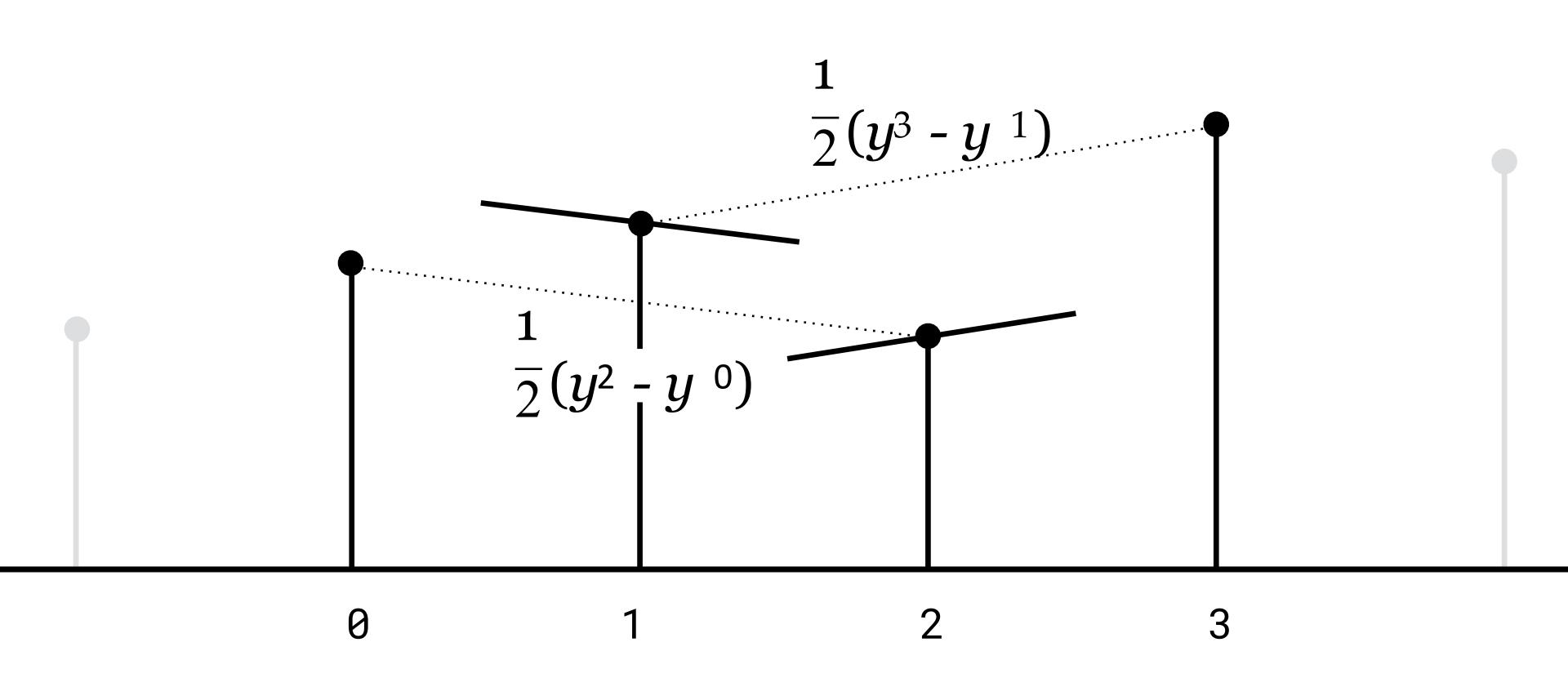
Catmull-Rom Interpolation

Catmull-Rom Interpolation



Inputs: sequence of values

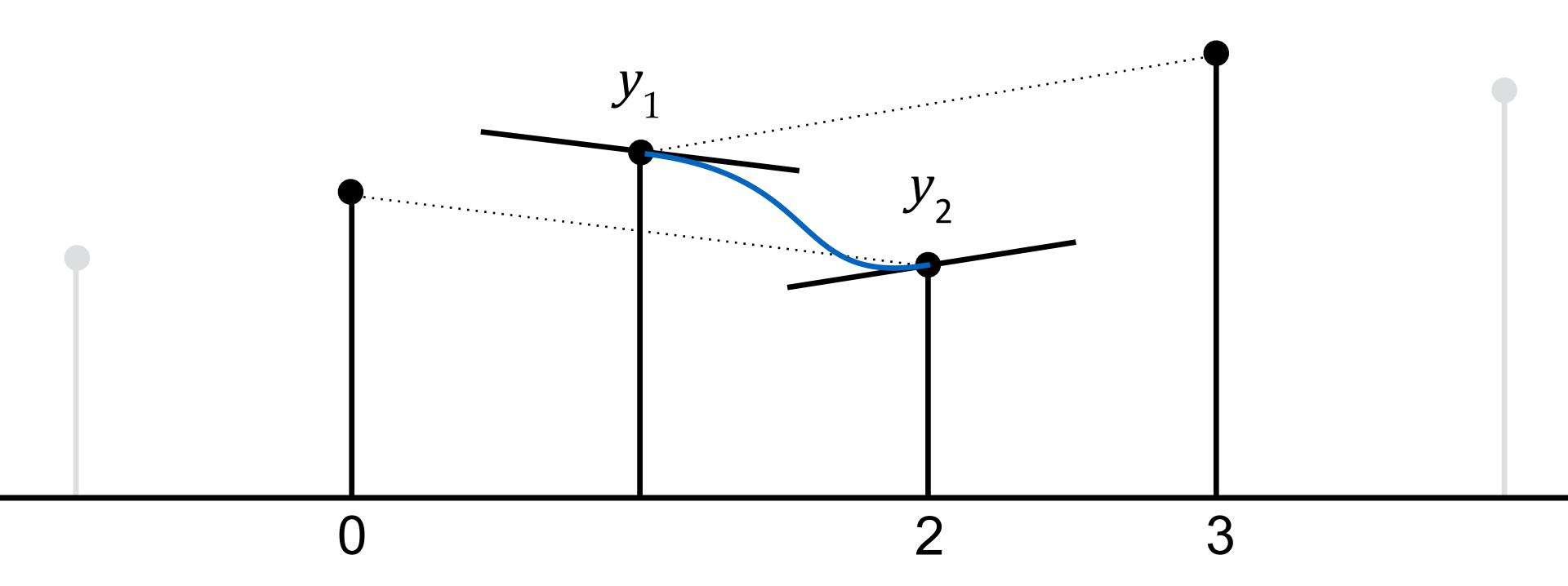
Catmull-Rom Interpolation



Rule for derivatives:

