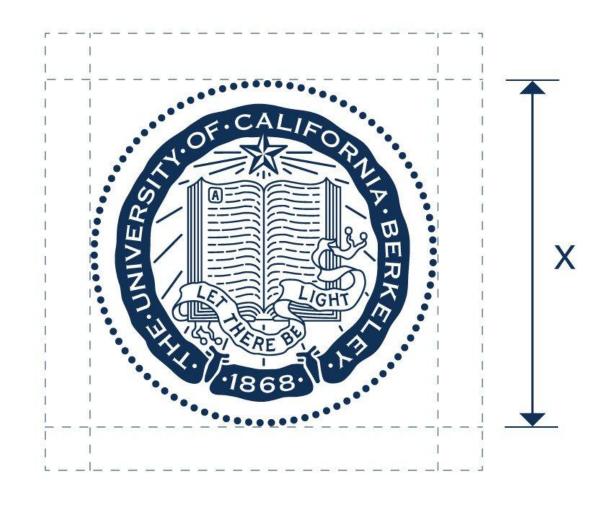
Lectures 9-11:

Intro to Raytracing



Computer Graphics and Imaging
UC Berkeley CS184

Towards Photorealistic Rendering

Credit: Bertrand Benoit. "Sweet Feast," 2009. [Blender /VRay]

Course Roadmap

Rasterization Pipeline

Core Concepts

- Sampling
- Antialiasing
- Transforms

Geometric Modeling

Core Concepts

- Splines, Bezier Curves
- Topological Mesh Representations
- Subdivision, Geometry Processing

Lighting & Materials

Core Concepts

- Measuring Light
- Unbiased Integral Estimation
- Light Transport & Materials

Cameras & Imaging

Rasterization

Transforms & Projection

Texture Mapping

Visibility, Shading, Overall Pipeline

Exam 1

Intro to Geometry

Curves and Surfaces

Geometry Processing

Ray-Tracing & Acceleration

Today

Radiometry & Photometry

Monte Carlo Integration

Global Illumination & Path Tracing

Material Modeling

Exam 2

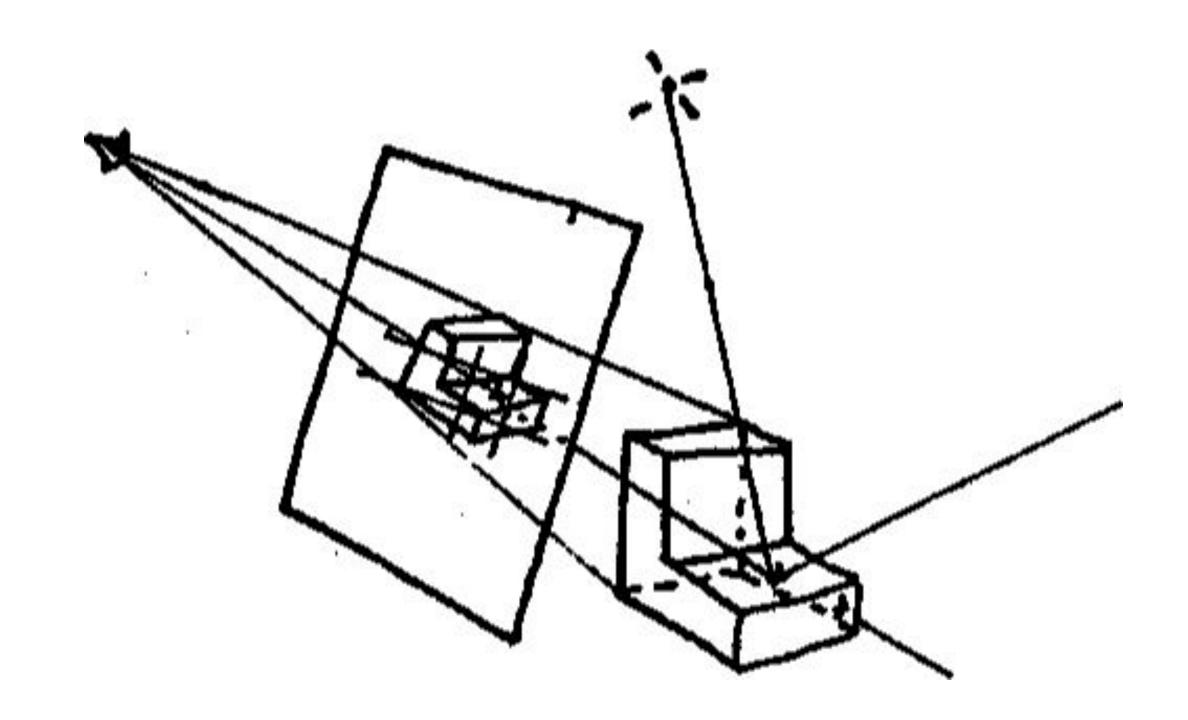
Final Project

Basic Ray-Tracing Algorithm

Ray Casting

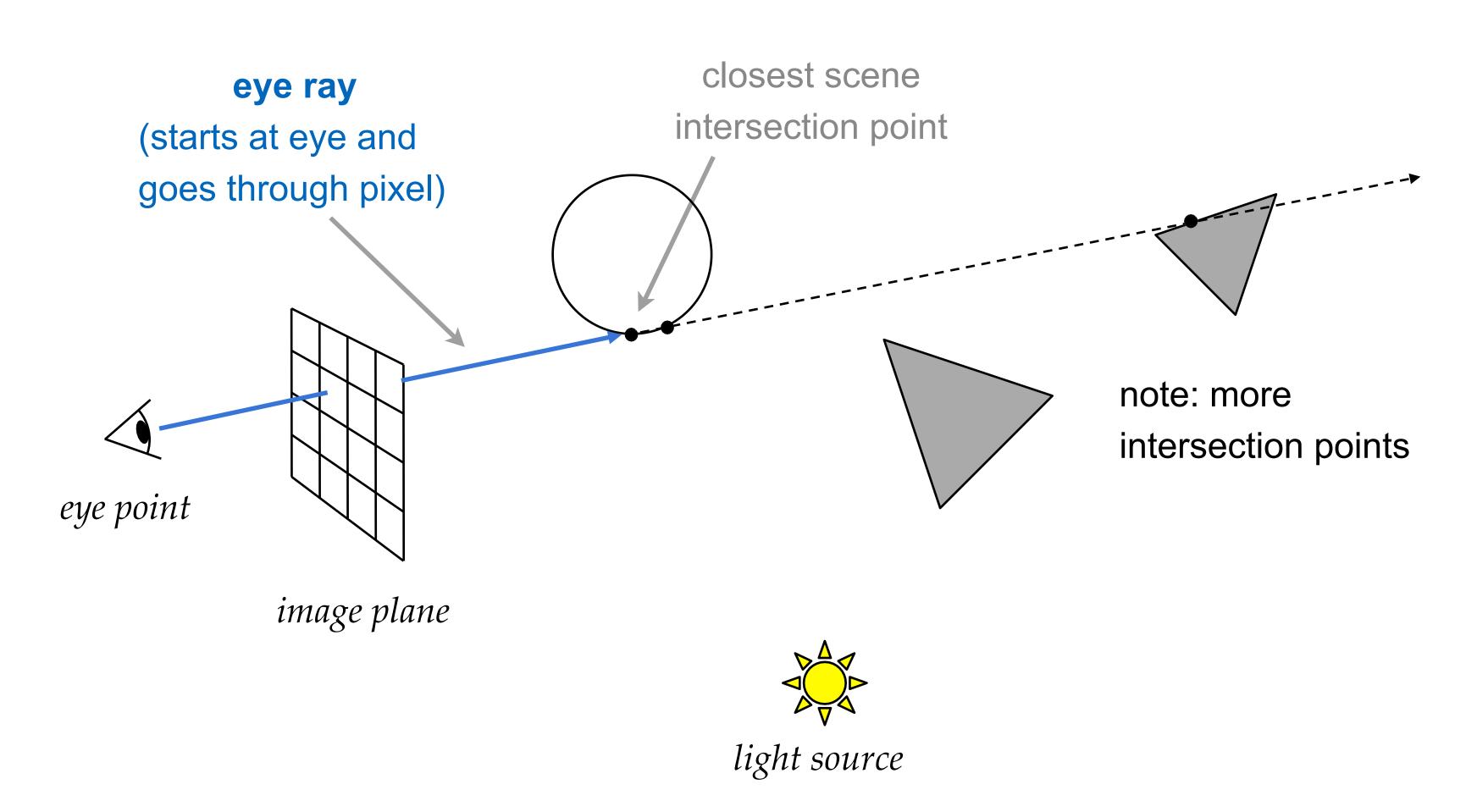
Appel 1968 - Ray casting

- 1. Generate an image by casting one ray per pixel
- 2. Check for shadows by sending a ray to the light



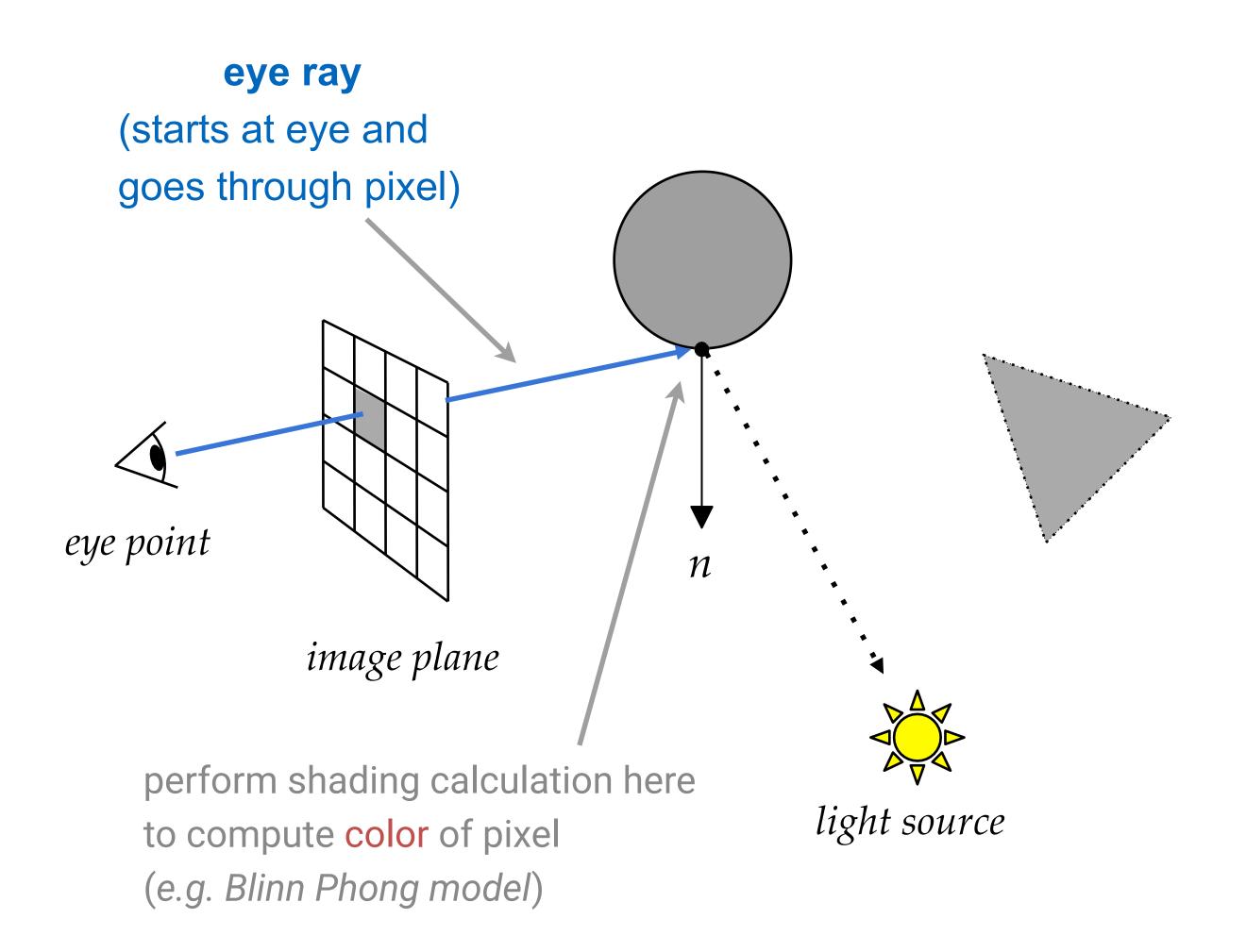
Ray Casting - Generating Eye Rays

Pinhole Camera Model



Ray Casting - Shading Pixels (Local Only)