Match slope between previous and next values

Catmull-Rom Interpolation

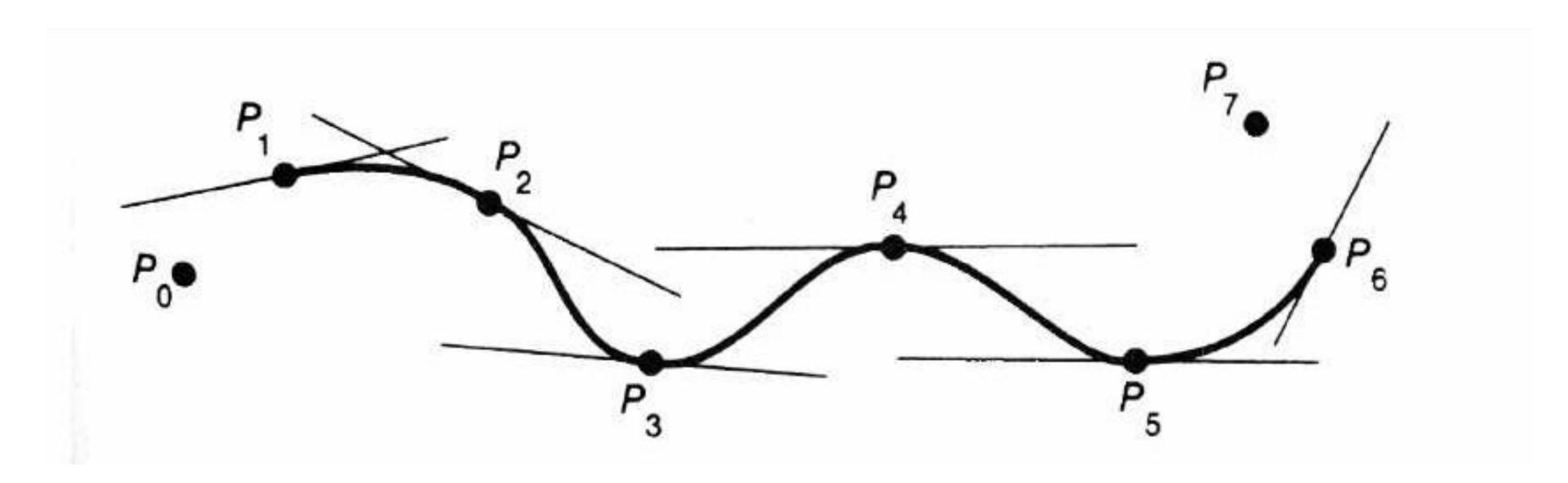


Then use Hermite interpolation

Catmull-Rom Spline

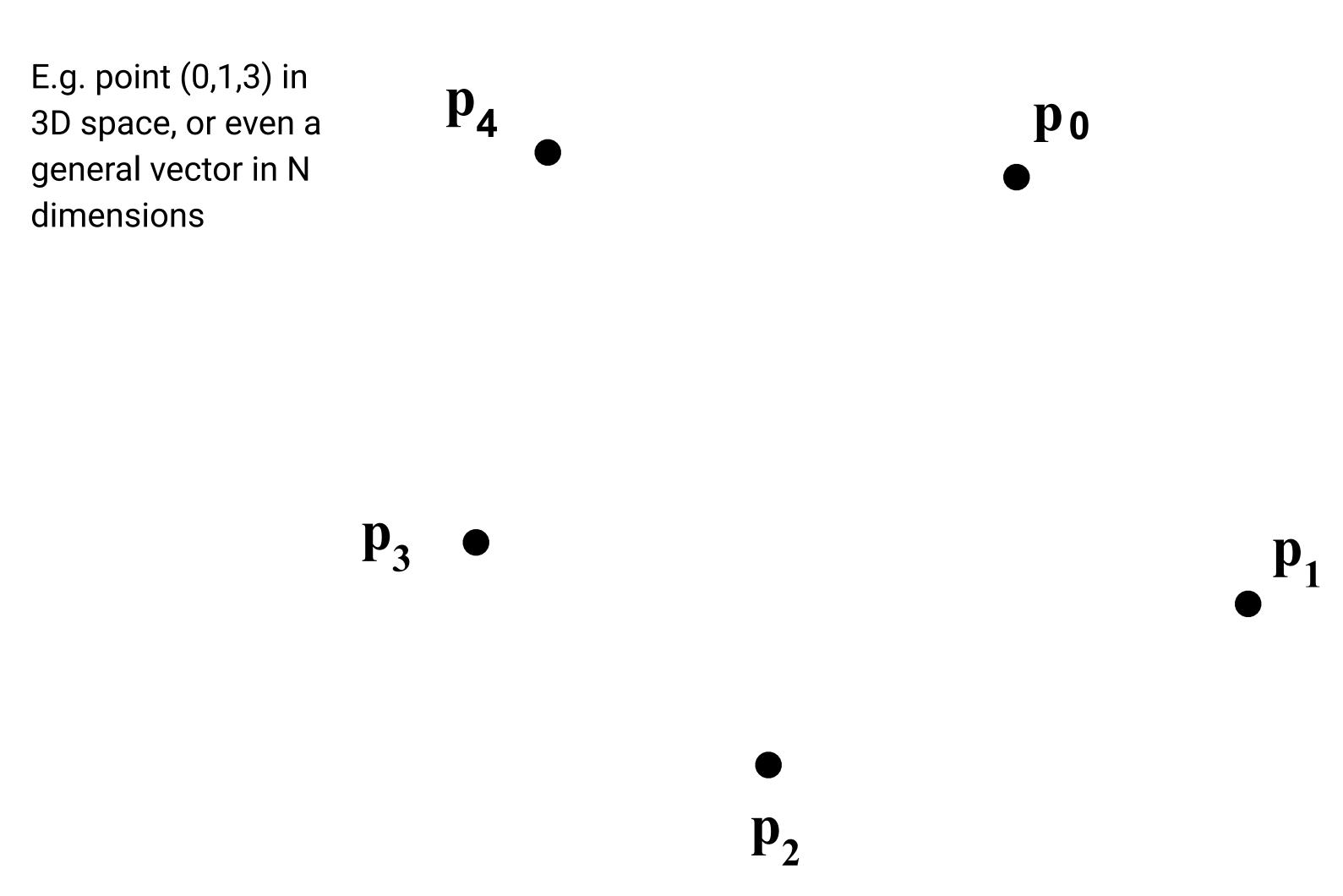
Input: sequence of points

Output: spline that interpolates all points with C1 continuity



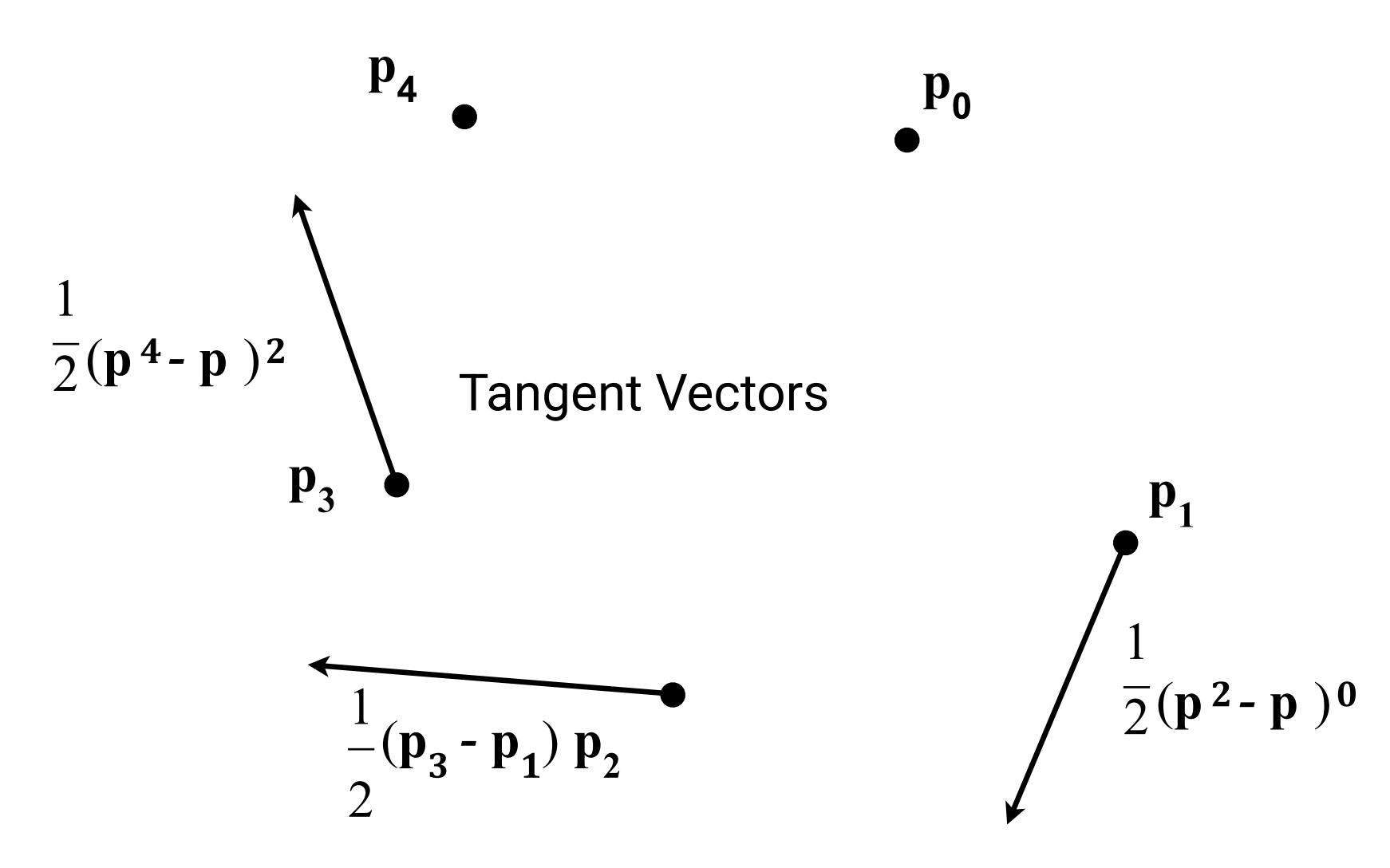
Interpolating Points & Vectors

Can Interpolate Points As Easily As Values



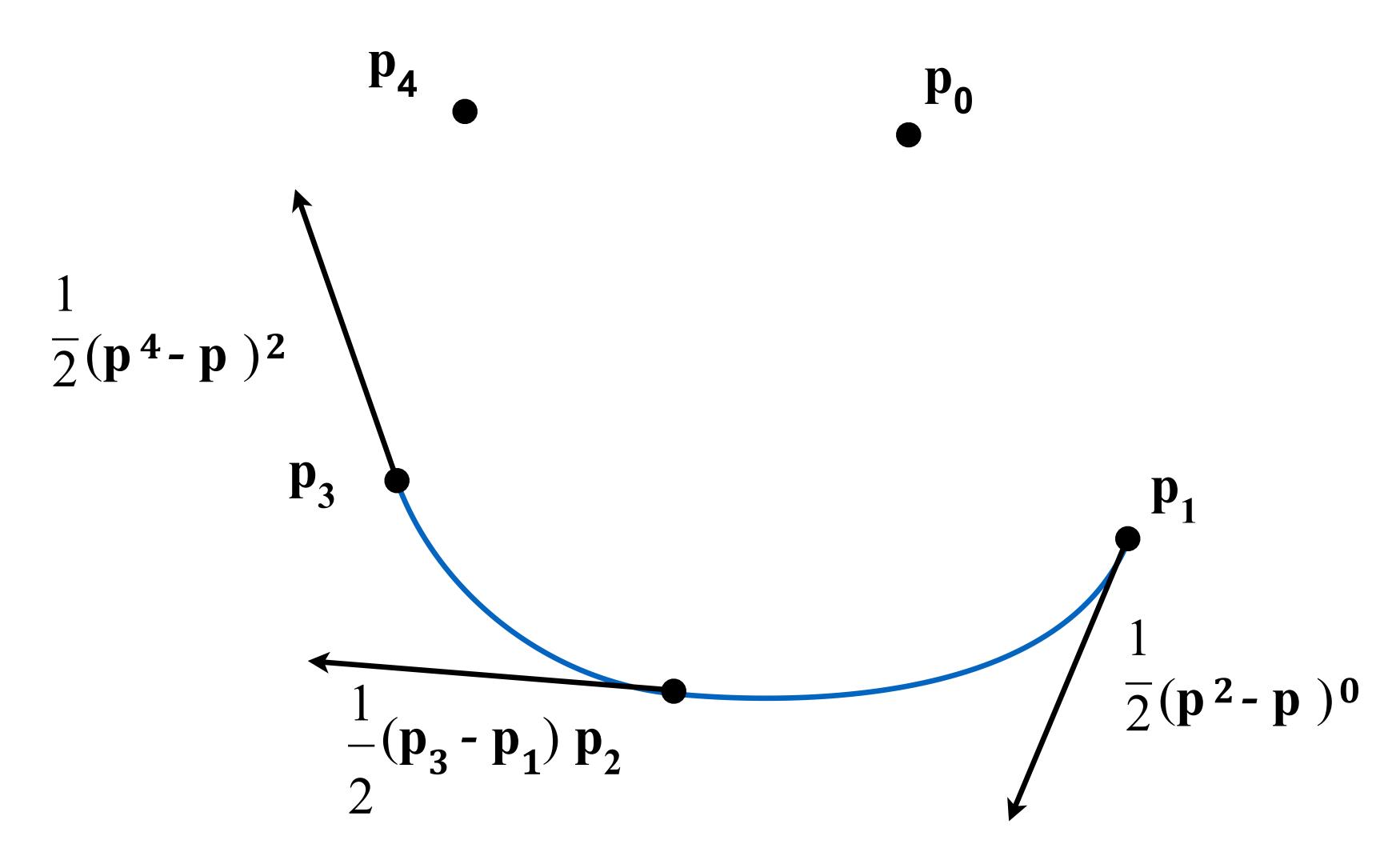
Catmull-Rom 3D spline control points

Can Interpolate Points As Easily As Values



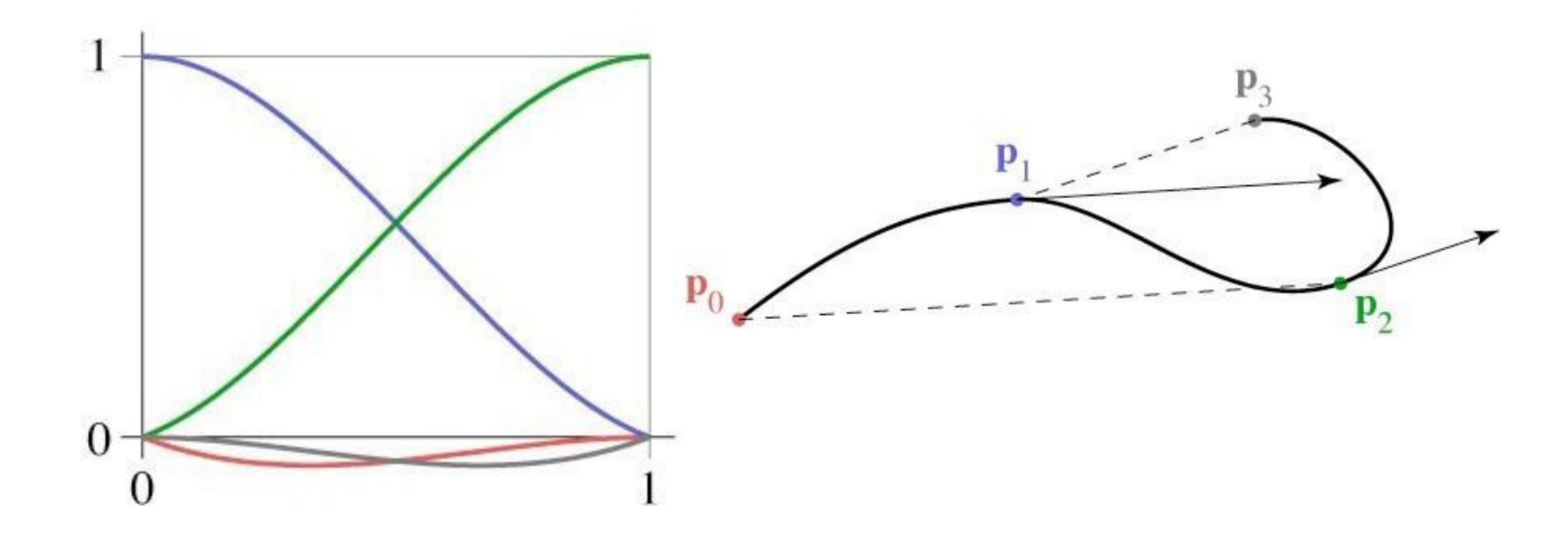
Catmull-Rom 3D tangent vectors

Can Interpolate Points As Easily As Values