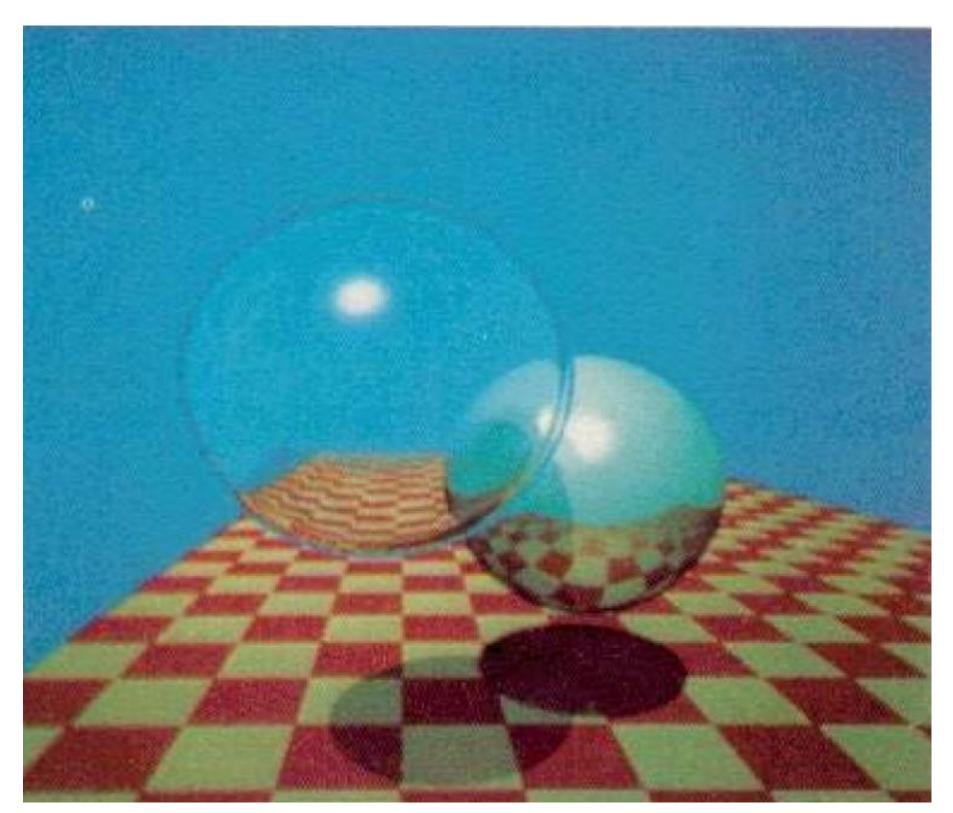
Pinhole Camera Model



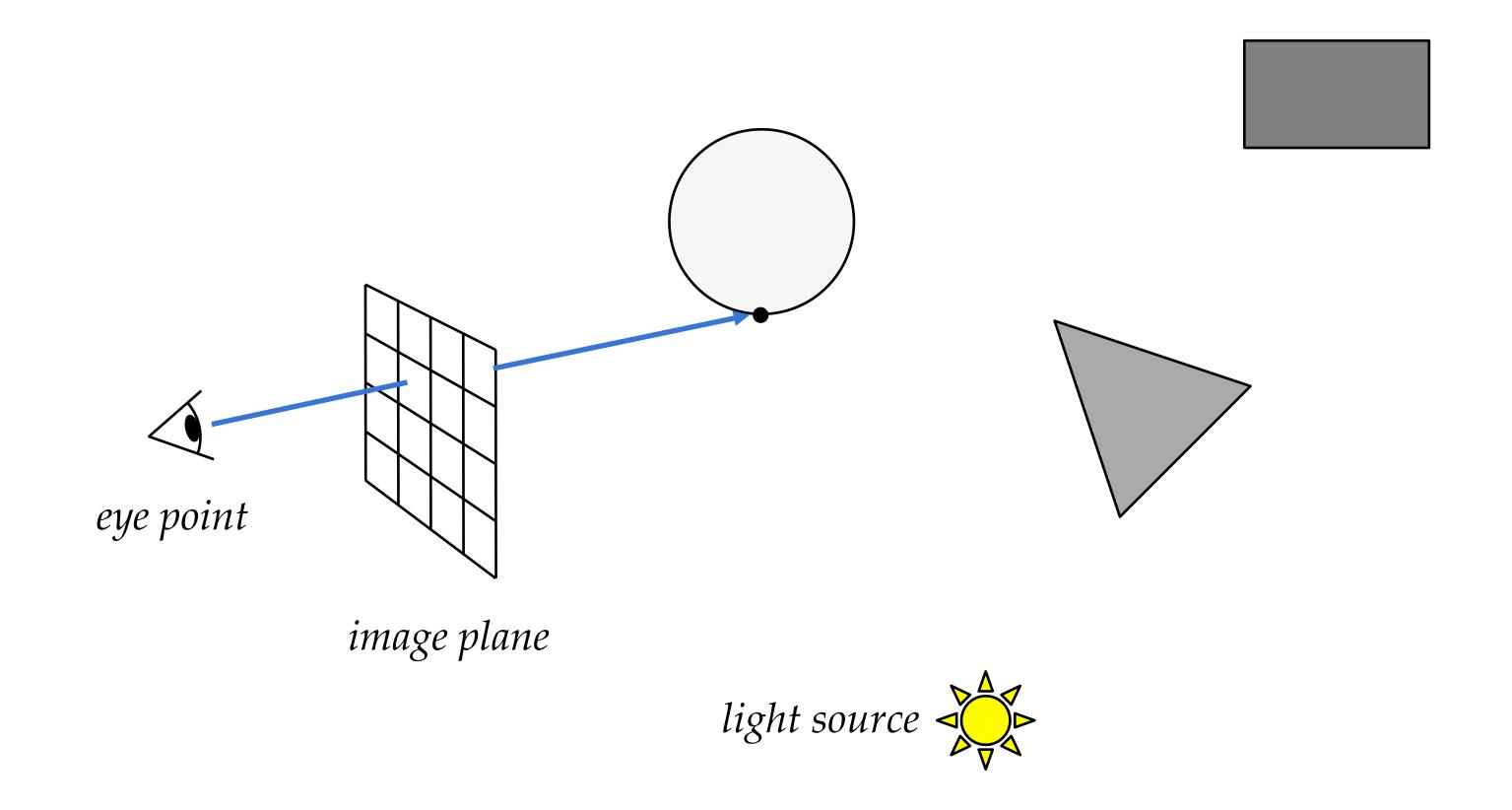
"An improved Illumination model for shaded display" T. Whitted, CACM 1980

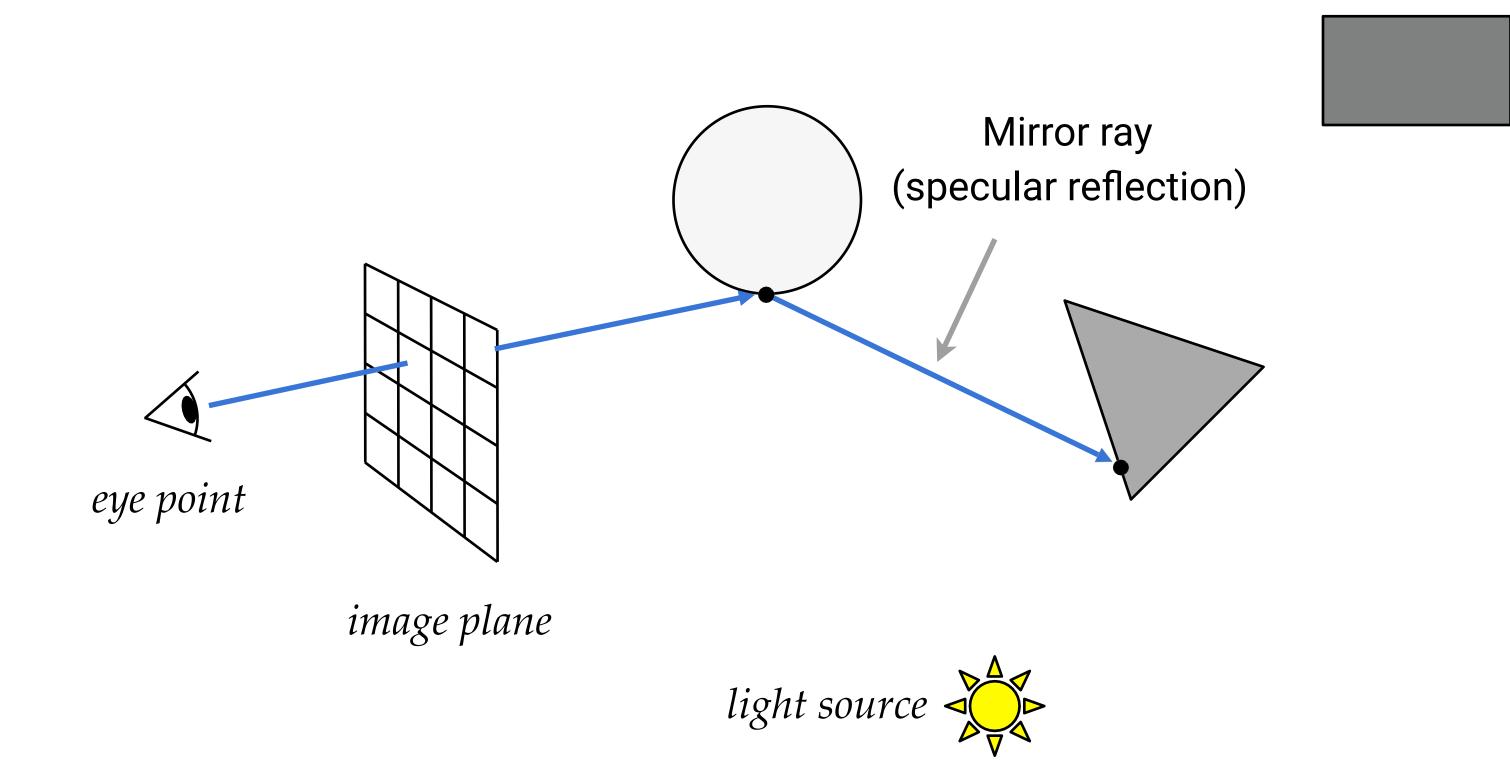
Time:

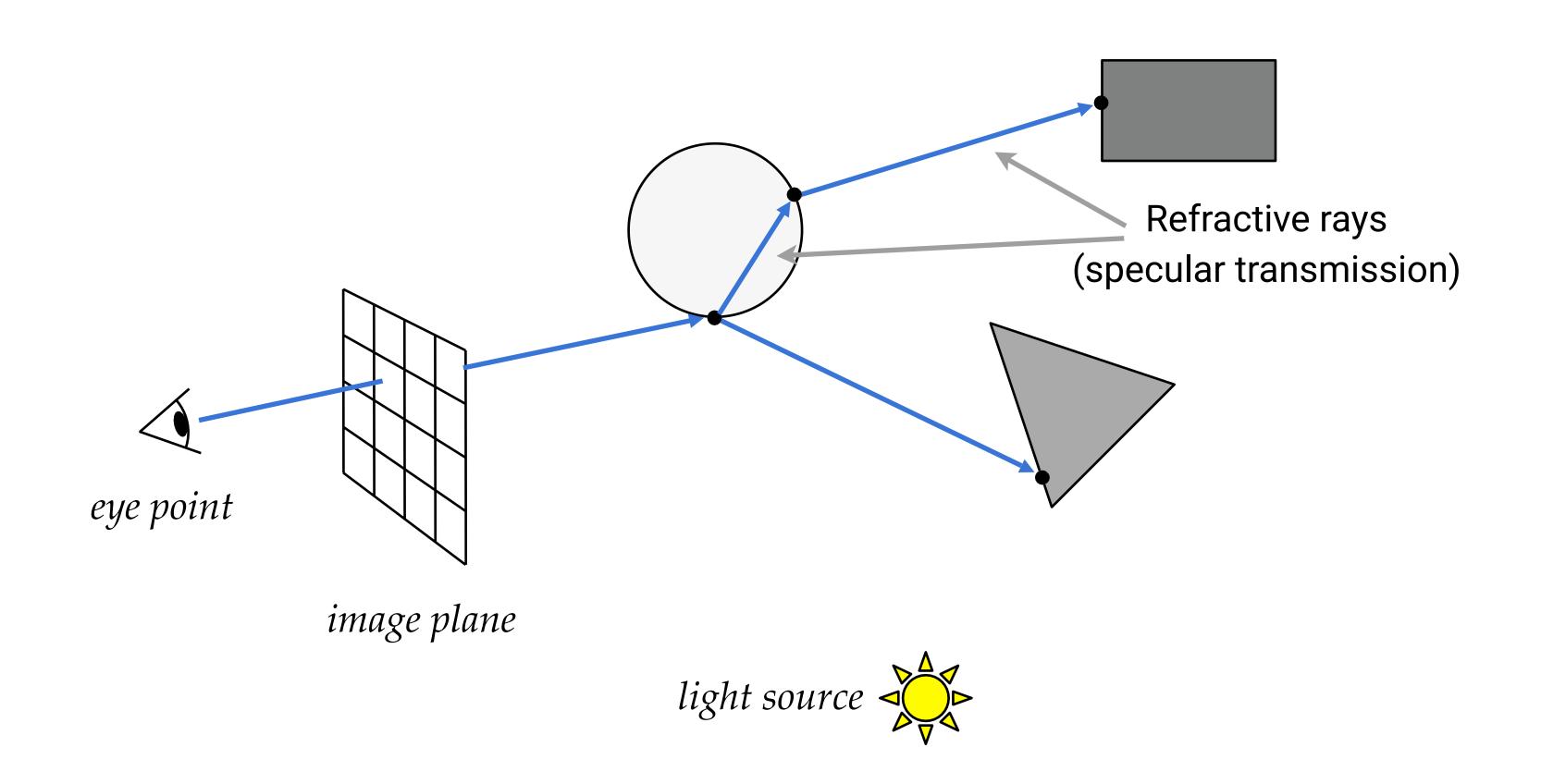
- VAX 11/780 (1979) 74min
- PC (2009) 3sec
- GPU (2019) 1/240sec