Catmull-Rom 3D space curve

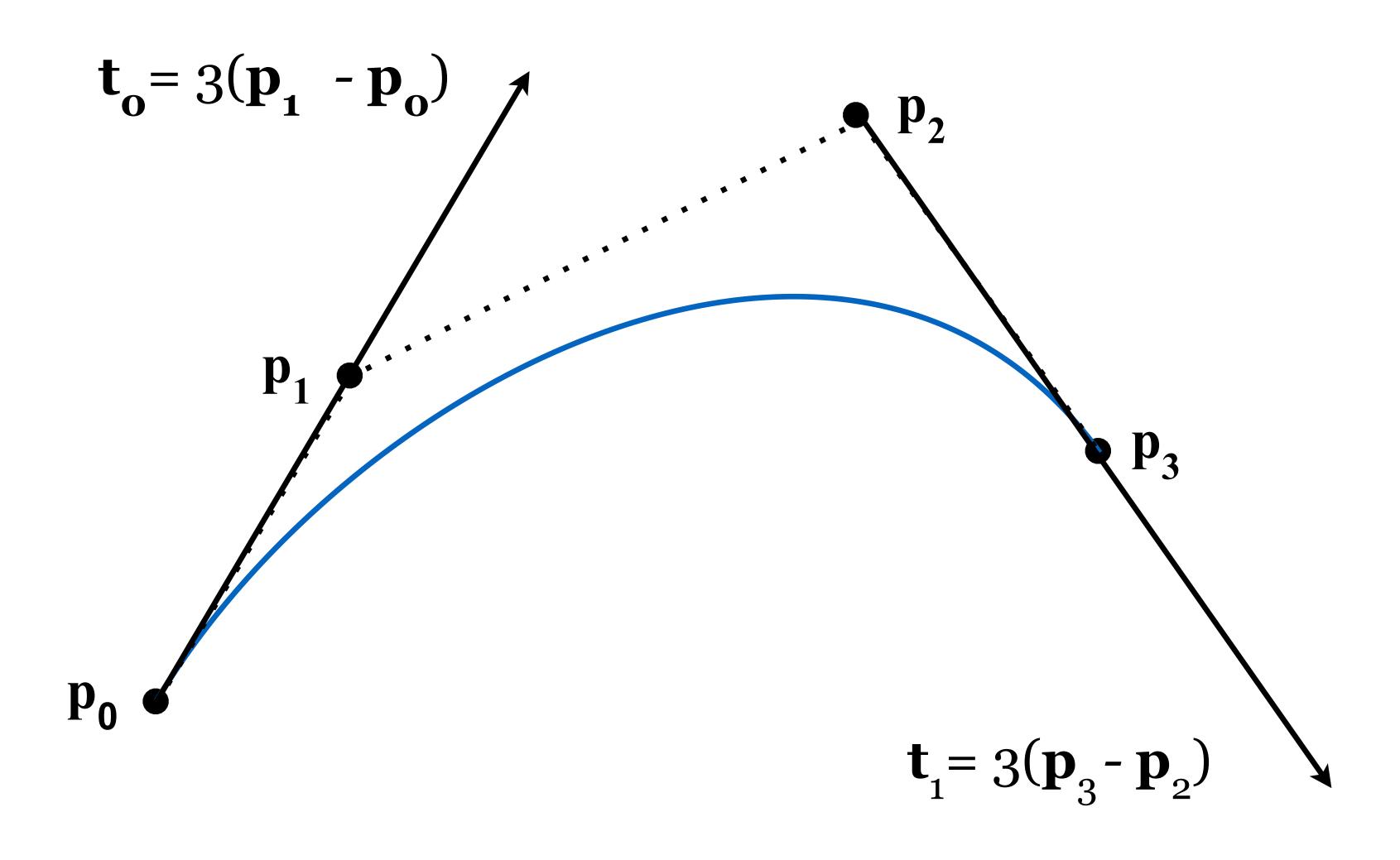
Catmull-Rom Basis Functions



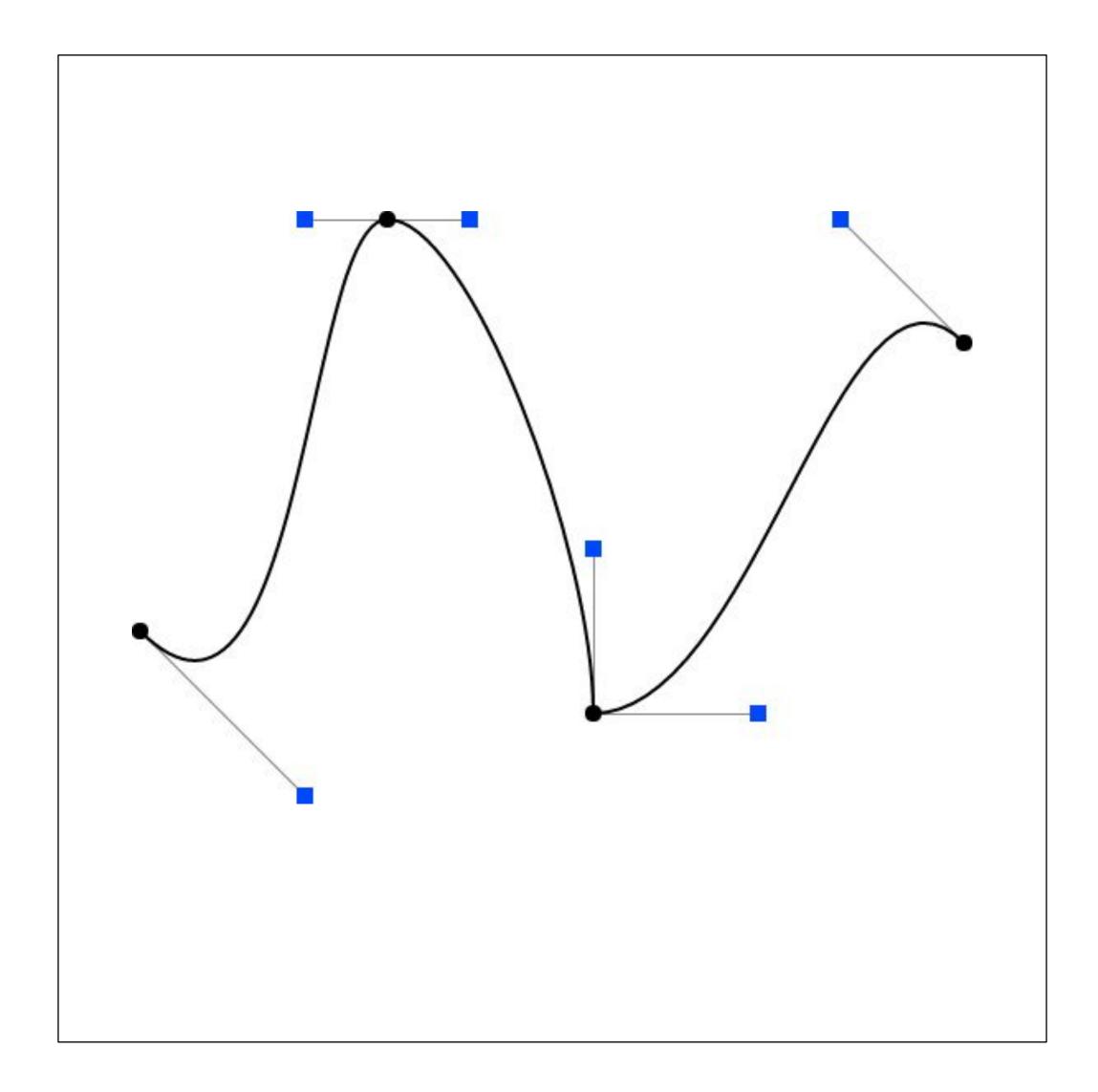
Bézier Curves

Examples of Geometry

Defining Cubic Bézier Curve With Tangents



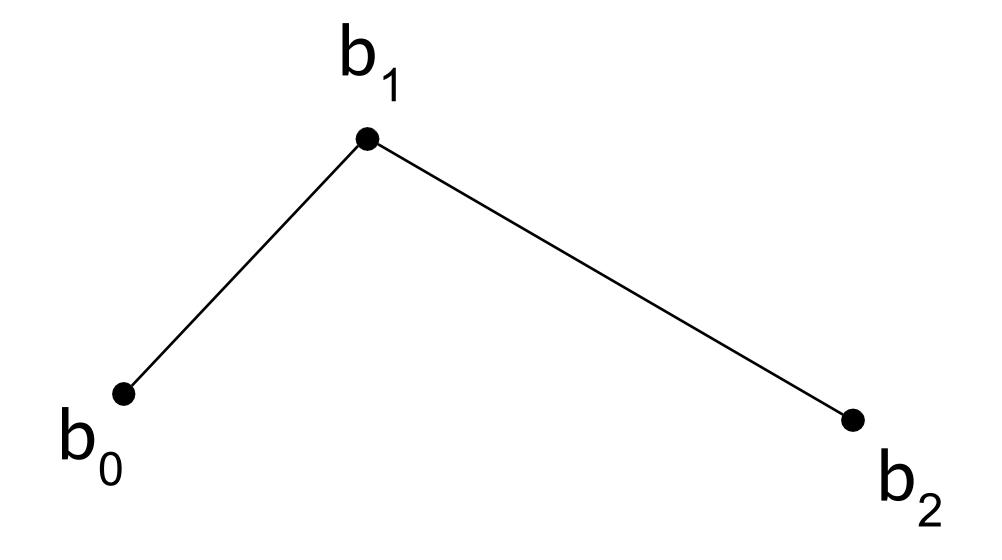
Piecewise Cubic Bézier Curve



David Eck, http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html

Evaluating Bézier Curves: De Casteljau Algorithm

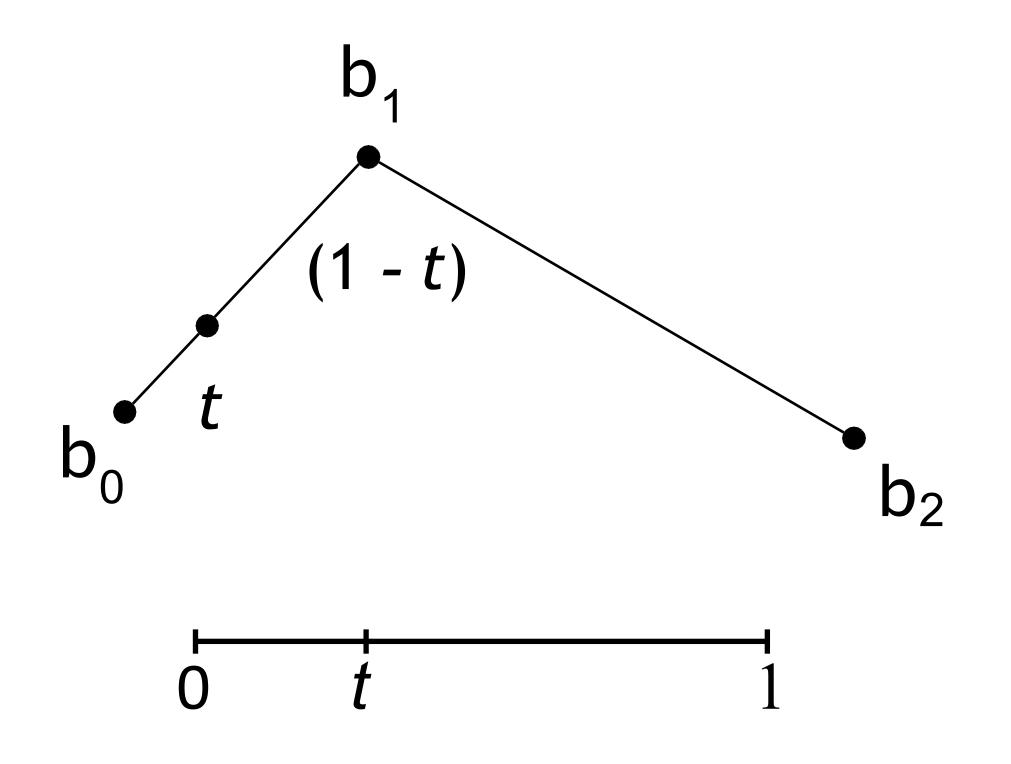
Consider three points (quadratic Bezier)



Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

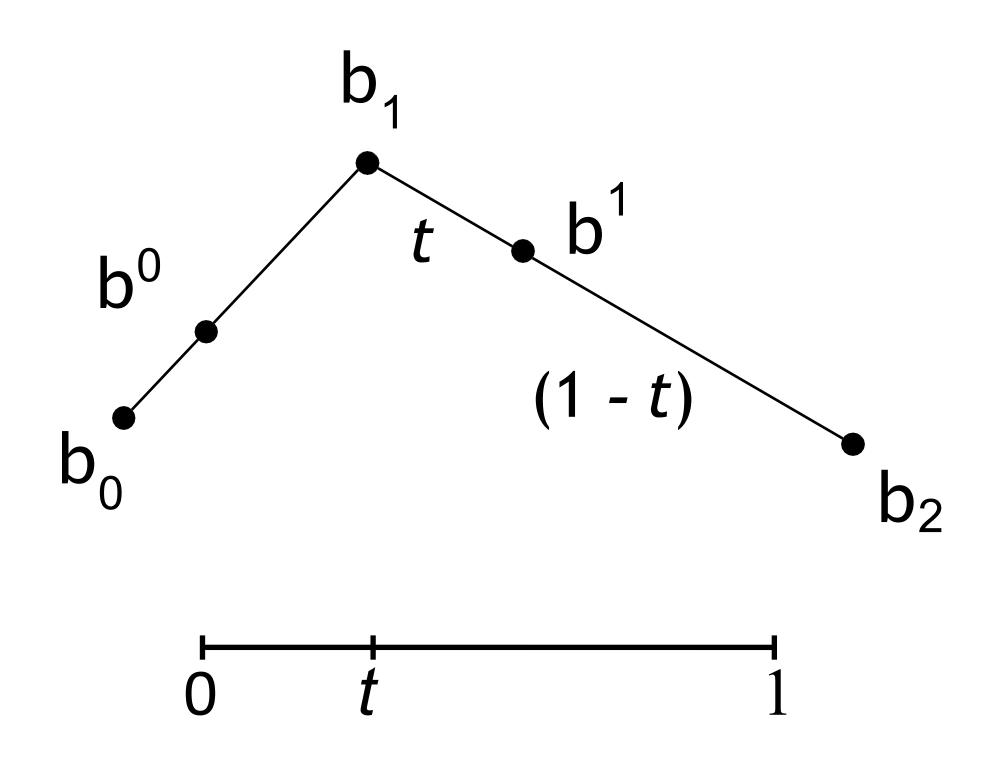
Insert a point using linear interpolation



Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

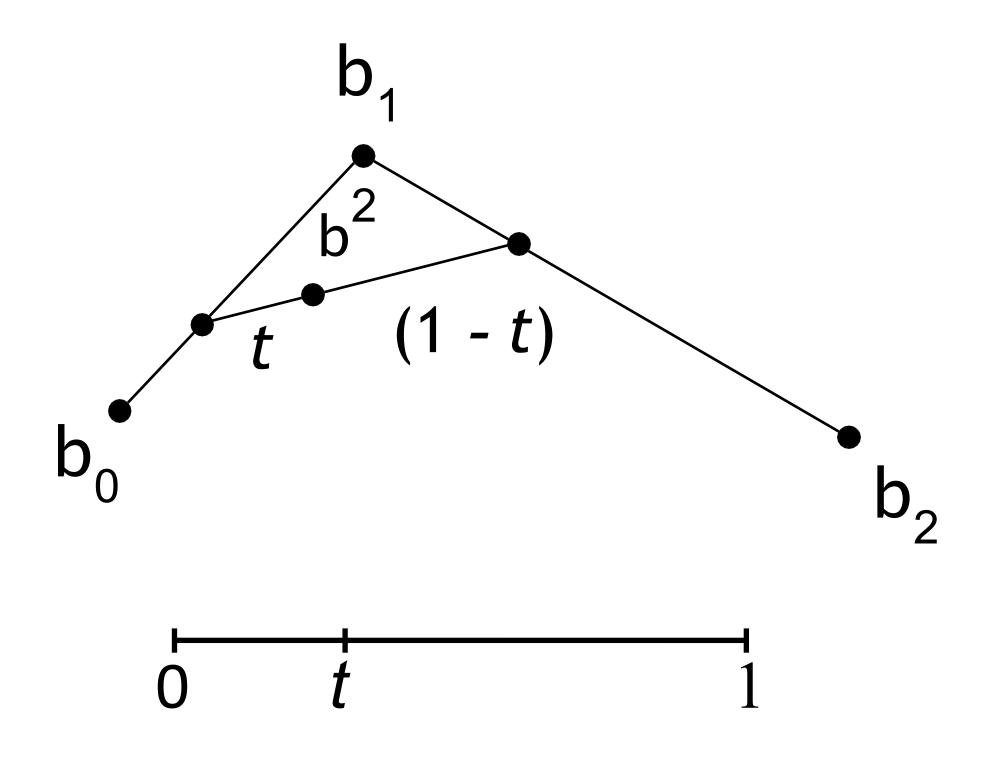
Insert on both edges



Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

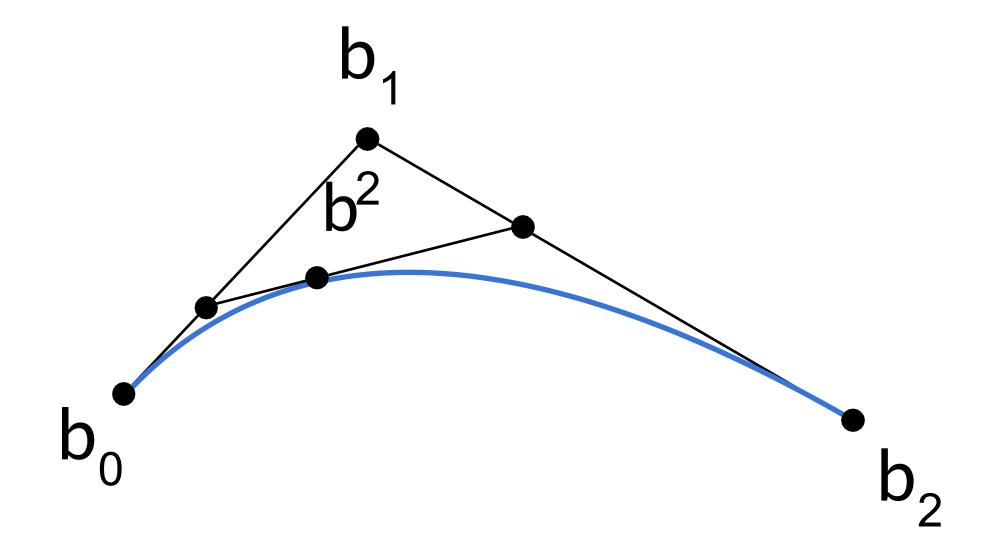
Repeat recursively



Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

Algorithm defines the curve

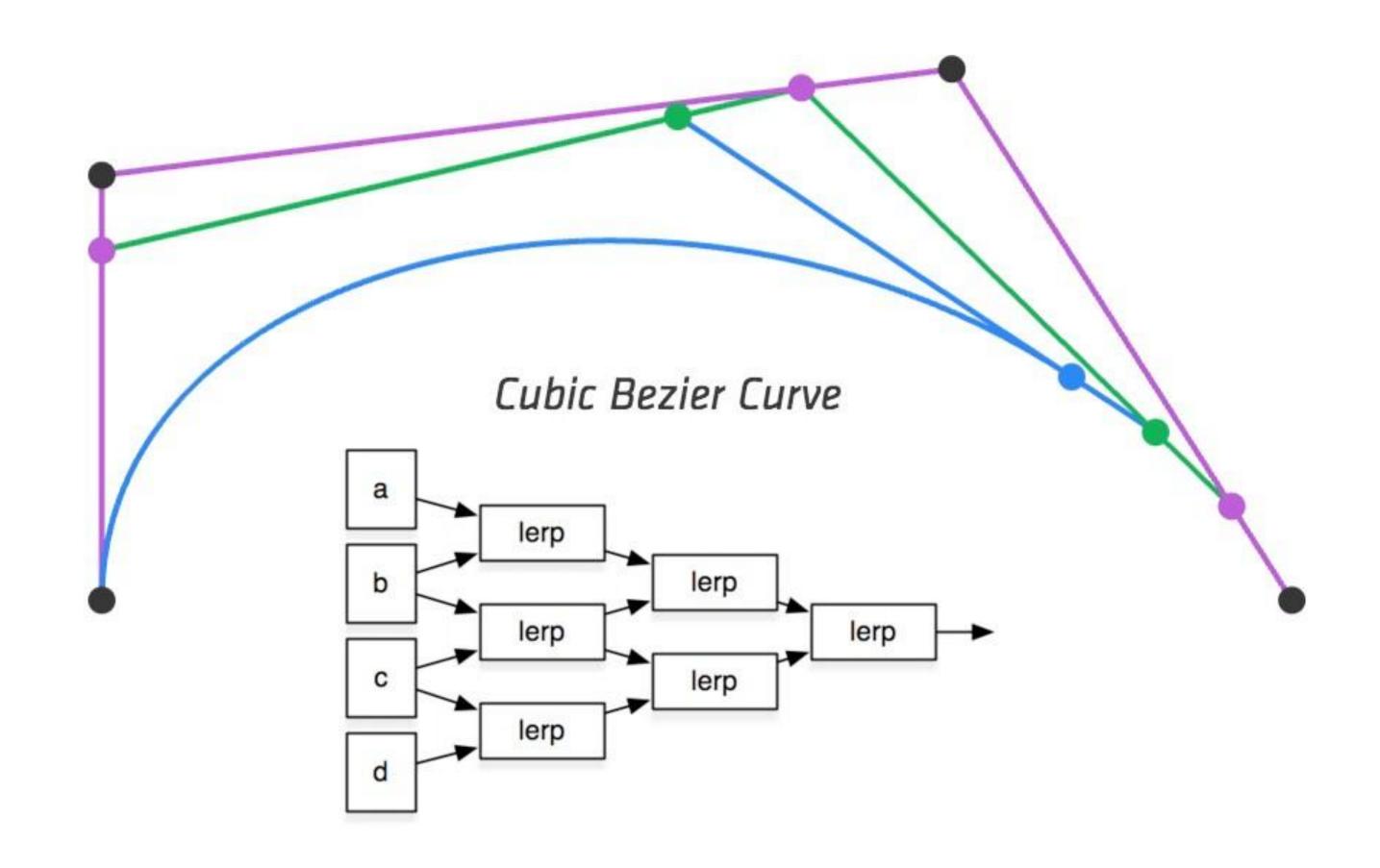


"Corner cutting" recursive subdivision Successive linear interpolation

Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

Visualizing de Casteljau Algorithm

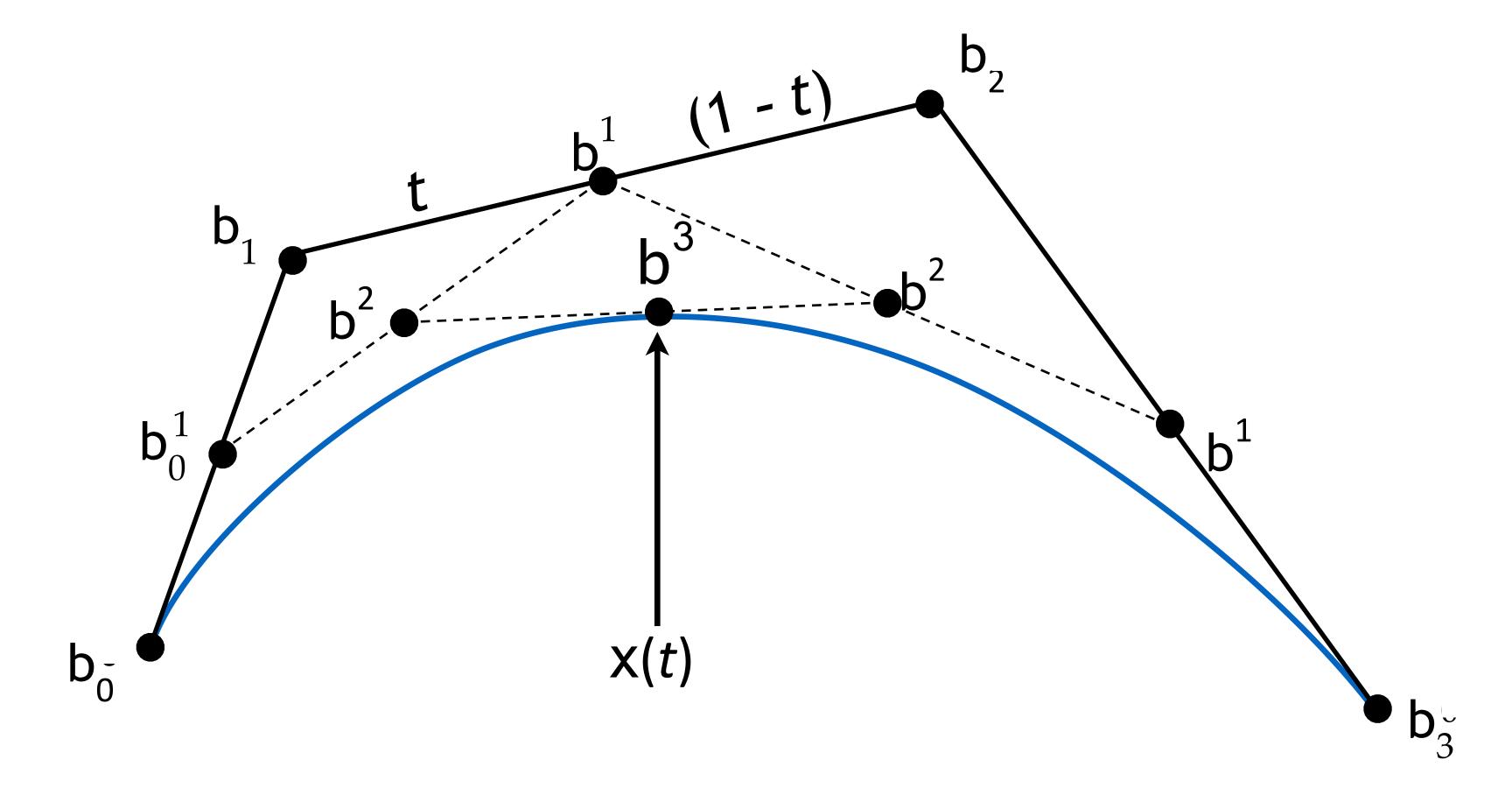


Animation: Steven Wittens, Making Things with Maths, http://acko.net

Cubic Bézier Curve – de Casteljau

Consider four points

Same recursive linear interpolations

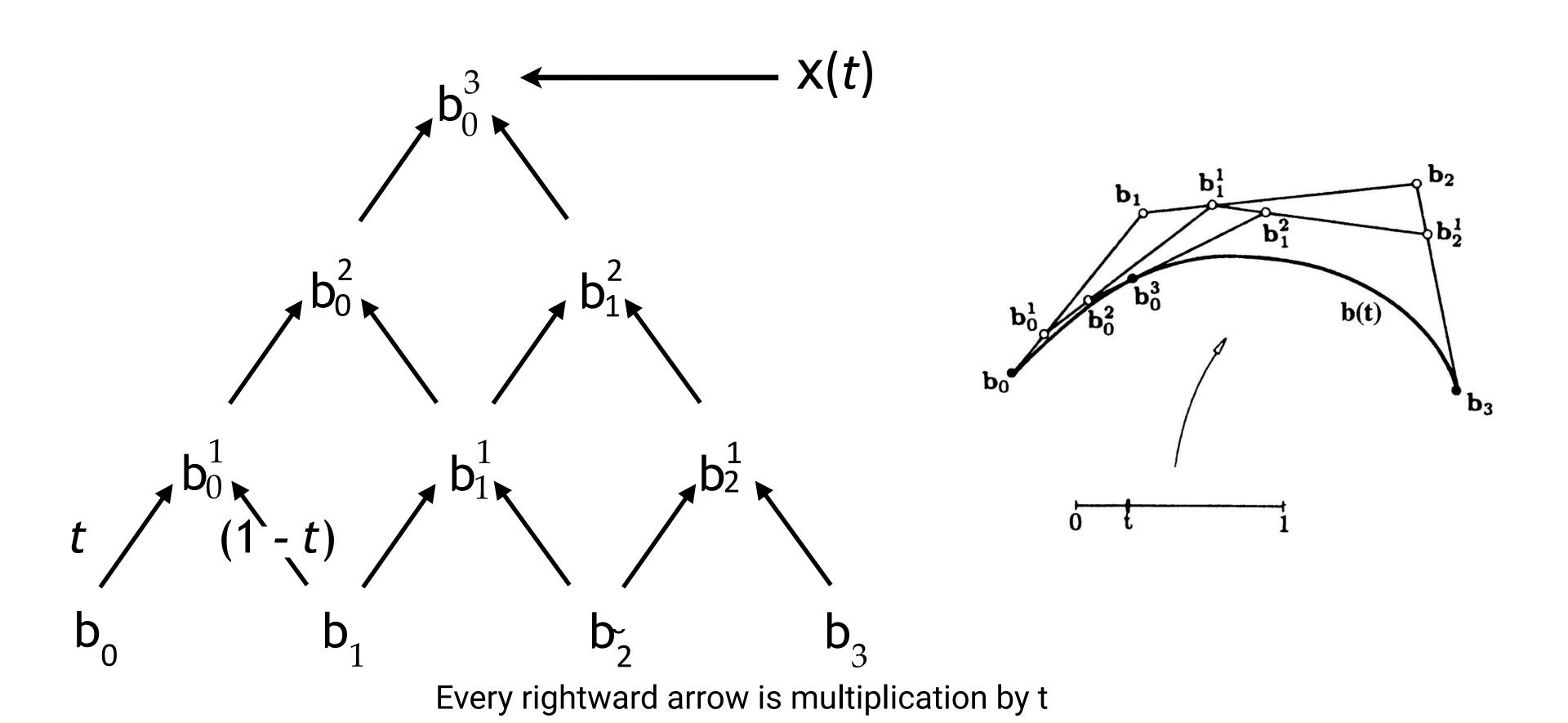


Evaluating Bézier Curves: Algebraic Formula

Bézier Curve – Algebraic Formula

Every leftward arrow by (1-t)

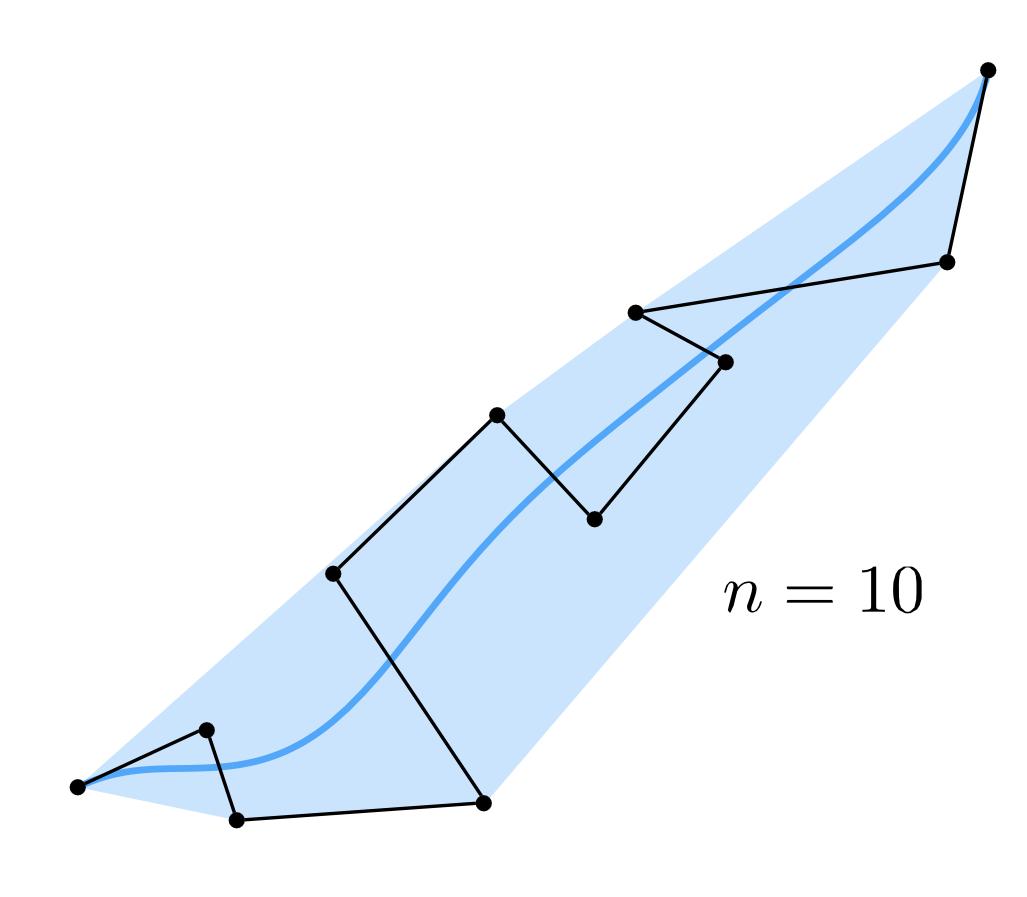
de Casteljau algorithm gives a pyramid of coefficients



Piecewise Bézier Curves: (Bézier Spline)

Higher-Order Bézier Curves?

High-degree polynomials don't interpolate well

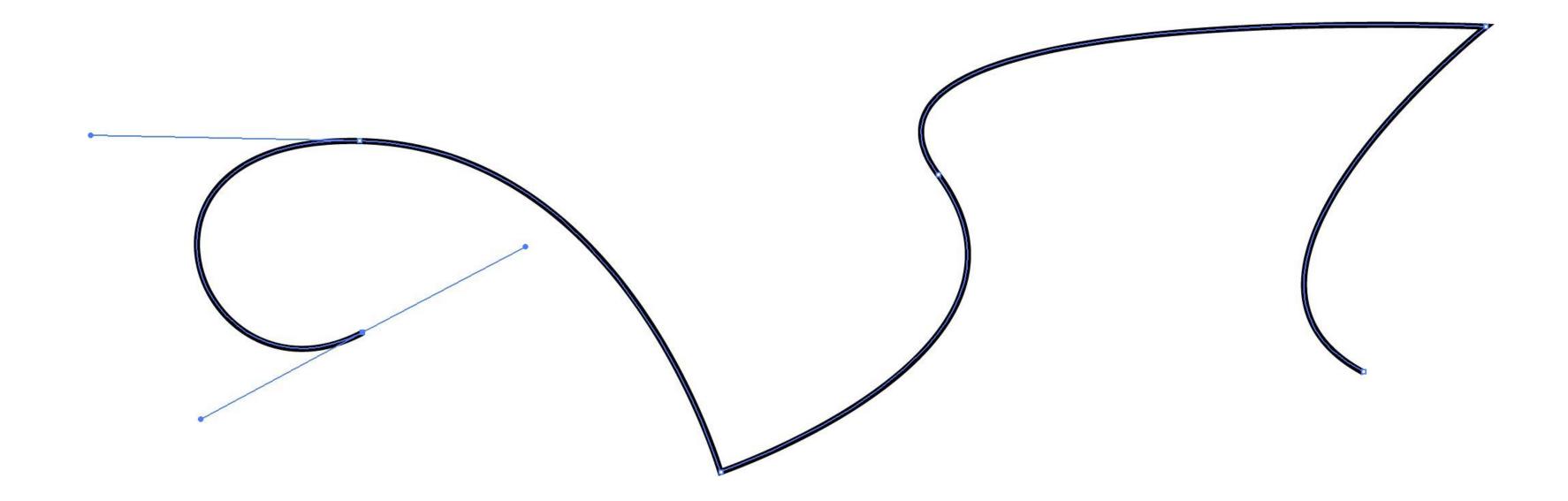


Very hard to control!
Uncommon

Piecewise Bézier Curves

Instead, chain many low-order Bézier curve

Piecewise cubic Bézier the most common technique



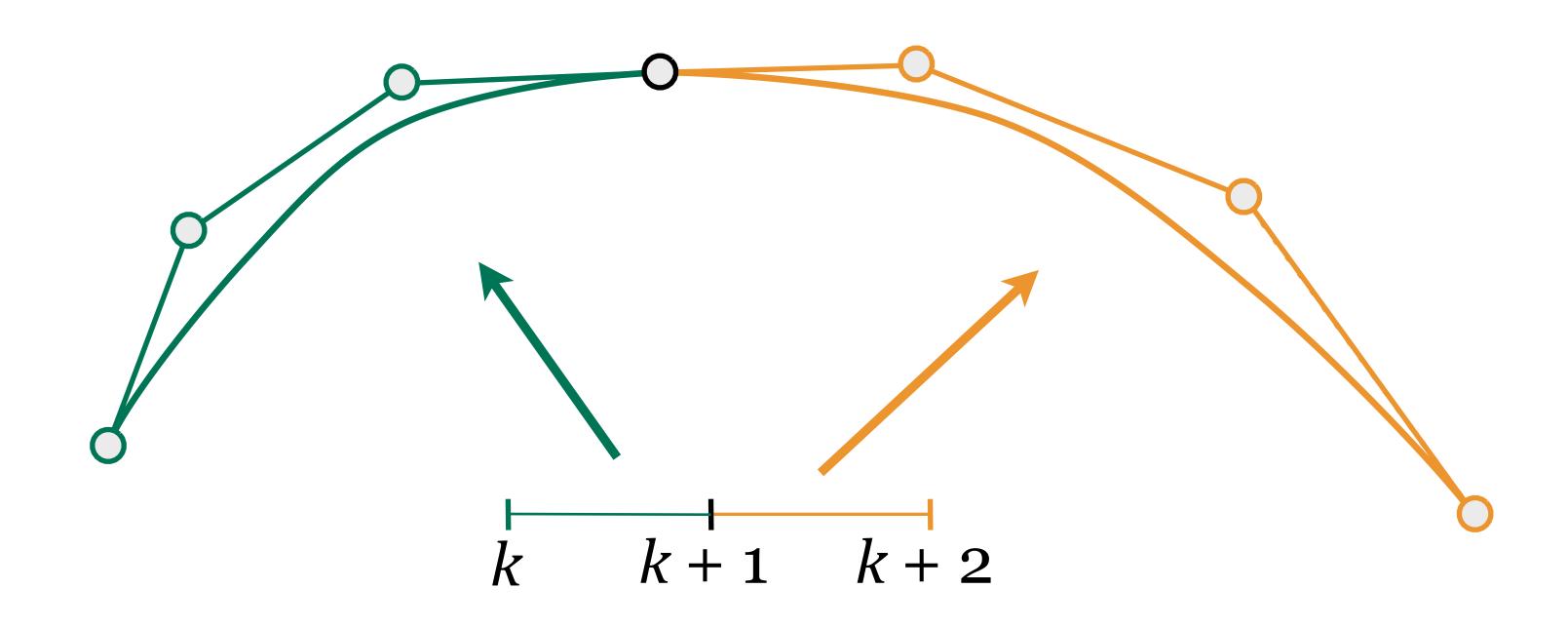
Widely used (fonts, paths, Illustrator, Keynote, ...)