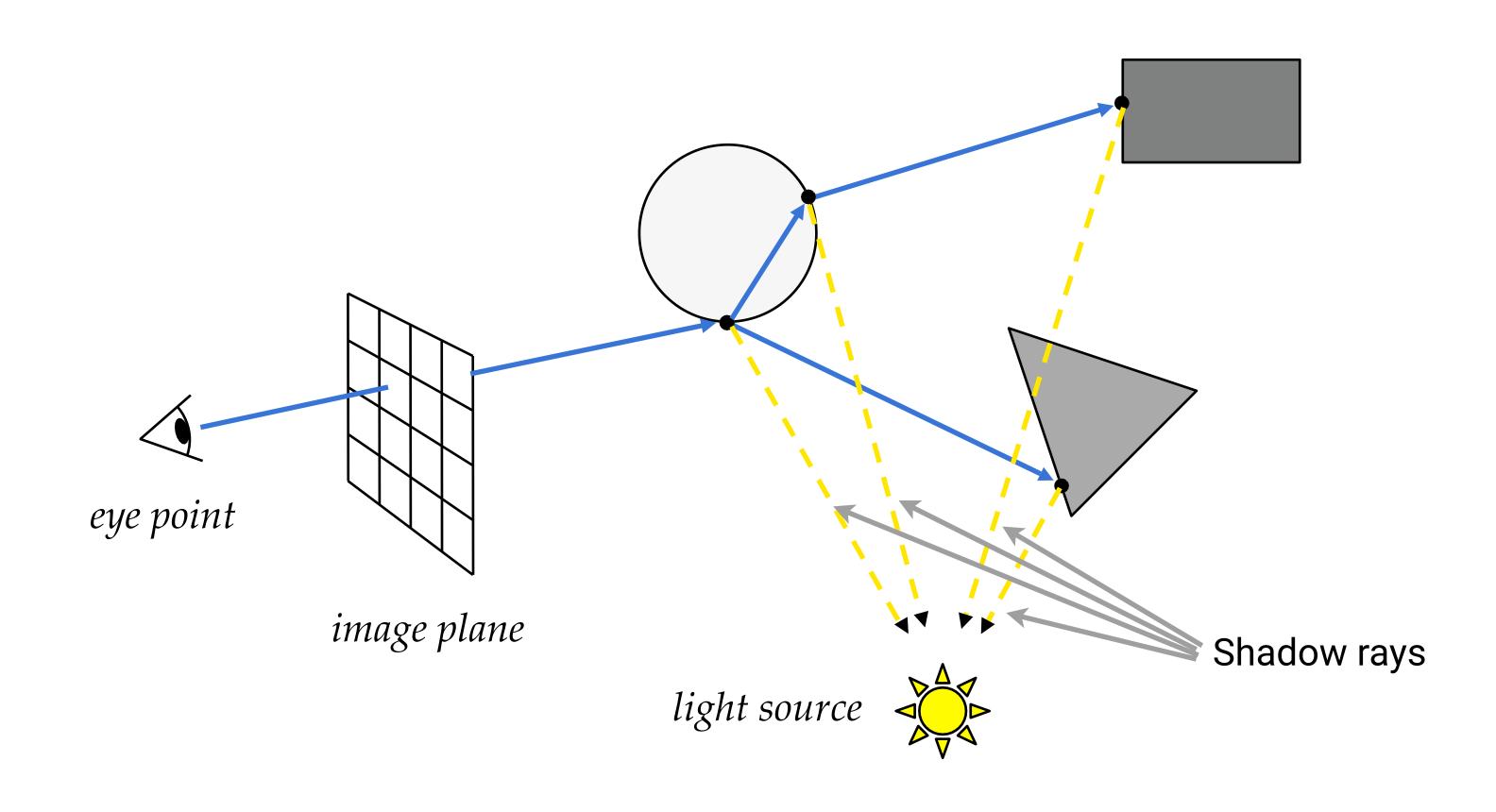


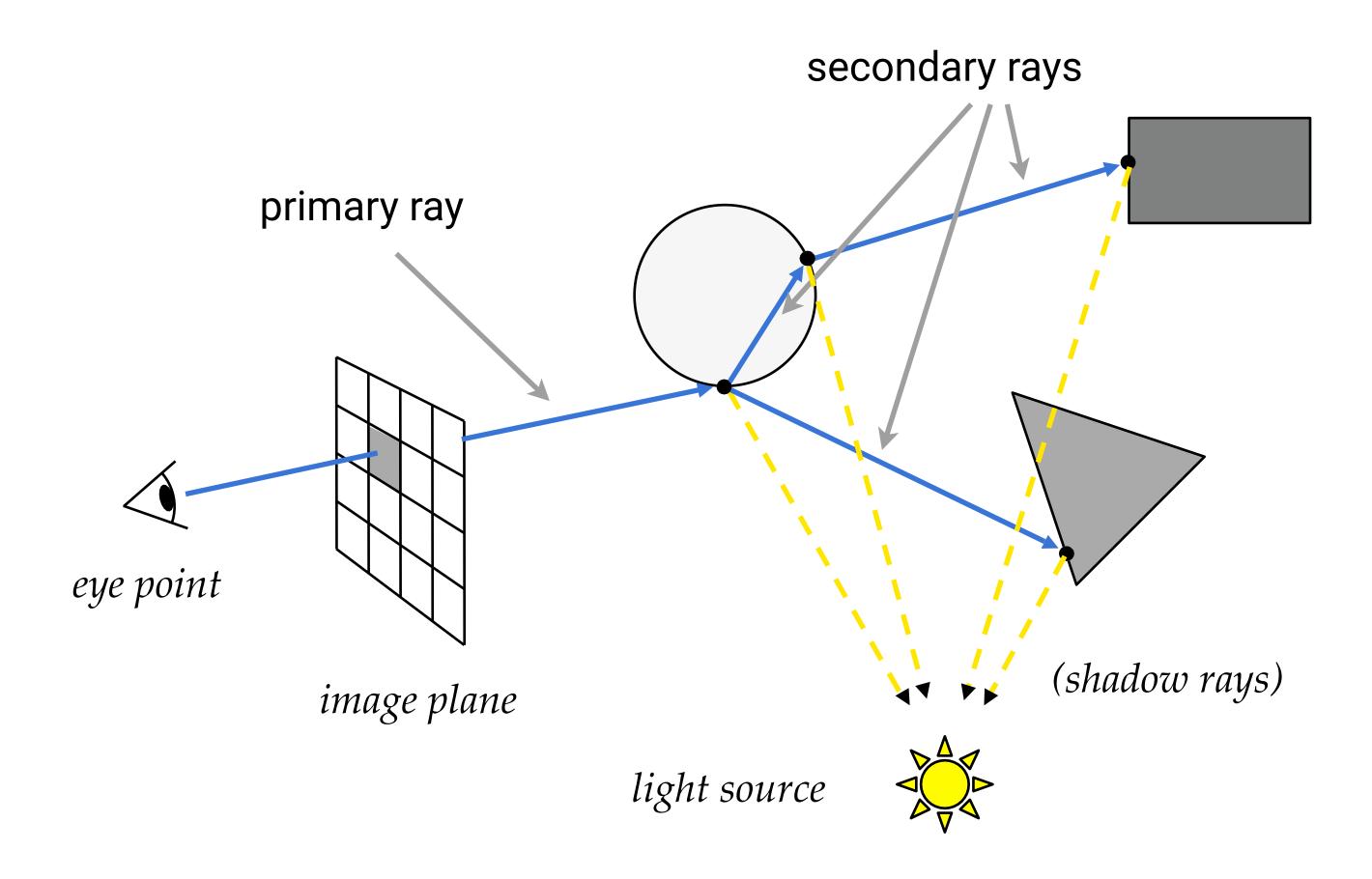
Spheres and Checkerboard, T. Whitted, 1979











- Trace secondary rays recursively until you hit a non-specular surface.
- Final pixel color is weighted sum of contributions along rays
- Results in more sophisticated effects (e.g. specular reflection, refraction, shadows)

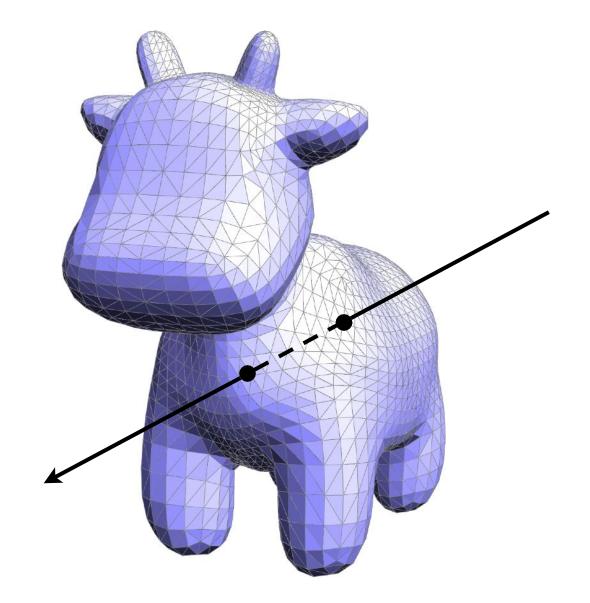
Ray-Surface Intersection

Ray Intersection With Mesh

Why?

- Rendering: visibility, shadows, lighting ...
- Geometry: inside/outside test

How to compute?

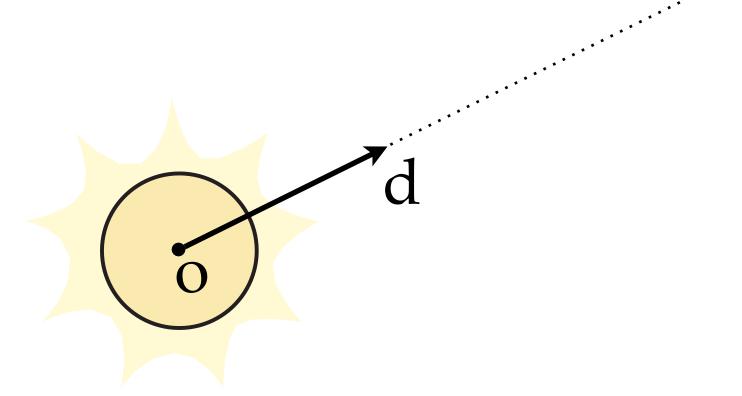


- Simple idea: just intersect ray with each triangle
- Simple, but slow (implement acceleration later)
- Note: A triangle can have 0, 1 or multiple intersections

Ray Equation

Ray is defined by its origin and a direction vector

Example:



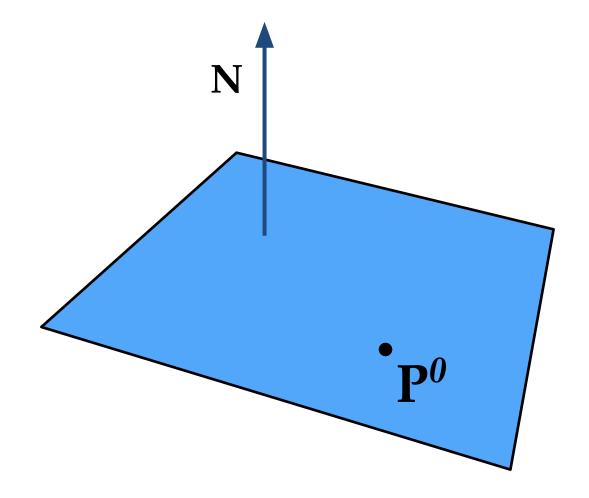
Ray equation:

$$\mathbf{r}(t) = \mathbf{o} + t\mathbf{d} \qquad 0 \le t < \infty$$
 from the point along ray "time" origin unit direction

Plane Equation

A plane is defined by a normal vector and a point on the plane

Example:



Plane Equation:

$$p:(p-p^0)\cdot N=\emptyset$$
 all points on plane point on plane normal vector

$$ax + by + cz + d = 0$$

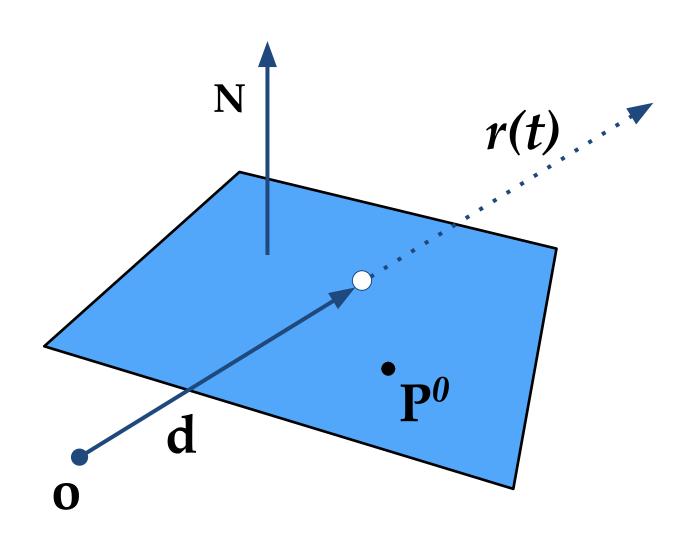
Ray Intersection With Plane

Ray equation:

$$\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d}, \, 0 \le t < \infty$$

Plane equation:

$$\mathbf{p}:(\mathbf{p}-\mathbf{p}^0)\cdot\mathbf{N}=0$$



Solve for intersection

Set
$$\mathbf{p} = \mathbf{r}(t)$$
 and solve for t

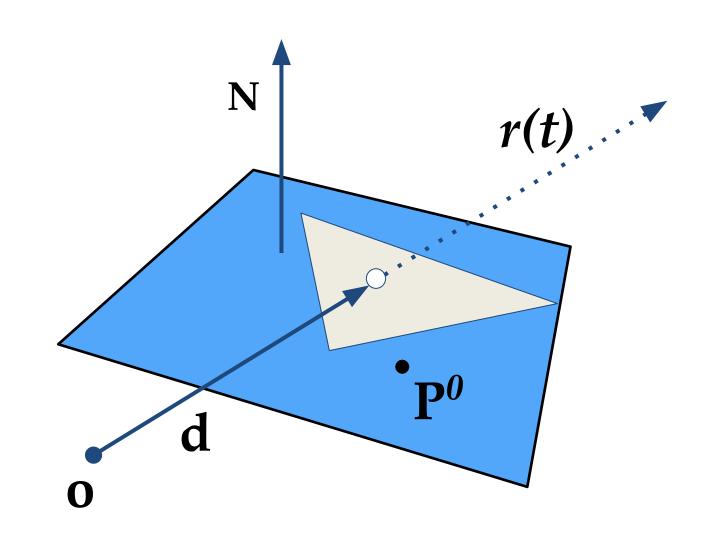
$$(\mathbf{p} - \mathbf{p}^0) \cdot \mathbf{N} = (\mathbf{o} + t \mathbf{d} - \mathbf{p}^0) \cdot \mathbf{N} = 0$$

$$t = \frac{(p^0 - o) \cdot N}{d \cdot N}$$
 Check: $0 \le t < \infty$

Ray Intersection With Triangle

Triangle is in a plane

- Ray-plane intersection
- Test if hit point is inside triangle (Assignment 1!)



Many ways to optimize

One Optimization: e.g. Möller Trumbore Algorithm

$$\vec{\mathbf{O}} + t\vec{\mathbf{D}} = (1 - b_1 - b_2)\vec{\mathbf{P}}_0 + b_1\vec{\mathbf{P}}_1 + b_2\vec{\mathbf{P}}_2$$

 $\begin{bmatrix} t \\ b_1 \\ b_2 \end{bmatrix} = \frac{1}{\vec{\mathbf{S}}_1 \cdot \vec{\mathbf{E}}_1} \begin{bmatrix} \vec{\mathbf{S}}_2 \cdot \vec{\mathbf{E}}_2 \\ \vec{\mathbf{S}}_1 \cdot \vec{\mathbf{S}} \\ \vec{\mathbf{S}}_2 \cdot \vec{\mathbf{D}} \end{bmatrix} \qquad \vec{\mathbf{E}}_1 = \vec{\mathbf{P}}_1 - \vec{\mathbf{P}}_0 \\ \vec{\mathbf{E}}_2 = \vec{\mathbf{P}}_2 - \vec{\mathbf{P}}_0 \end{bmatrix}$

Where:

$$\mathbf{E}_{1} = \mathbf{P}_{1} - \mathbf{P}_{0}$$

$$\mathbf{\vec{E}}_{2} = \mathbf{\vec{P}}_{2} - \mathbf{\vec{P}}_{0}$$

$$\mathbf{\vec{S}} = \mathbf{\vec{O}} - \mathbf{\vec{P}}_{0}$$

$$\mathbf{\vec{S}}_{1} = \mathbf{\vec{D}} \times \mathbf{\vec{E}}_{2}$$

$$\mathbf{\vec{S}}_{2} = \mathbf{\vec{S}} \times \mathbf{\vec{E}}_{1}$$

Cost = (1 div, 27 mul, 17 add)

Ray Intersection With Sphere

Ray: $\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d}, \ 0 \le t < \infty$

Sphere: $p : (p - c)^2 - R^2 = 0$

Solve for intersection:

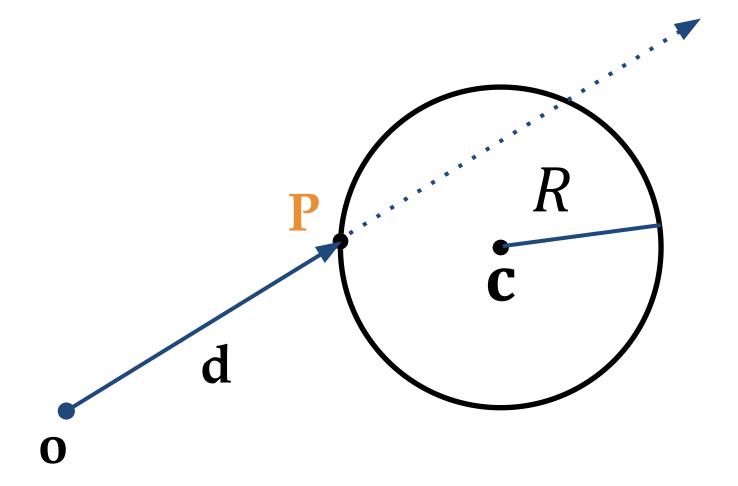
$$(\mathbf{o} + t \, \mathbf{d} - \mathbf{c})^2 - R^2 = 0$$