Two Bézier curves

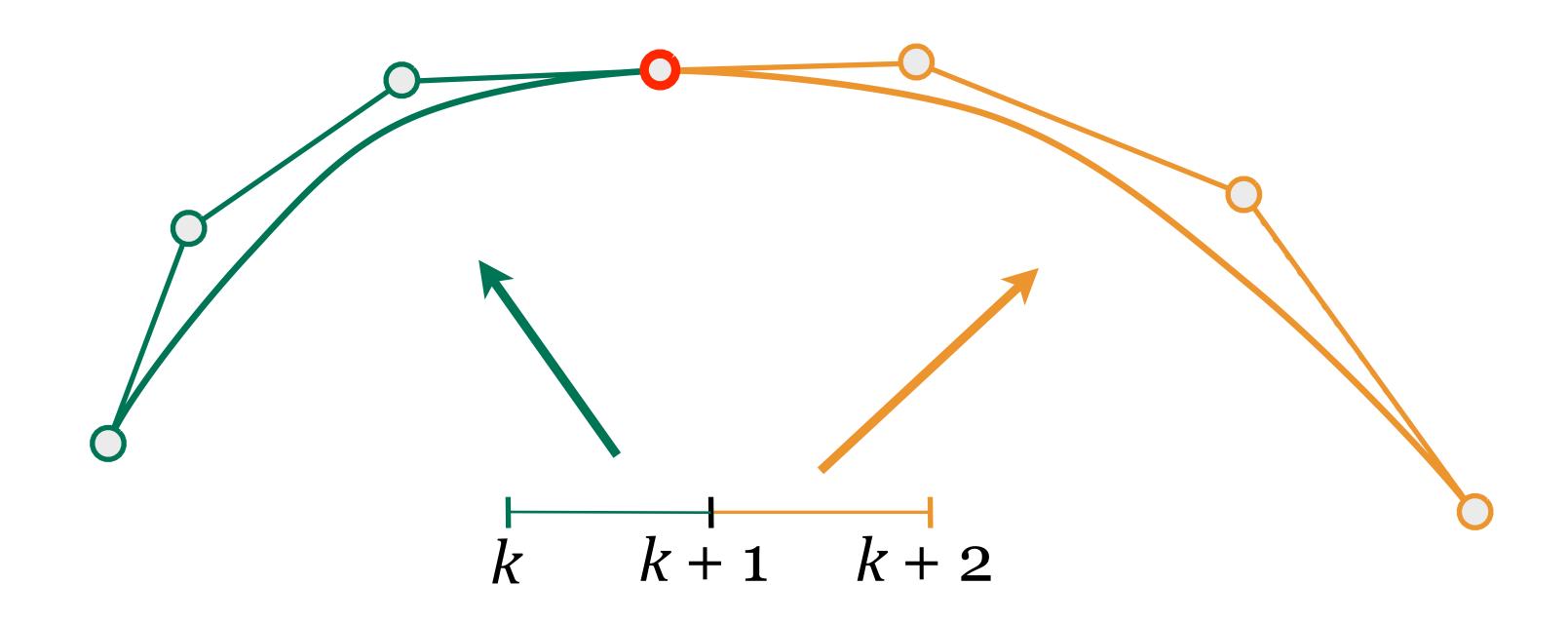
$$\mathbf{a}:[k,k+1]\to \mathbb{R}^N$$

b:
$$[k+1, k+2] \to \mathbb{R}^N$$

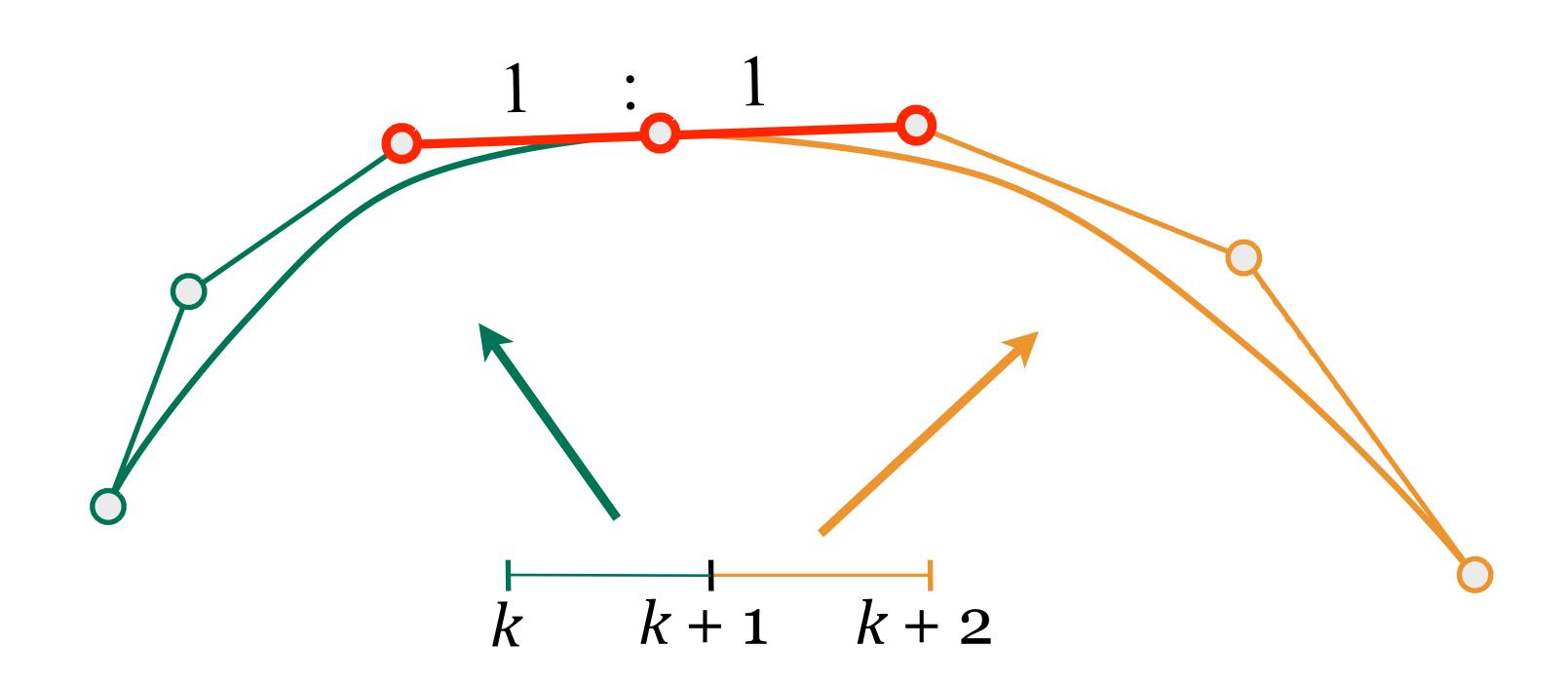
Assuming integer partitions here



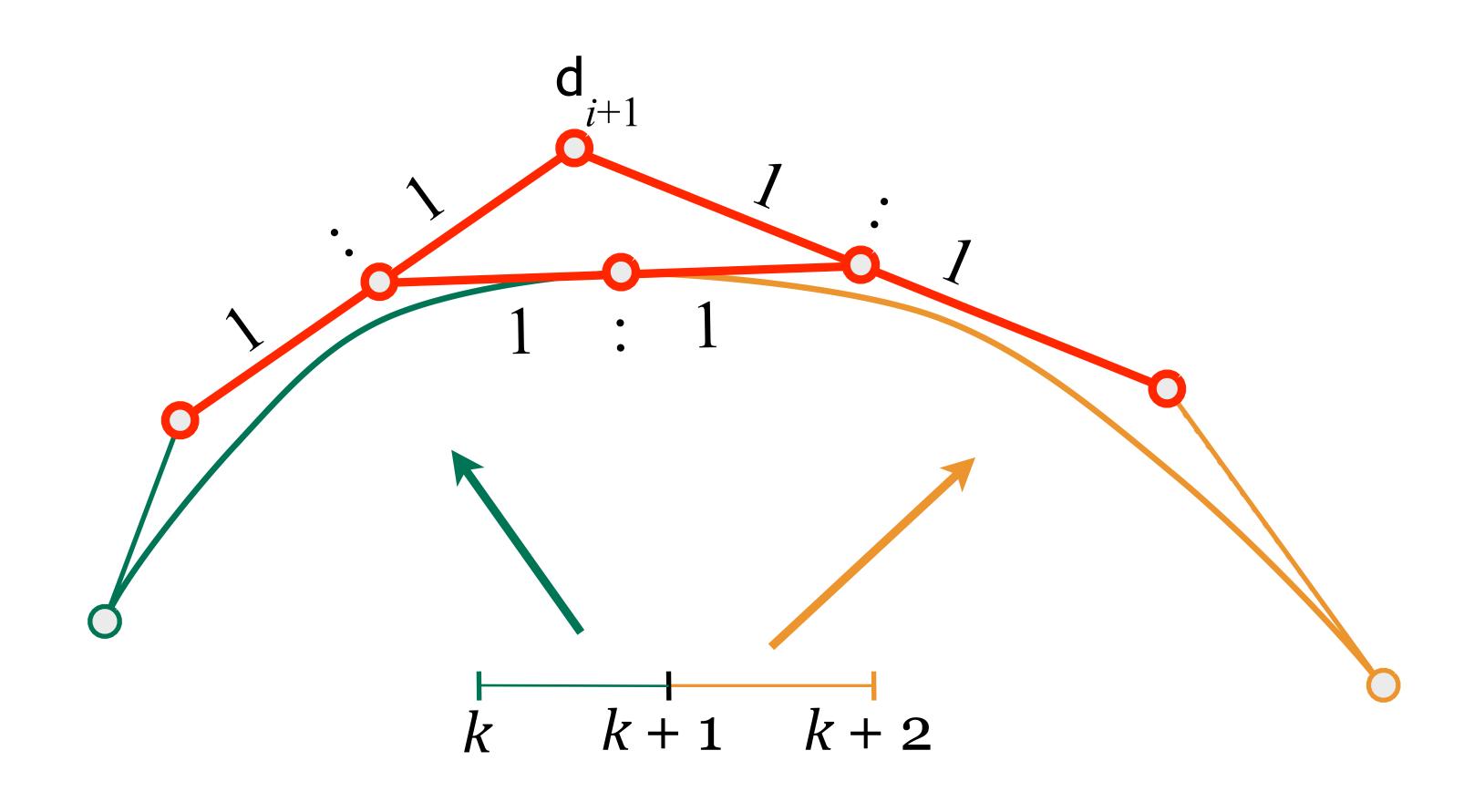
C^o continuity: $a_n = b_o$



C¹ continuity:
$$a_n = b_0 = \frac{1}{2}(a_{n-1} + b_1)$$



C² continuity: "A-frame" construction



Properties of Bézier Curves

Interpolates endpoints

• For cubic Bézier: $b(0) = b_0$; $b(1) = b_3$

Affine transformation property

- Transform curve by transforming control points
- Convex hull property

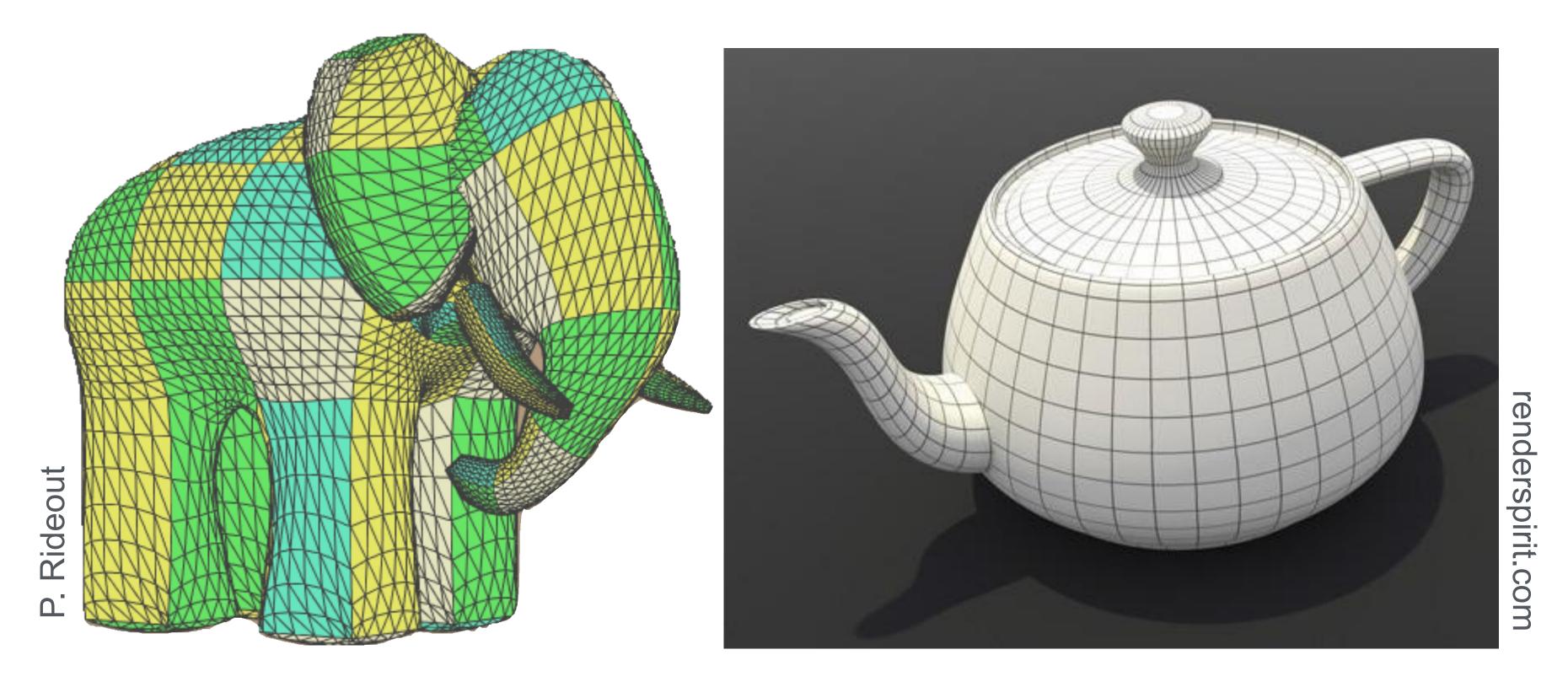
Curve is within convex hull of control points

Madrid

Bézier Surfaces

Bézier Surfaces

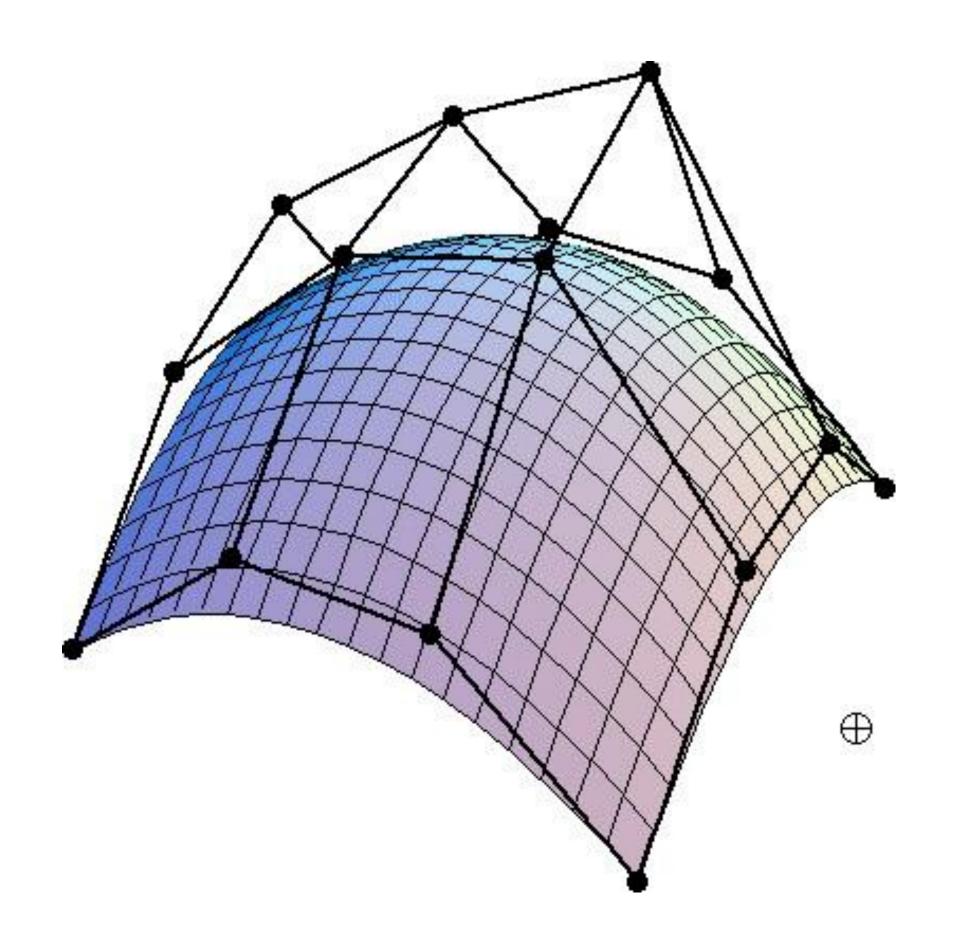
Extend Bézier curves to surfaces



Ed Catmull's "Gumbo" model

Utah Teapot

Bicubic Bézier Surface Patch



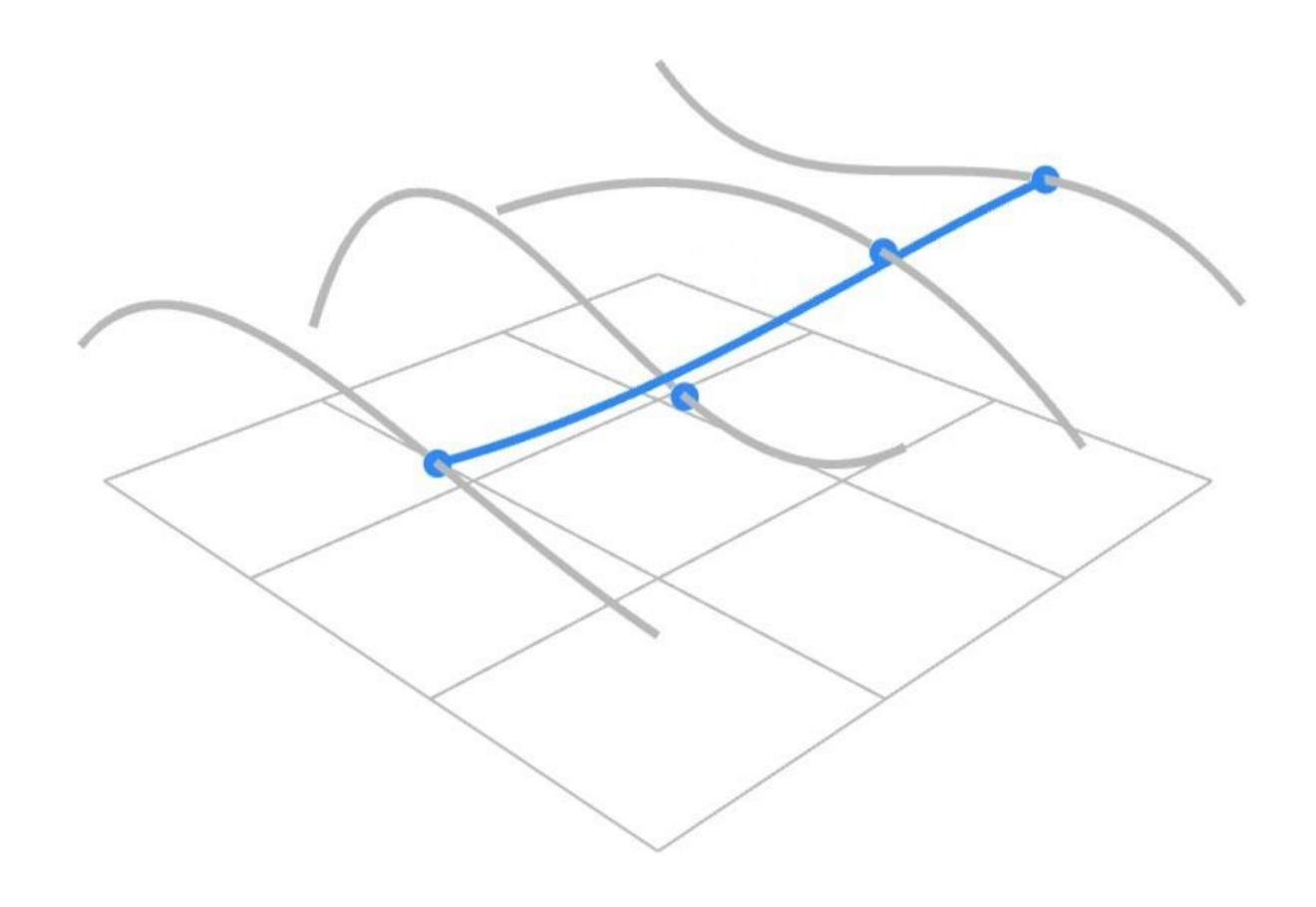
Bezier surface and 4 x 4 array of control points

Visualizing Bicubic Bézier Surface Patch

4x4 control points

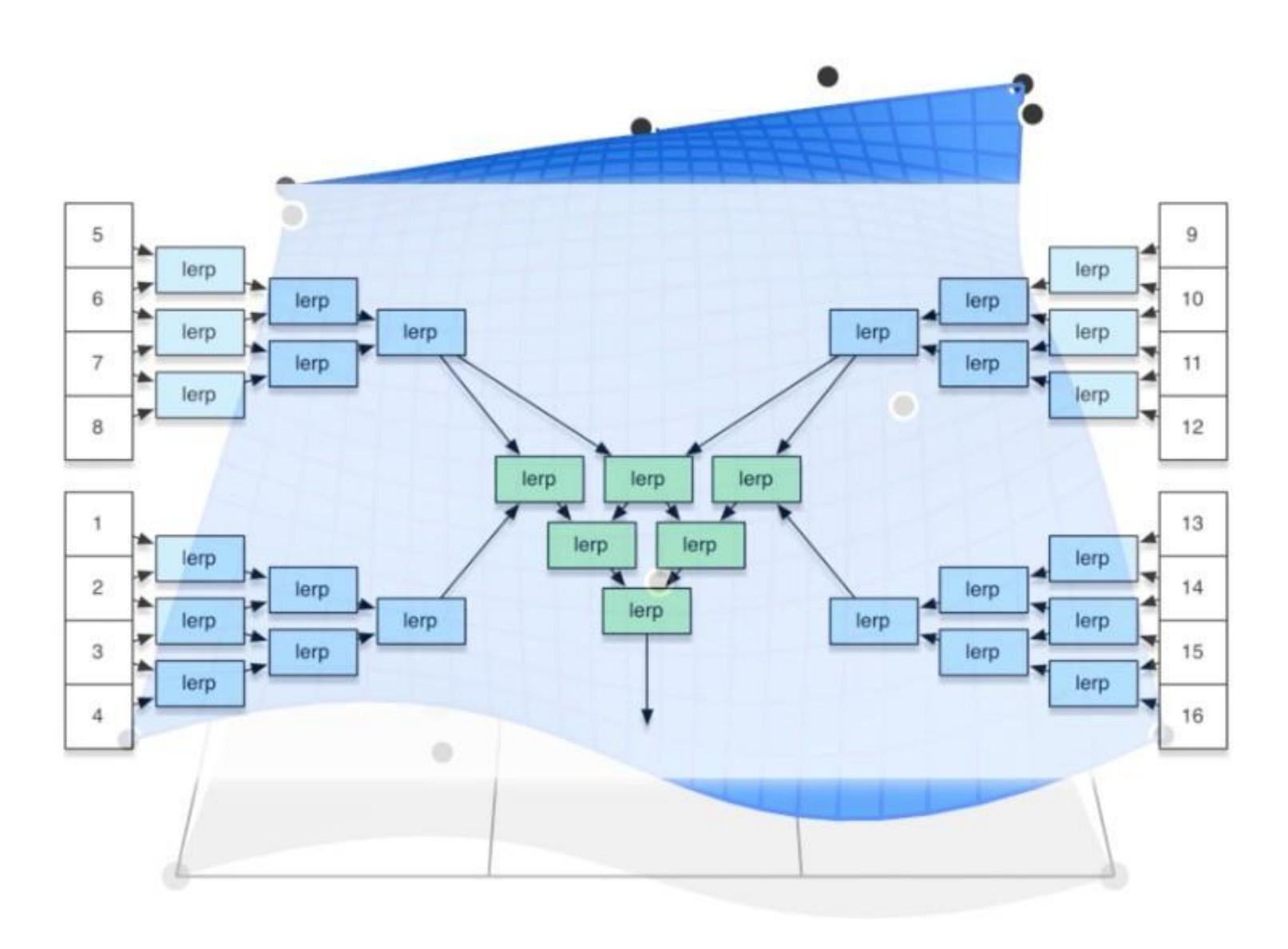
- Each 4x1 control points in u define a Bezier curve (4 Bezier curves in u)
- Corresponding points on these 4 Bezier curves define 4 control points for a "moving curve" in v
- This "moving" curve sweeps out the 2D surface