$$at^2 + bt + c = 0, \text{ where}$$

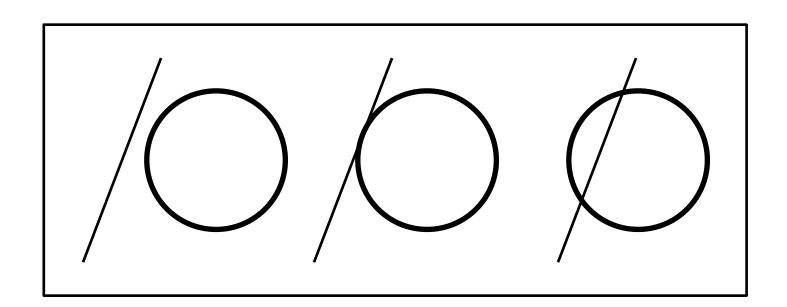
$$a = \mathbf{d} \cdot \mathbf{d}$$

$$b = 2(\mathbf{o} - \mathbf{c}) \cdot \mathbf{d}$$

$$c = (\mathbf{o} - \mathbf{c}) \cdot (\mathbf{o} - \mathbf{c}) - R^2$$



$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$



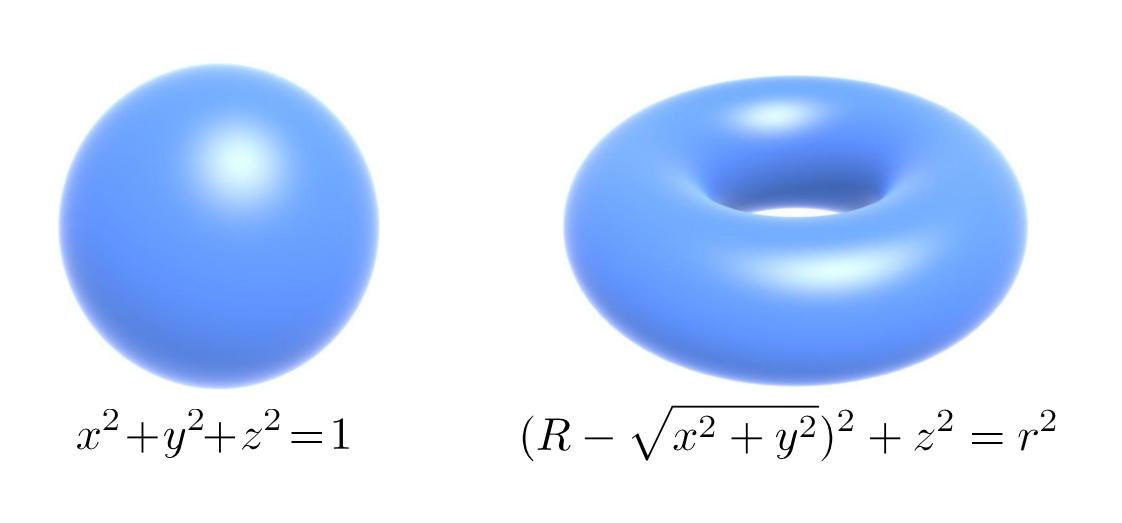
Ray Intersection With Implicit Surface

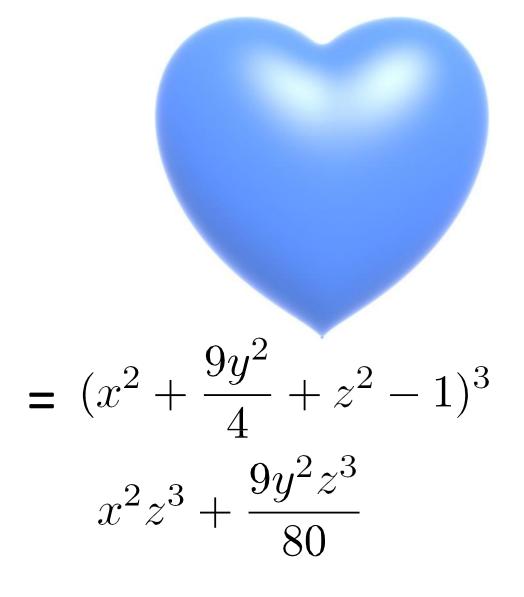
Ray: $\mathbf{r}(t) = \mathbf{o} + t \, \mathbf{d}, \ 0 \le t < \infty$

General implicit surface: p:f(p)=0

Substitute ray equation: $f(\mathbf{o} + t \mathbf{d}) = 0$

Solve for real, positive roots





Accelerating Ray-Surface Intersection

Ray Tracing - Performance Challenges

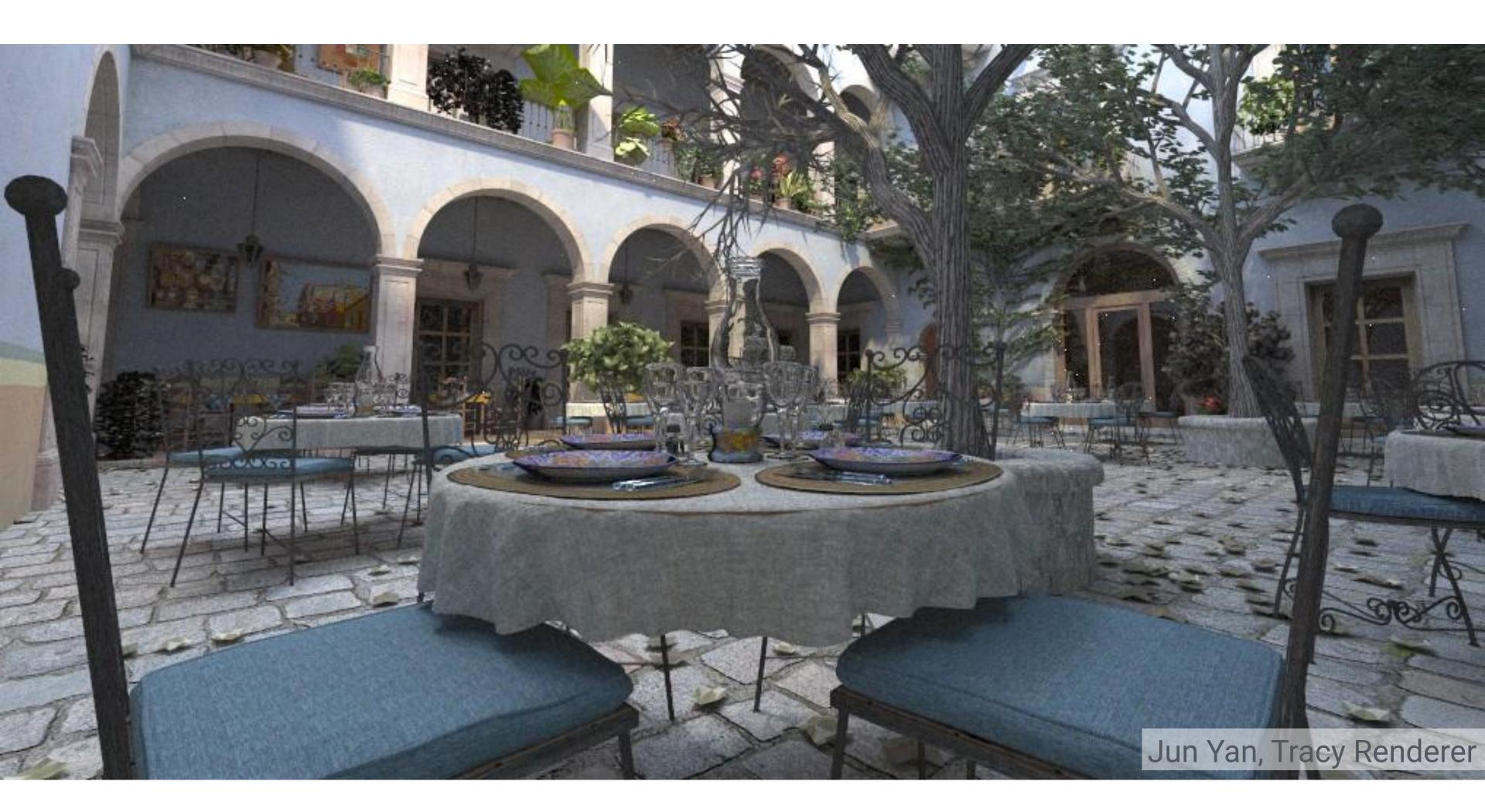
Simple ray-scene intersection

Exhaustively test ray-intersection with every object

Problem:

- Exhaustive algorithm = $(x \cdot y)$ pixels x objects
- Very slow!

Ray Tracing - Performance Challenges



San Miguel Scene, 10.7M triangles

Ray Tracing - Performance Challenges

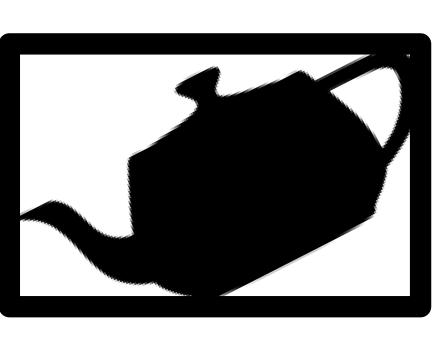
Plant Ecosystem, 20M triangles

Bounding Volumes

Bounding Volumes

Quick way to avoid intersections: bound complex object with a simple volume

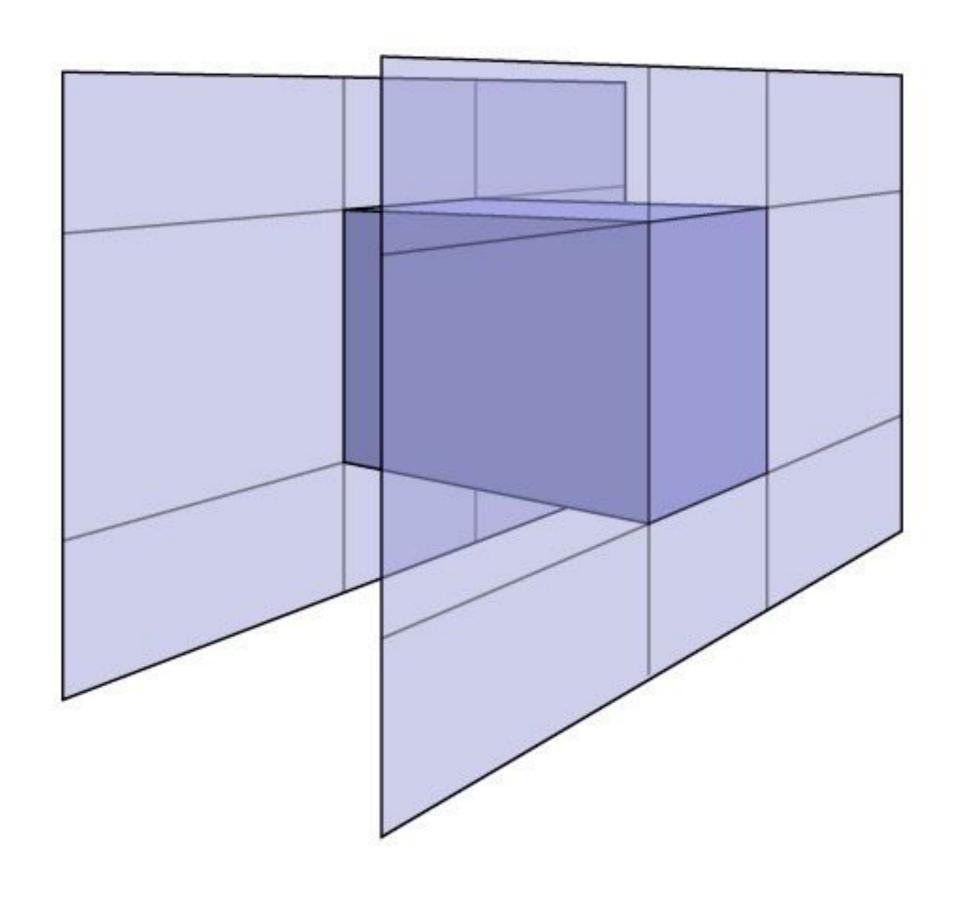
- Object is fully contained in the volume
- If it doesn't hit the volume, it doesn't hit the object
- So test bvol first, then test object if it hits



Ray-Intersection With Box

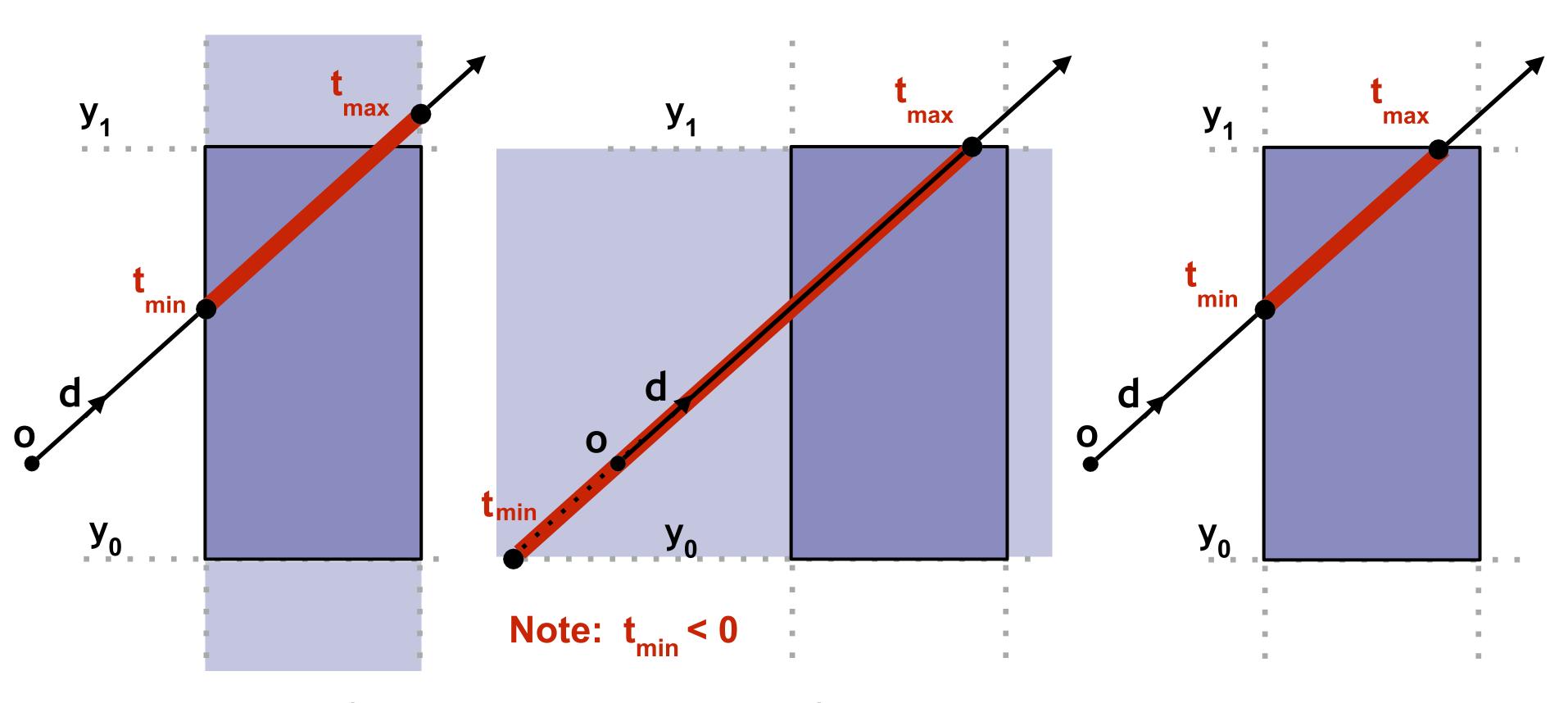
Could intersect with 6 faces individually Better way:

box is the intersection of 3 slabs



Ray Intersection with Axis-Aligned Box

2D example - 3D is the same! Compute intersections with slabs and take intersection of the two t_{min} and t_{max} intervals



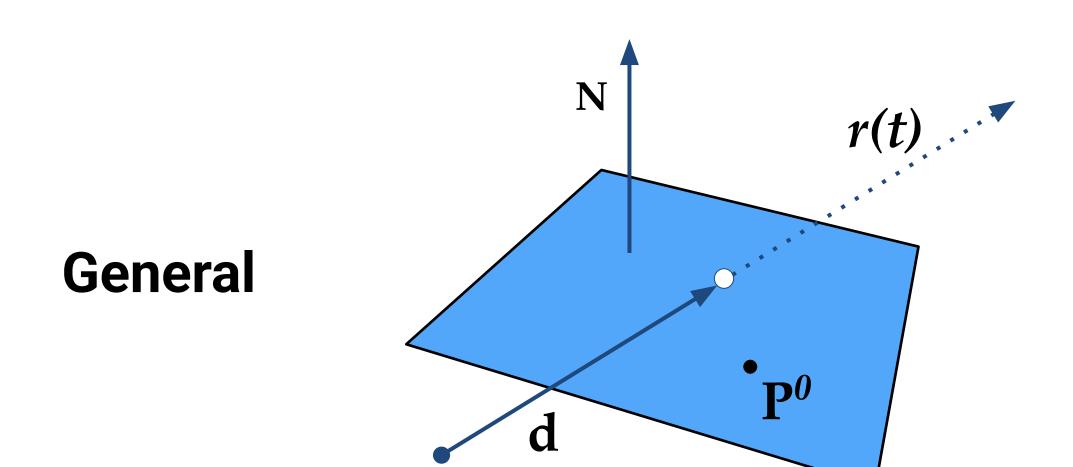
Intersections with x plane

Intersections with y plane

Final intersection result

How do we know when the ray misses the box?

Optimize Ray-Plane Intersection For Axis-Aligned Planes?

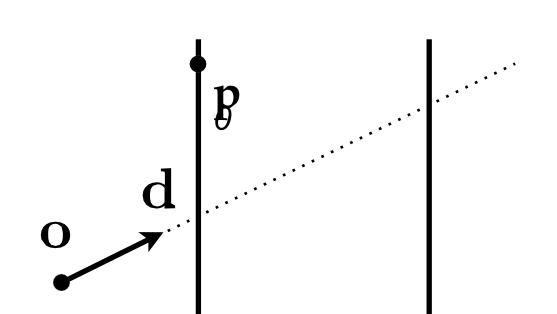


0

$$t = \frac{(\mathbf{p}^0 - \mathbf{o}) \cdot \mathbf{N}}{\mathbf{d} \cdot \mathbf{N}}$$

3 subtractions, 6 multiplies, 1 division

Perpendicular to x-axis

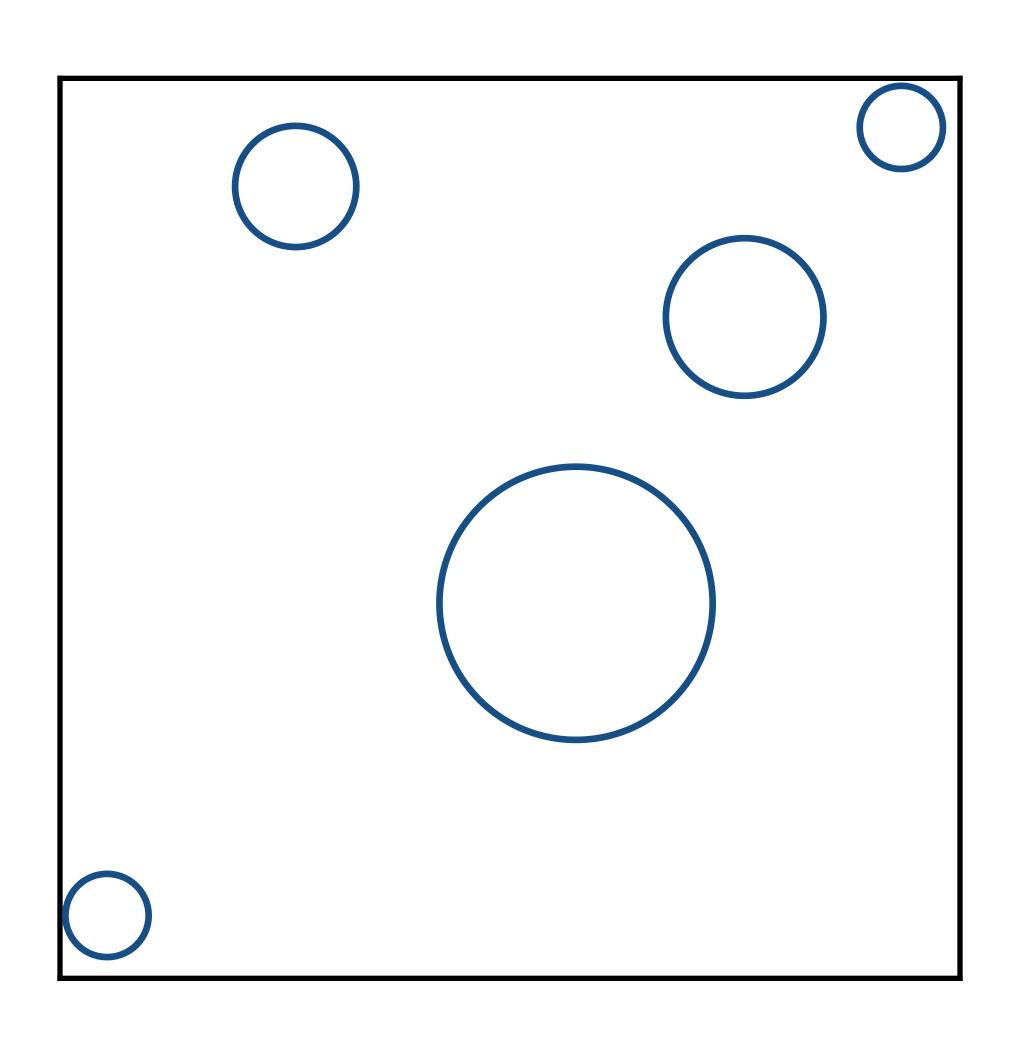


$$t = \frac{\mathbf{p}^0 - \mathbf{o}_x}{\mathbf{d}_x}$$

1 subtraction, 1 division

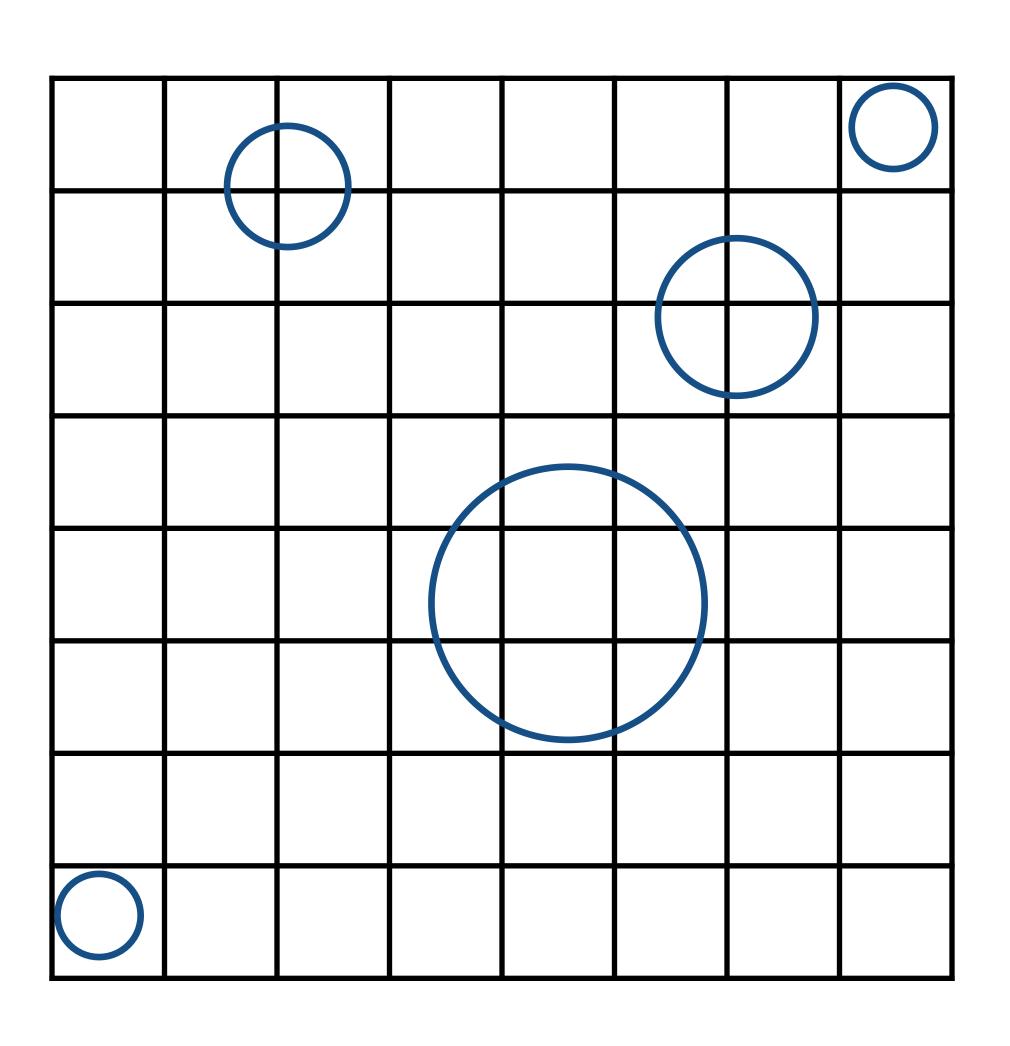
Uniform Spatial Partitions (Grids)

Preprocess – Build Acceleration Grid



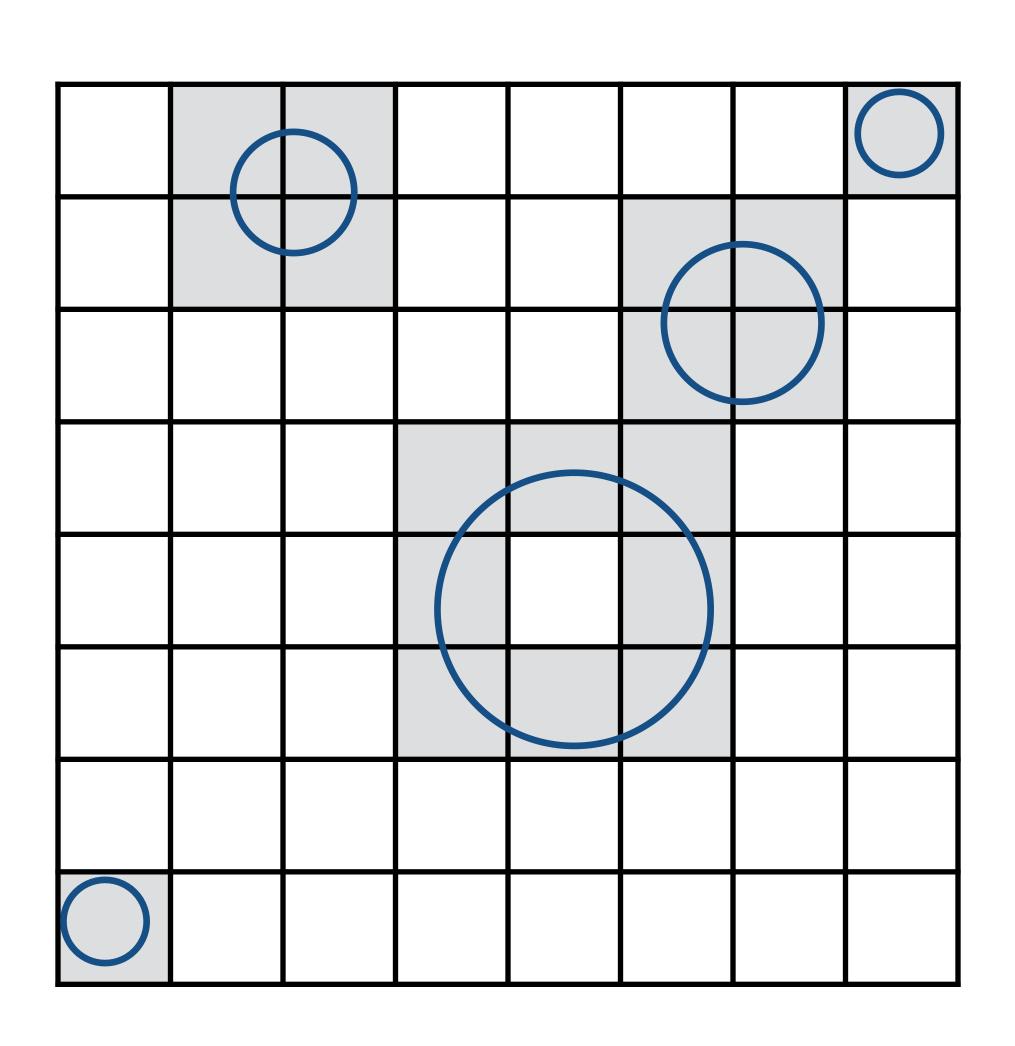
1. Find bounding box

Preprocess - Build Acceleration Grid



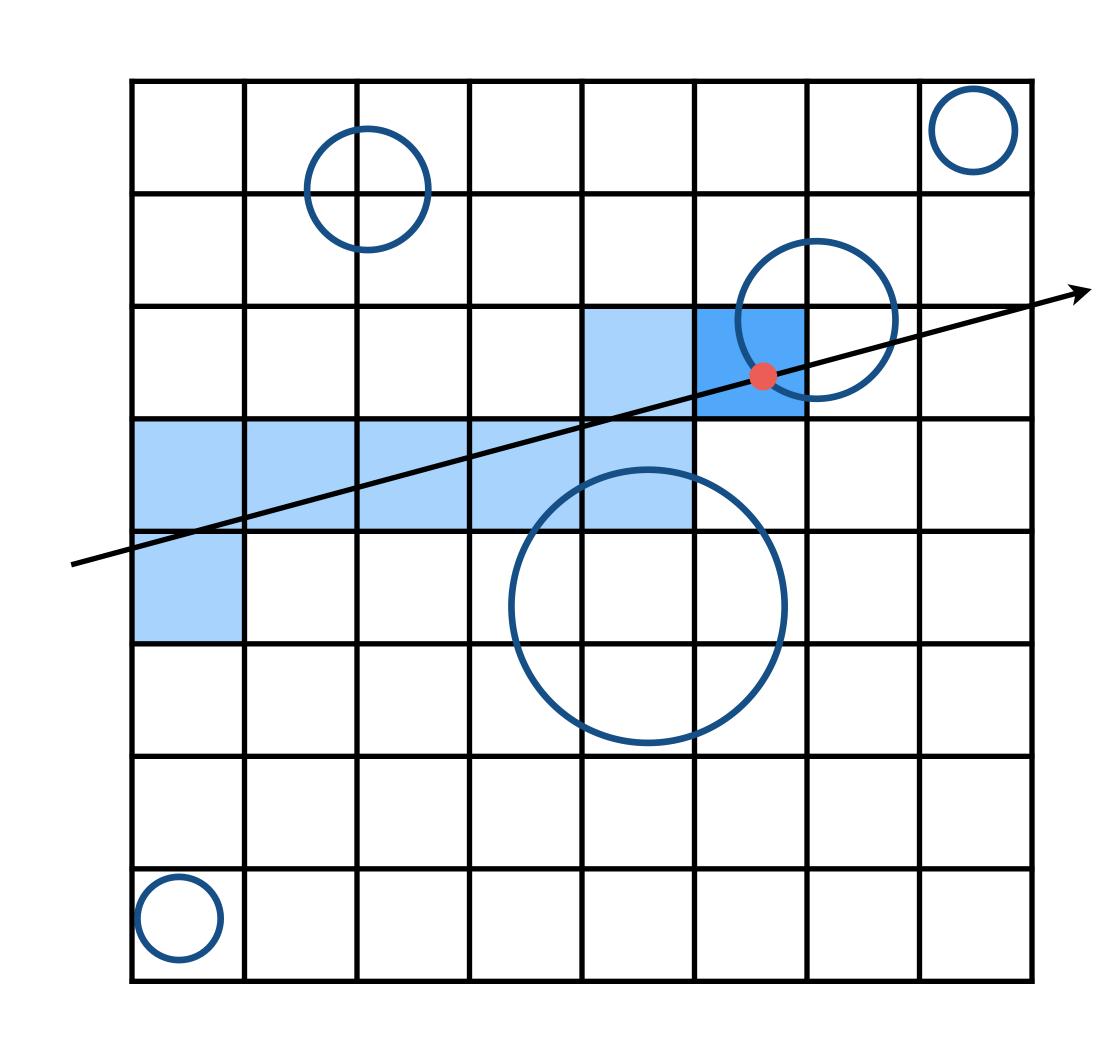
- 1. Find bounding box
- 2. Create grid

Preprocess - Build Acceleration Grid



- 1. Find bounding box
- 2. Create grid
- 3. Store each object in overlapping grid cells