Visualizing Bicubic Bézier Surface Patch



Animation: Steven Wittens, Making Things with Maths, http://acko.net

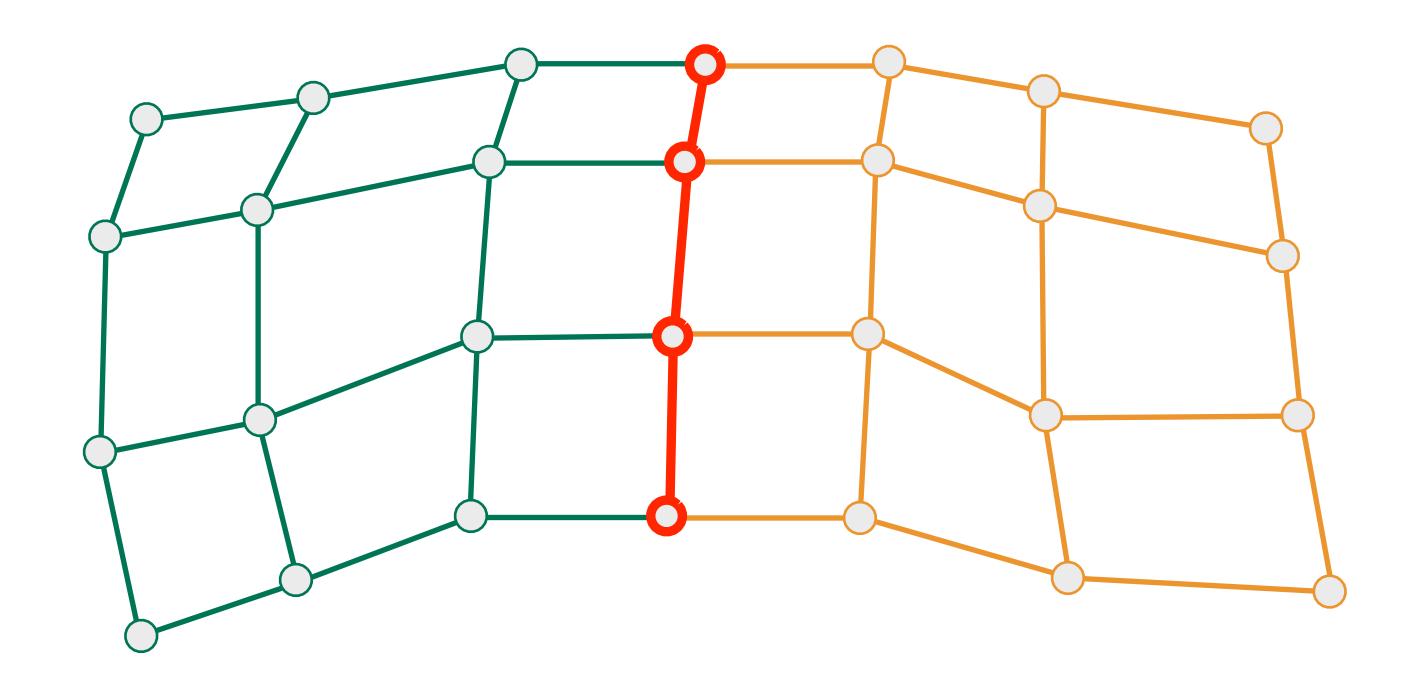
Separable 1D de Casteljau Algorithm



Bézier Surface Continuity

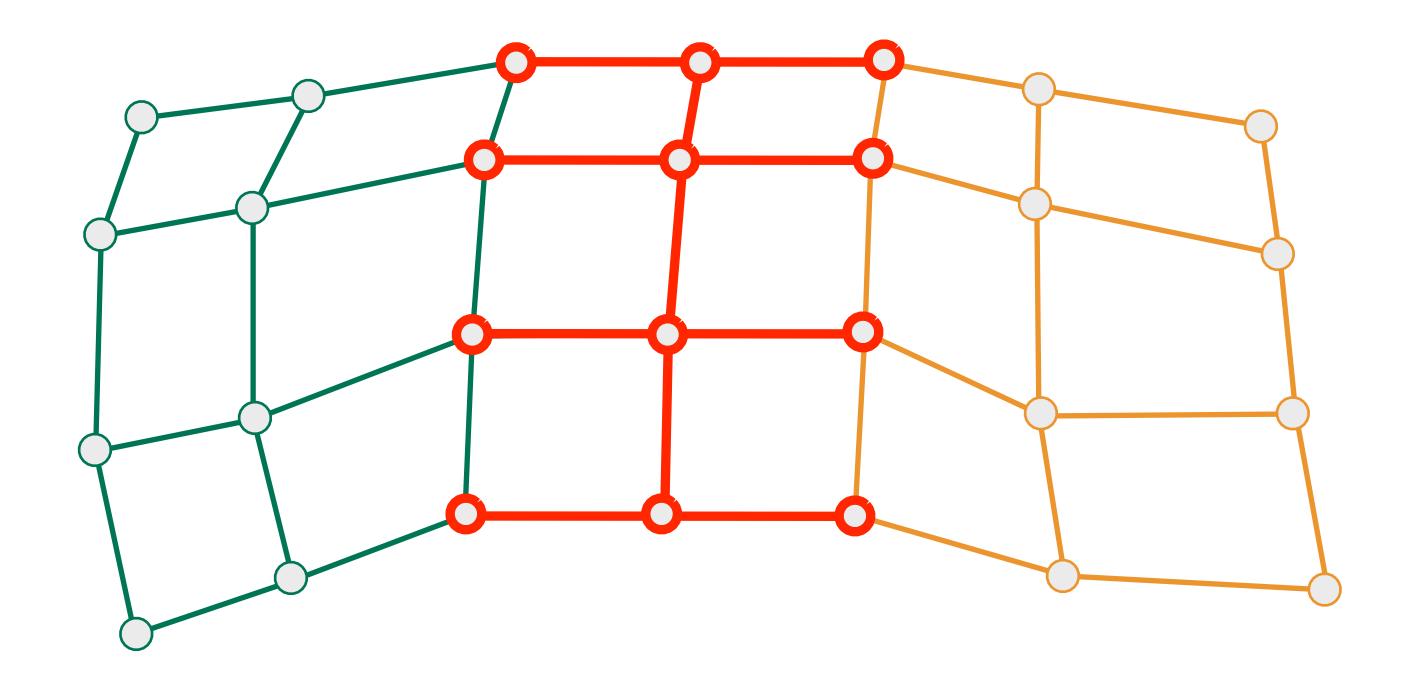
Piecewise Bézier Surfaces

C⁰ continuity: Boundary curves



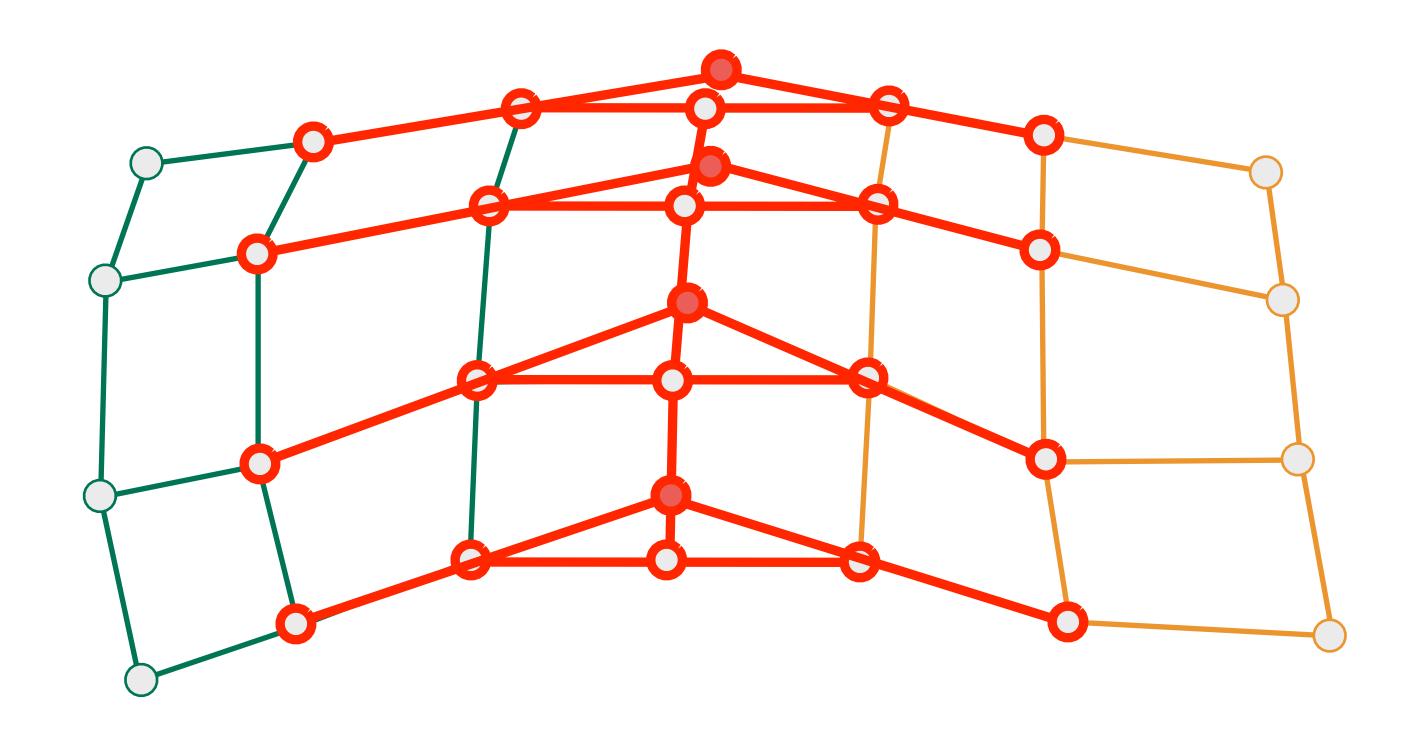
Piecewise Bézier Surfaces

C¹ continuity: Collinearity



Piecewise Bézier Surfaces

C² continuity: A-frames



Things to Remember

Splines

- Cubic Hermite and Catmull-Rom interpolation
- Matrix representation of cubic polynomials

Bézier curves

- Easy-to-control spline
- Recursive linear interpolation de Casteljau algorithm
- Properties of Bézier curves
- Piecewise Bézier curve continuity types and how to achieve Bézier

surfaces

- Bicubic Bézier patches tensor product surface
- 2D de Casteljau algorithm

Acknowledgments

Thanks to Pat Hanrahan, Mark Pauly and Steve Marschner for presentation resources.