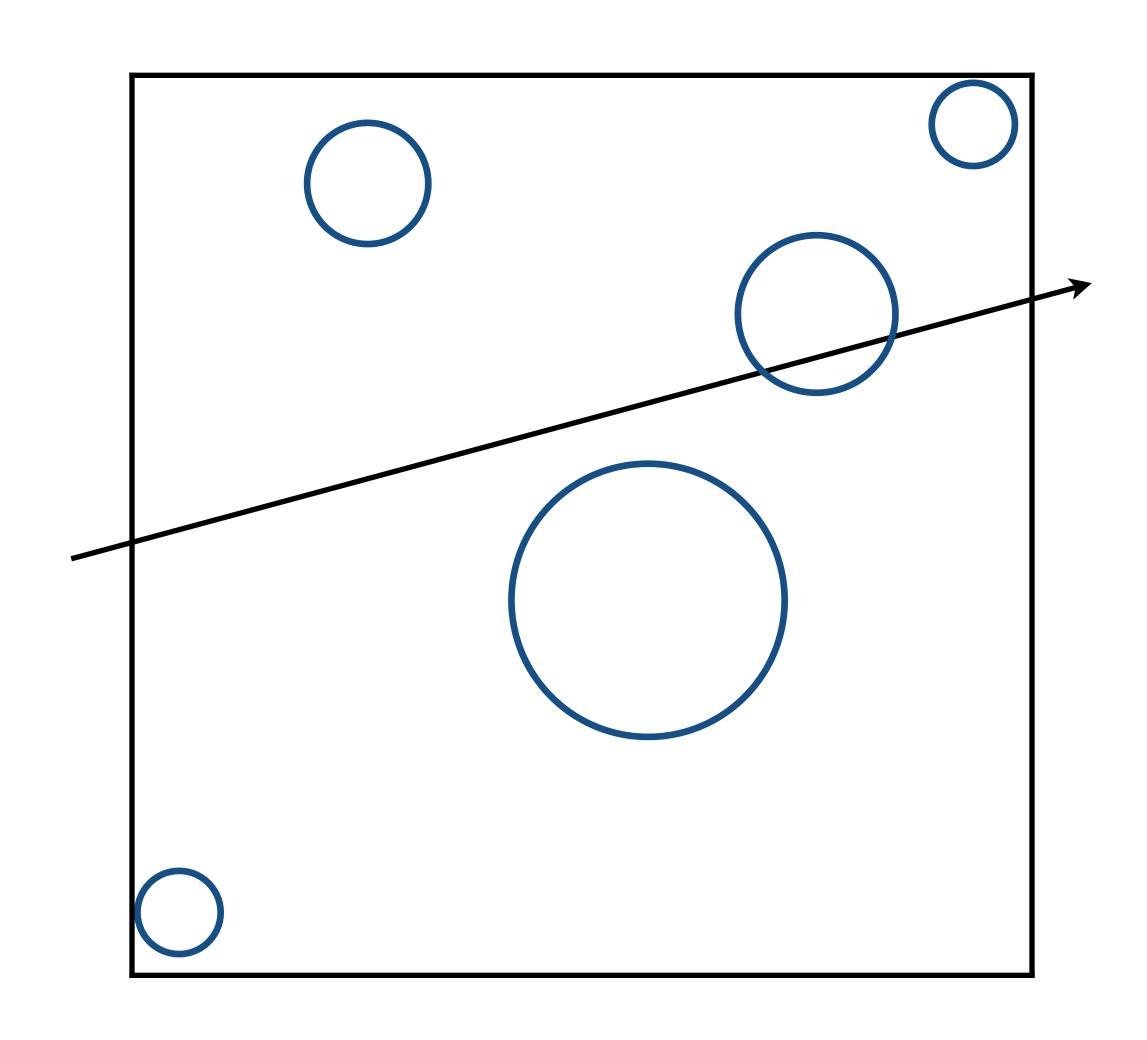
Ray-Scene Intersection



Step through grid in ray traversal order

For each grid cell
Test intersection
with all objects
stored at that cell

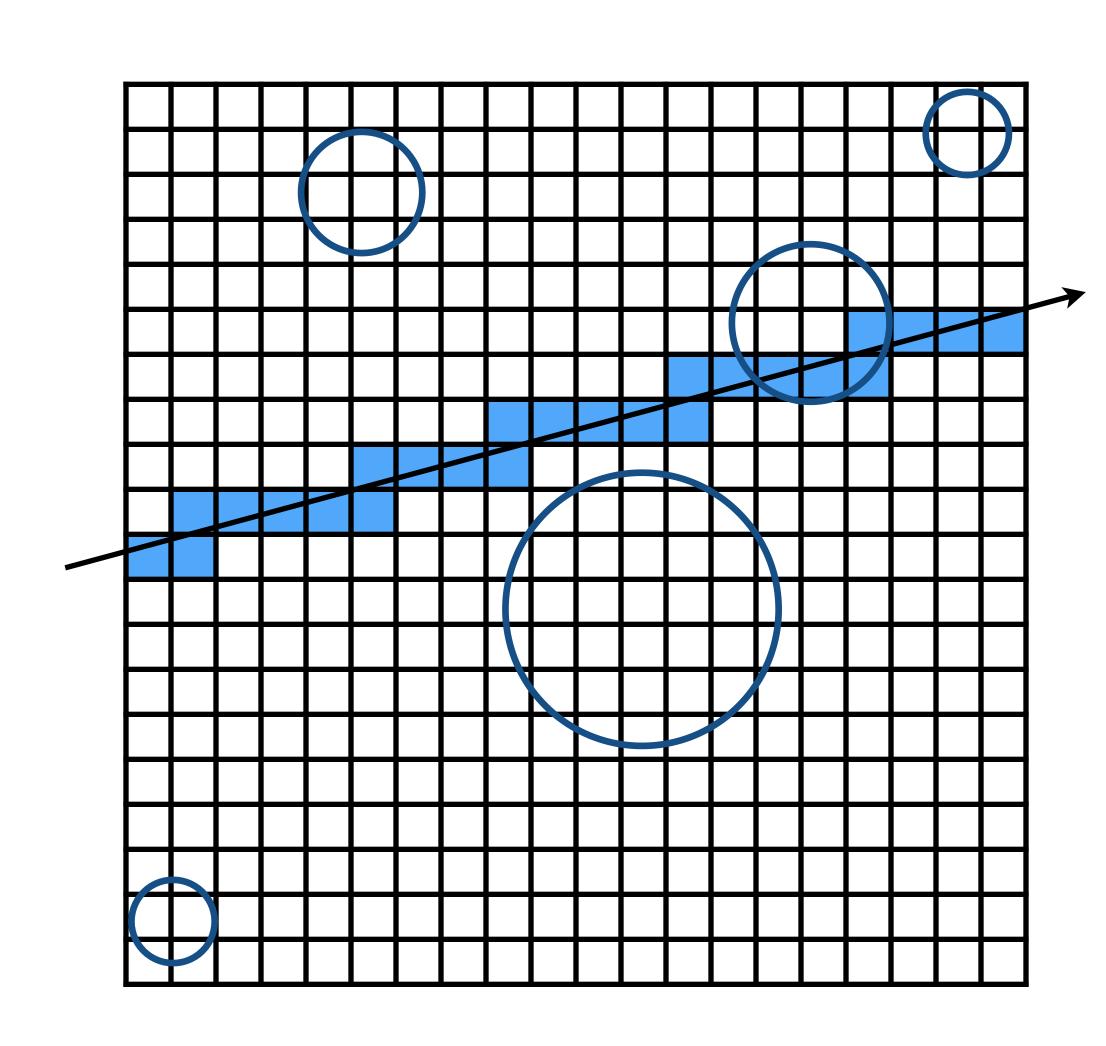
Grid Resolution?



One big cell

No speedup

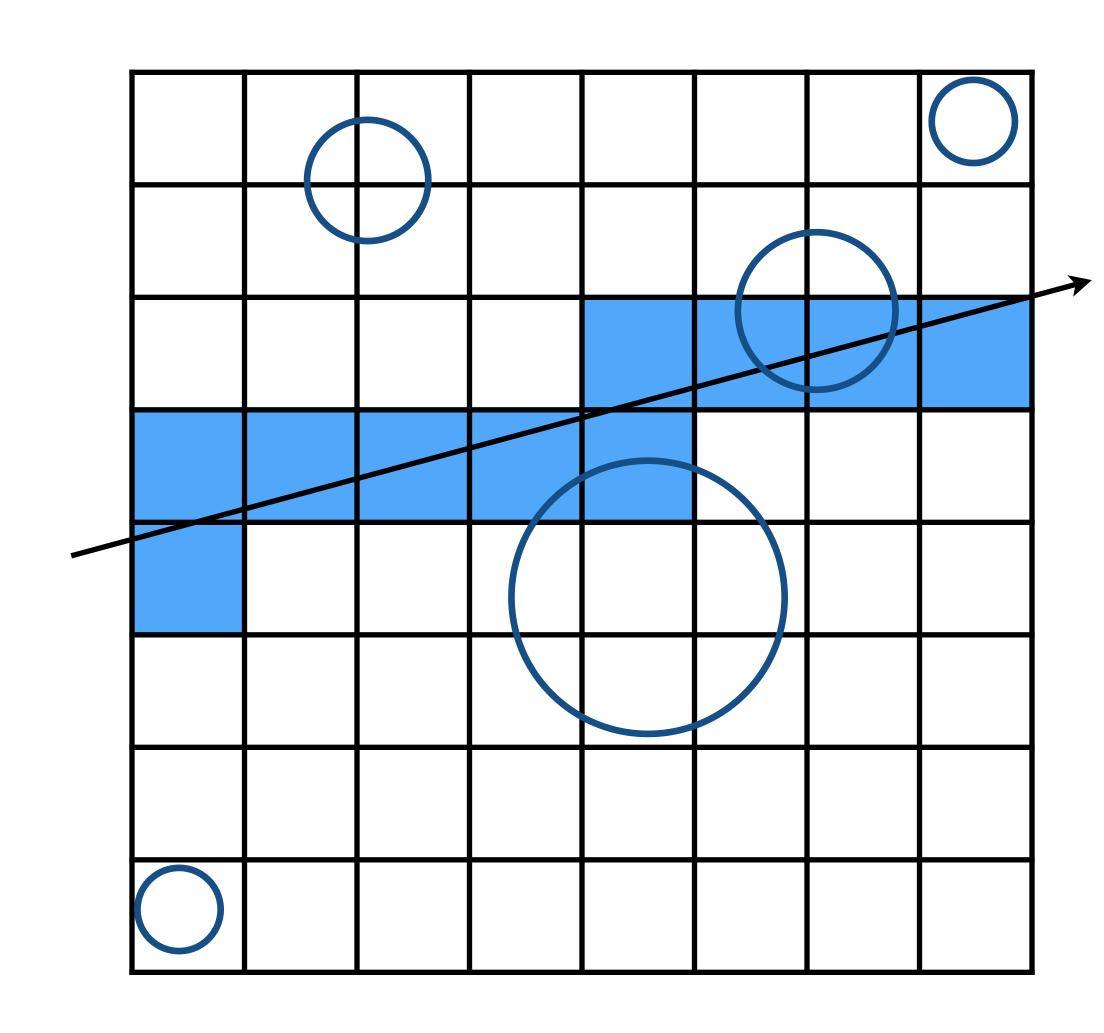
Grid Resolution?



Too many cells

 Inefficiency due to extraneous grid traversal

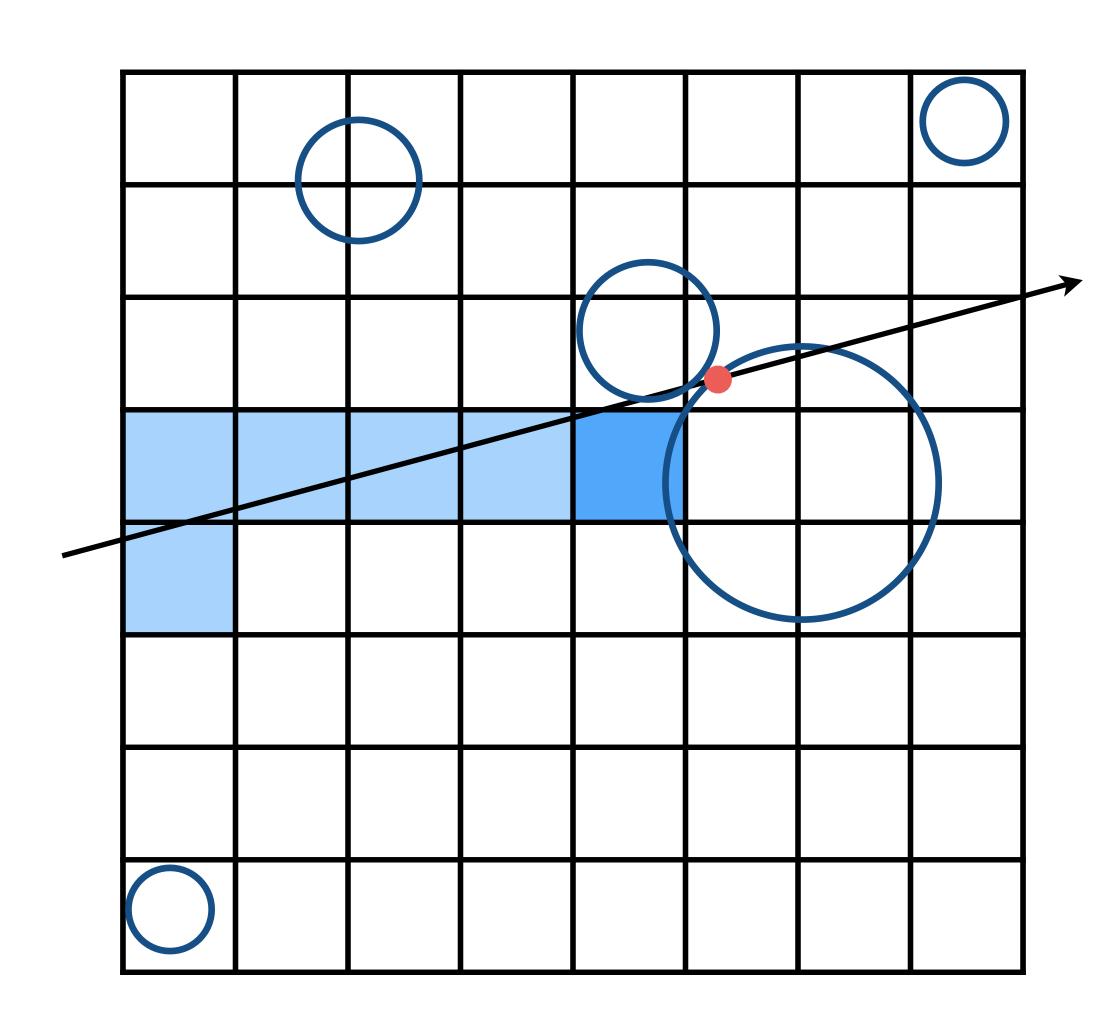
Grid Resolution?



Heuristic:

- $cells = C * n_{objs}$
- $C \approx 27 \text{ in } 3D$

Careful! Objects Overlapping Multiple Cells



What goes wrong here?

 First intersection found (red) is not the nearest!

Solution?

Check intersection point is inside cell

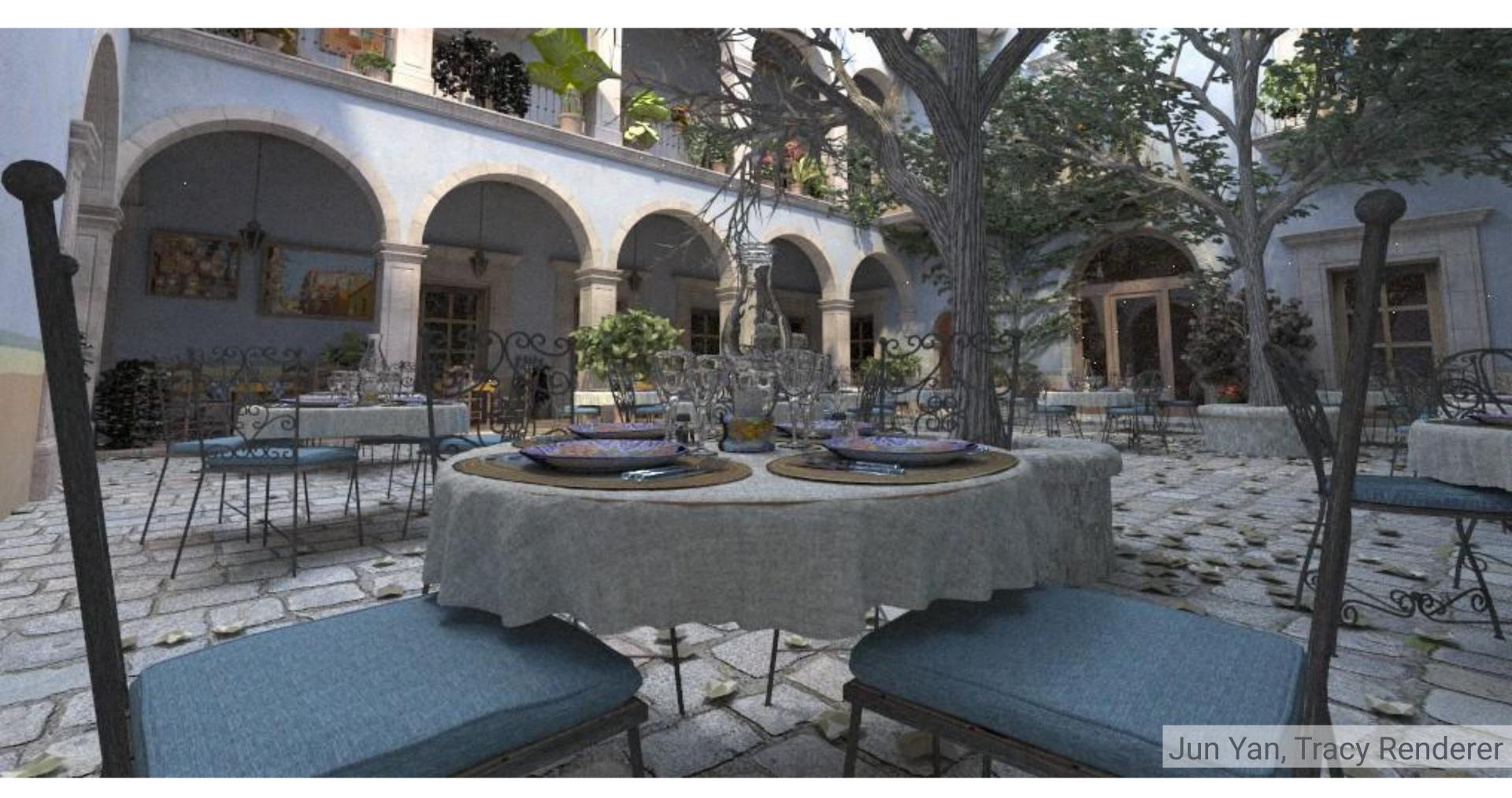
Optimize

 Cache intersection to avoid re-testing (mailboxing)

Uniform Grids - When They Work Well

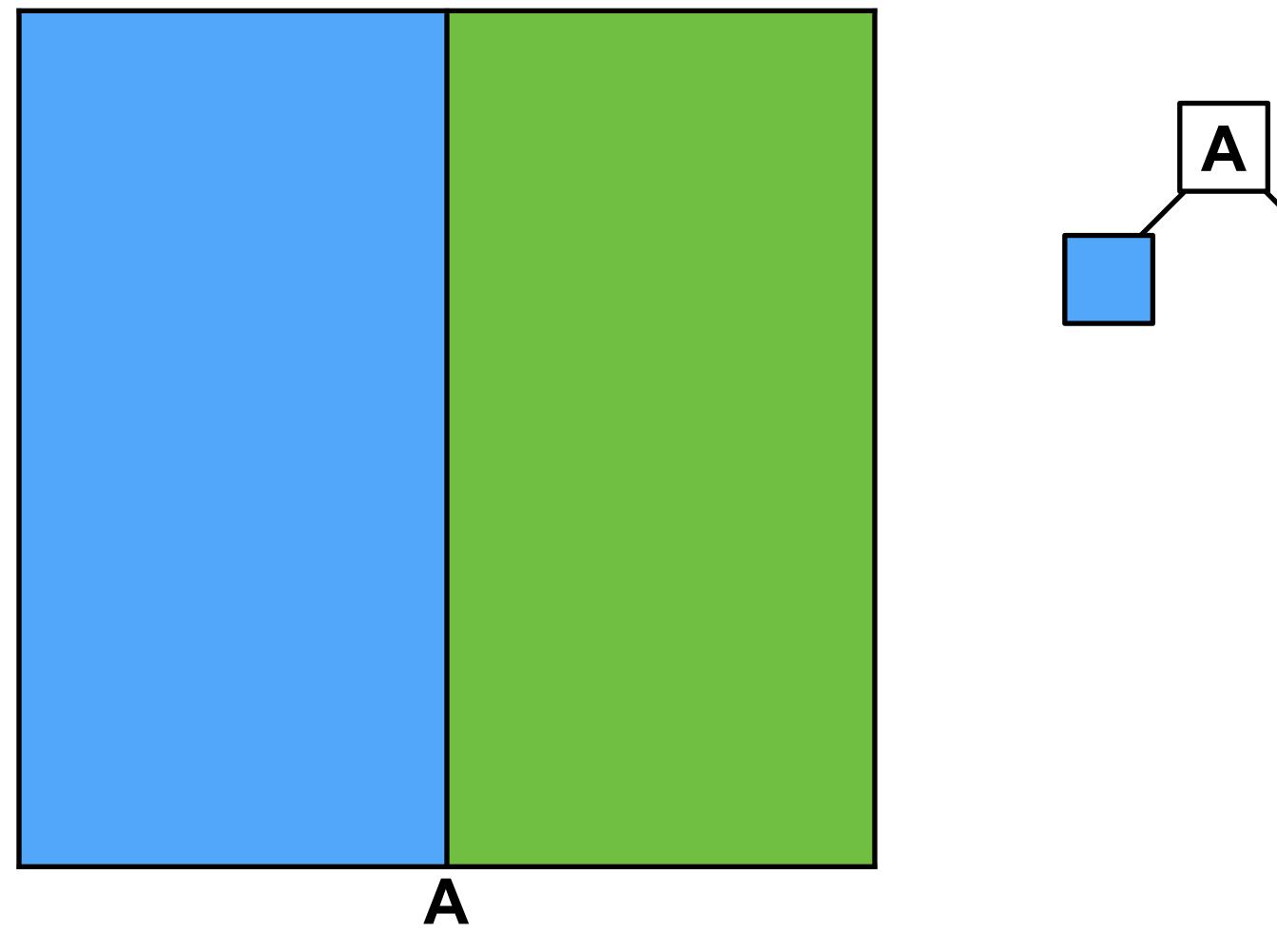
Grids work well on large collections of objects that are distributed evenly in size and space.

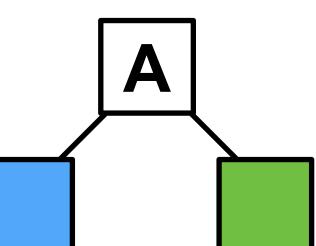
Uniform Grids - When They Fail

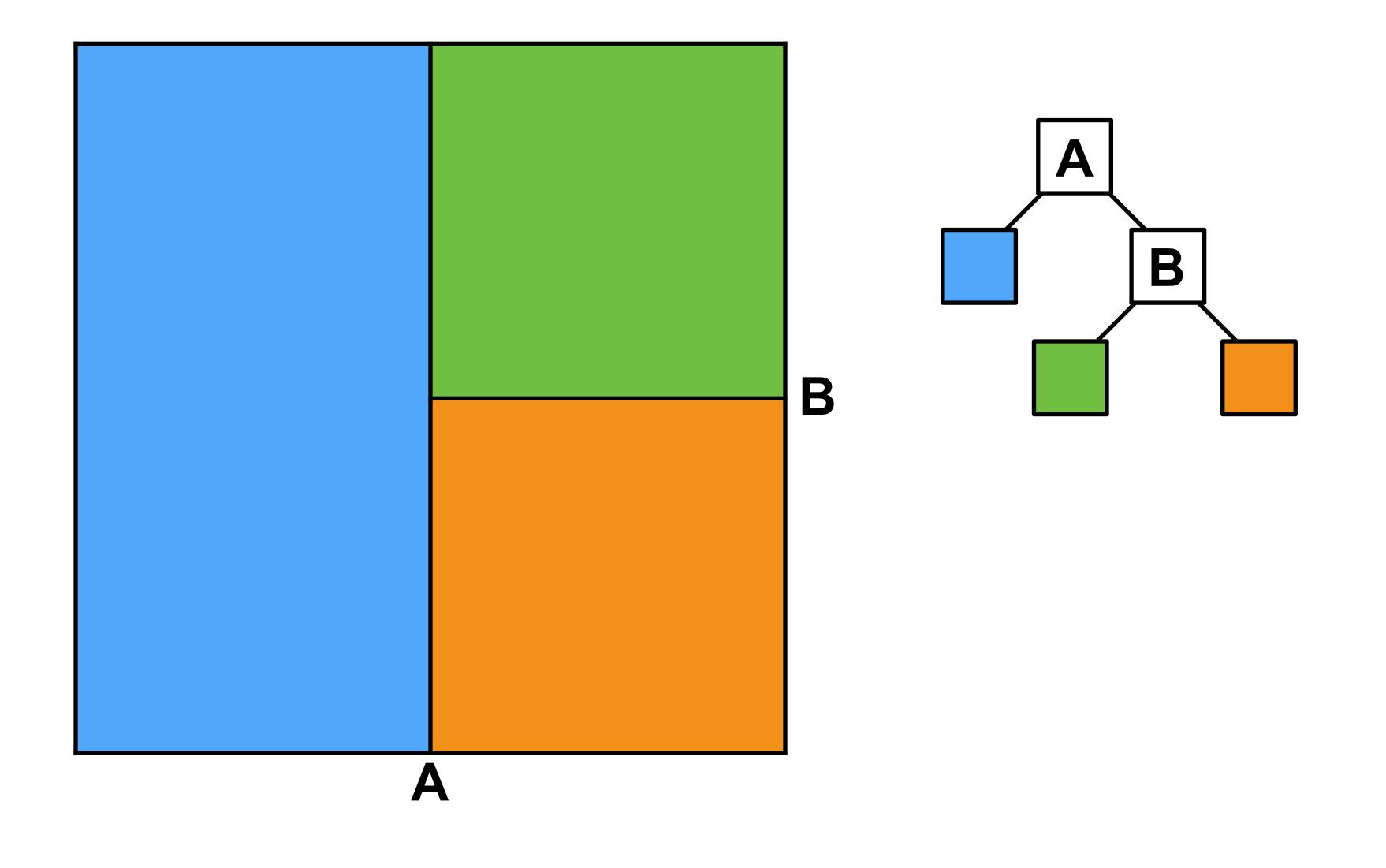


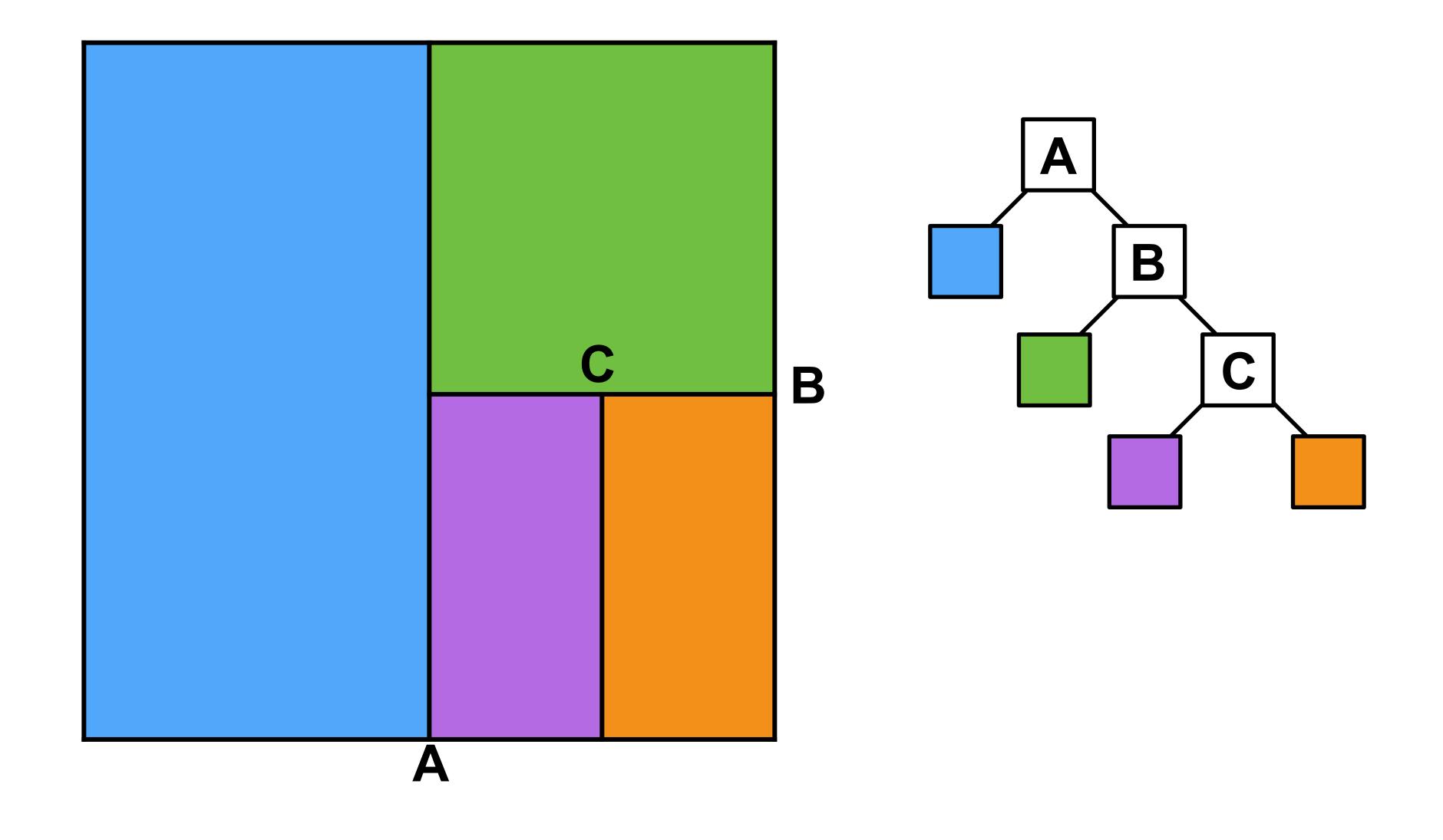
"Ball in a stadium" problem

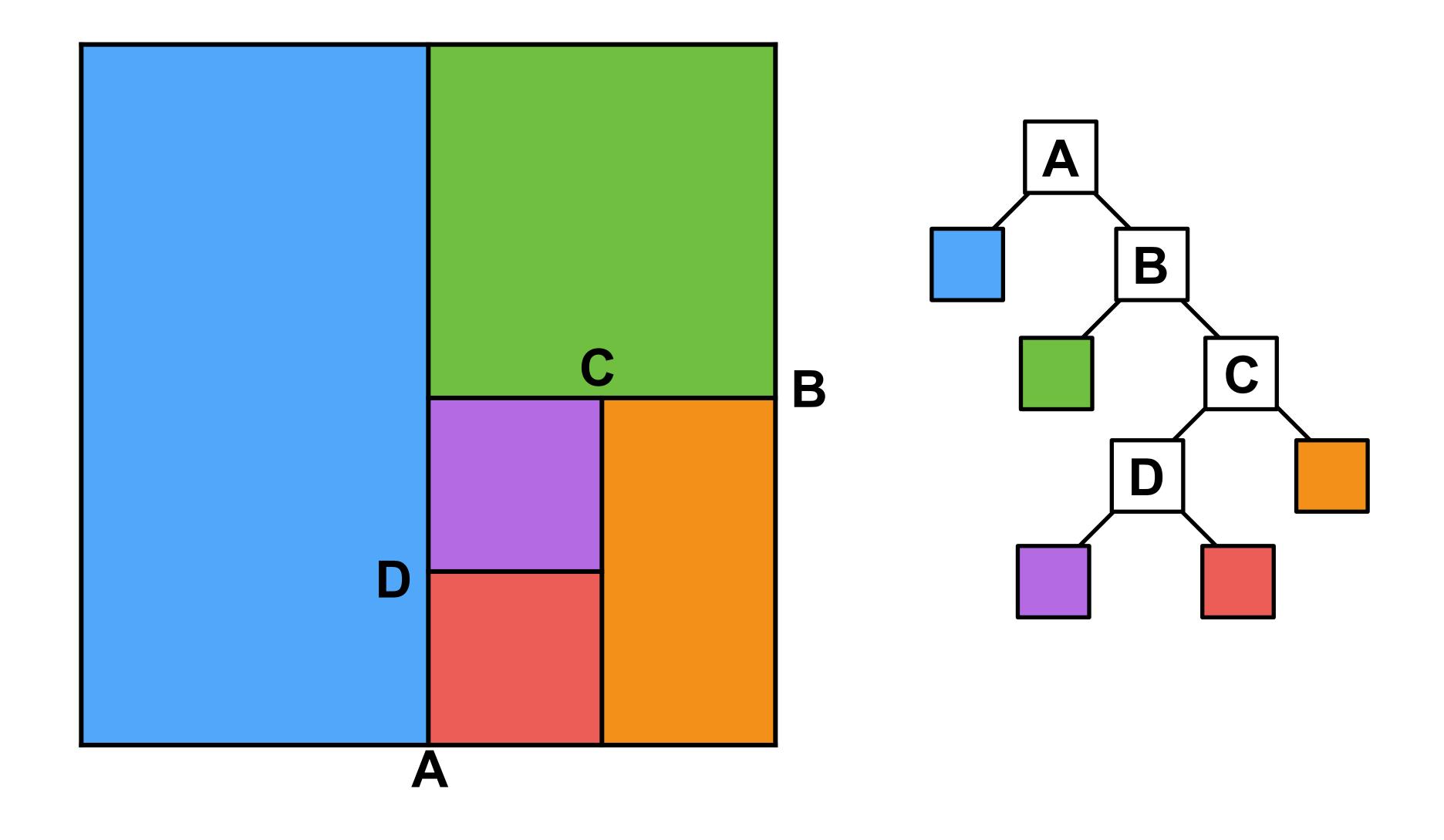
Non-Uniform Spatial Partitions: Spatial Hierarchies

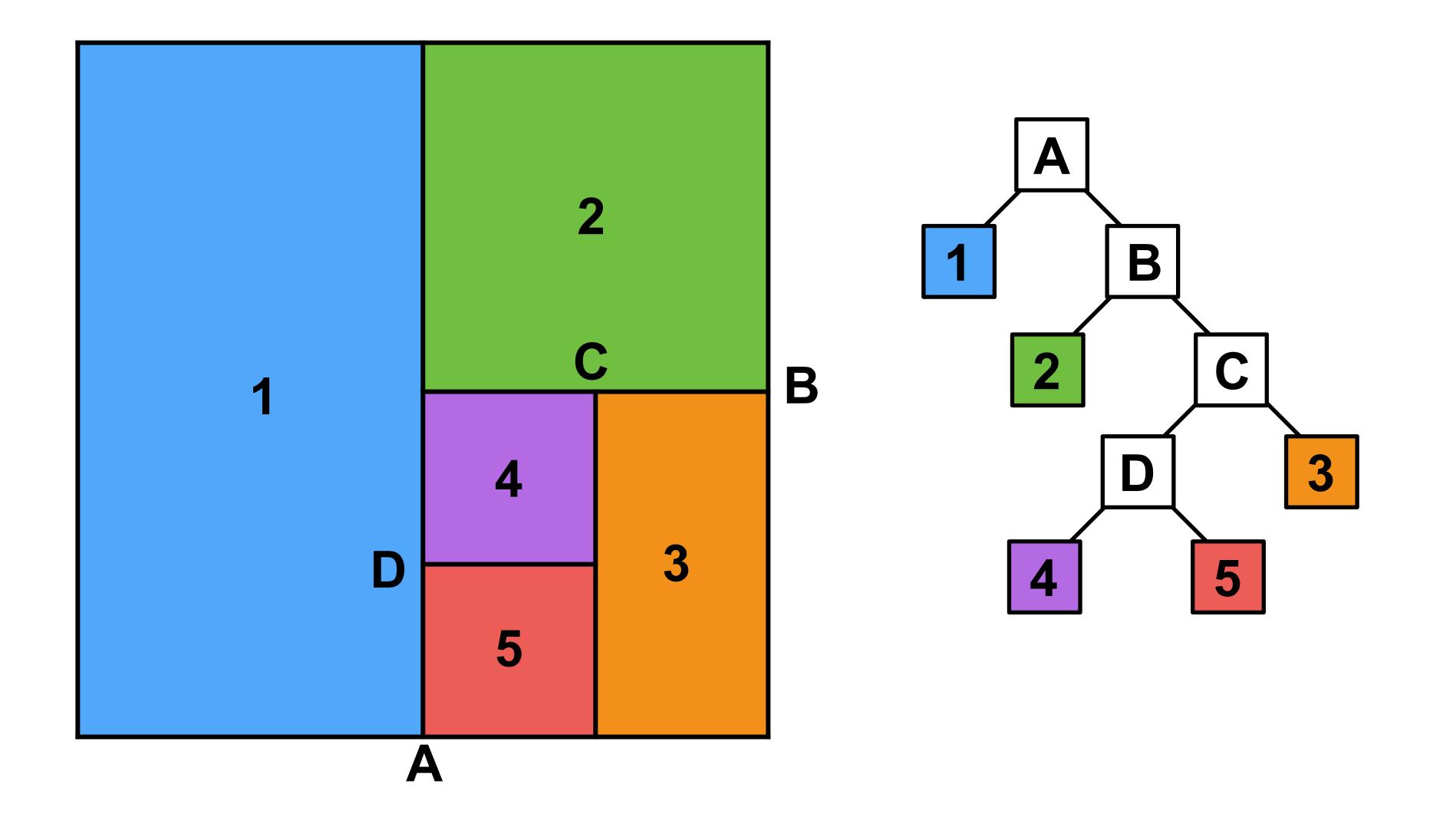




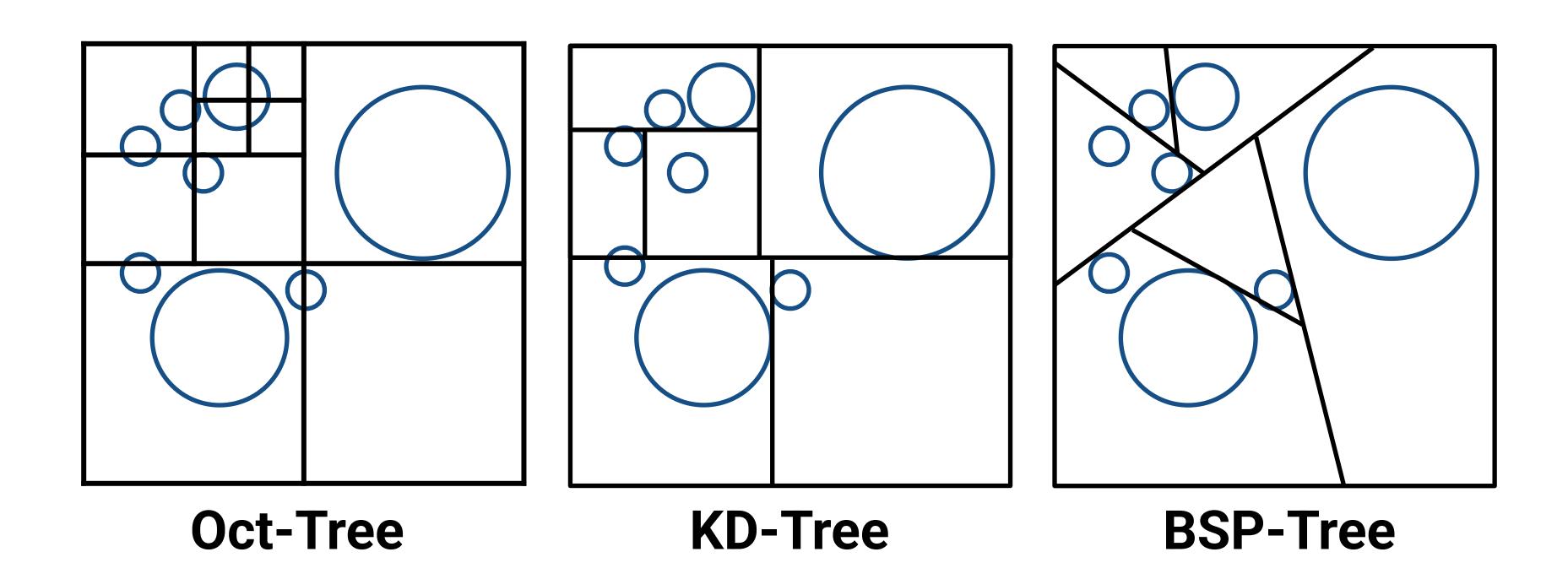








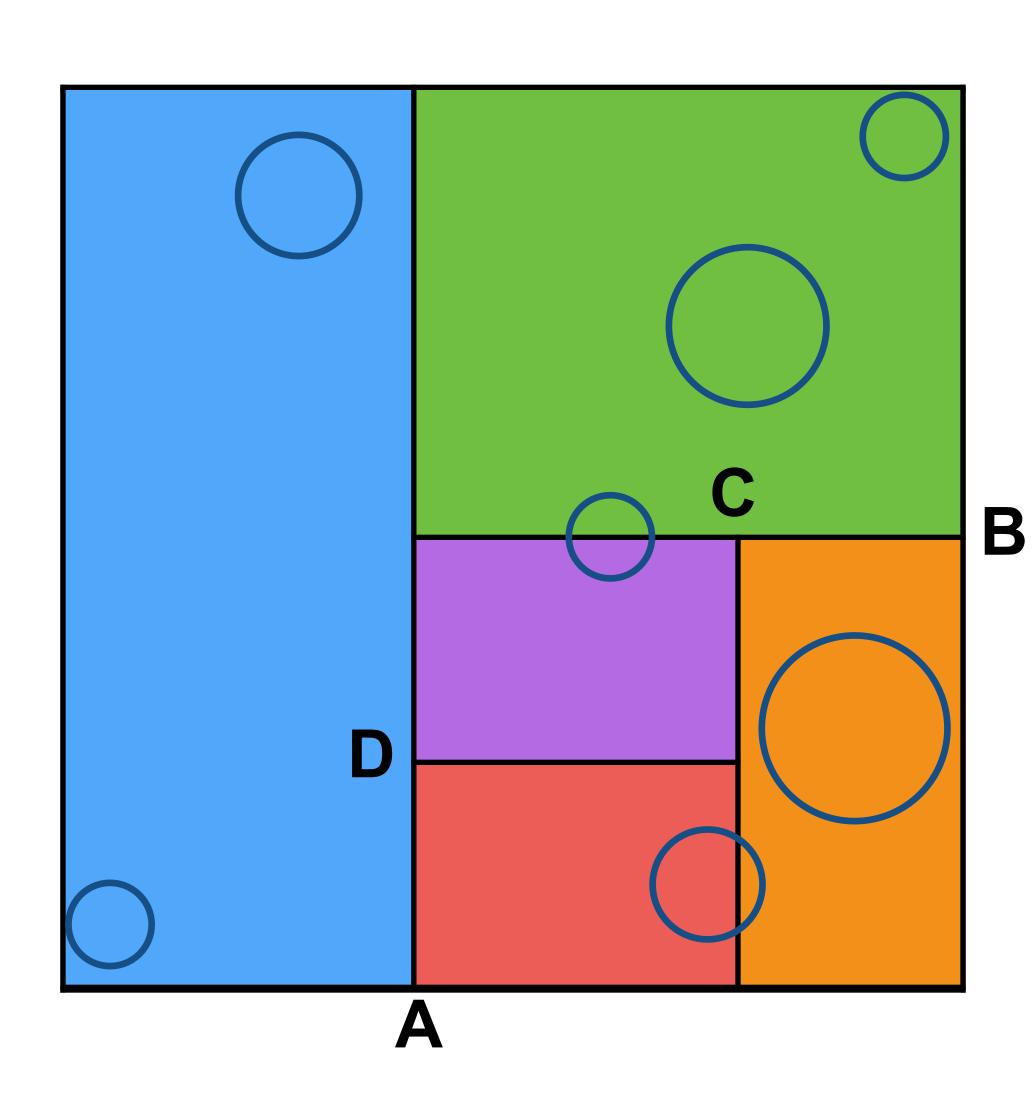
Spatial Partitioning Variants



Note: you could have these in both 2D and 3D. In lecture we will illustrate principles in 2D, but for assignment you will implement 3D versions.

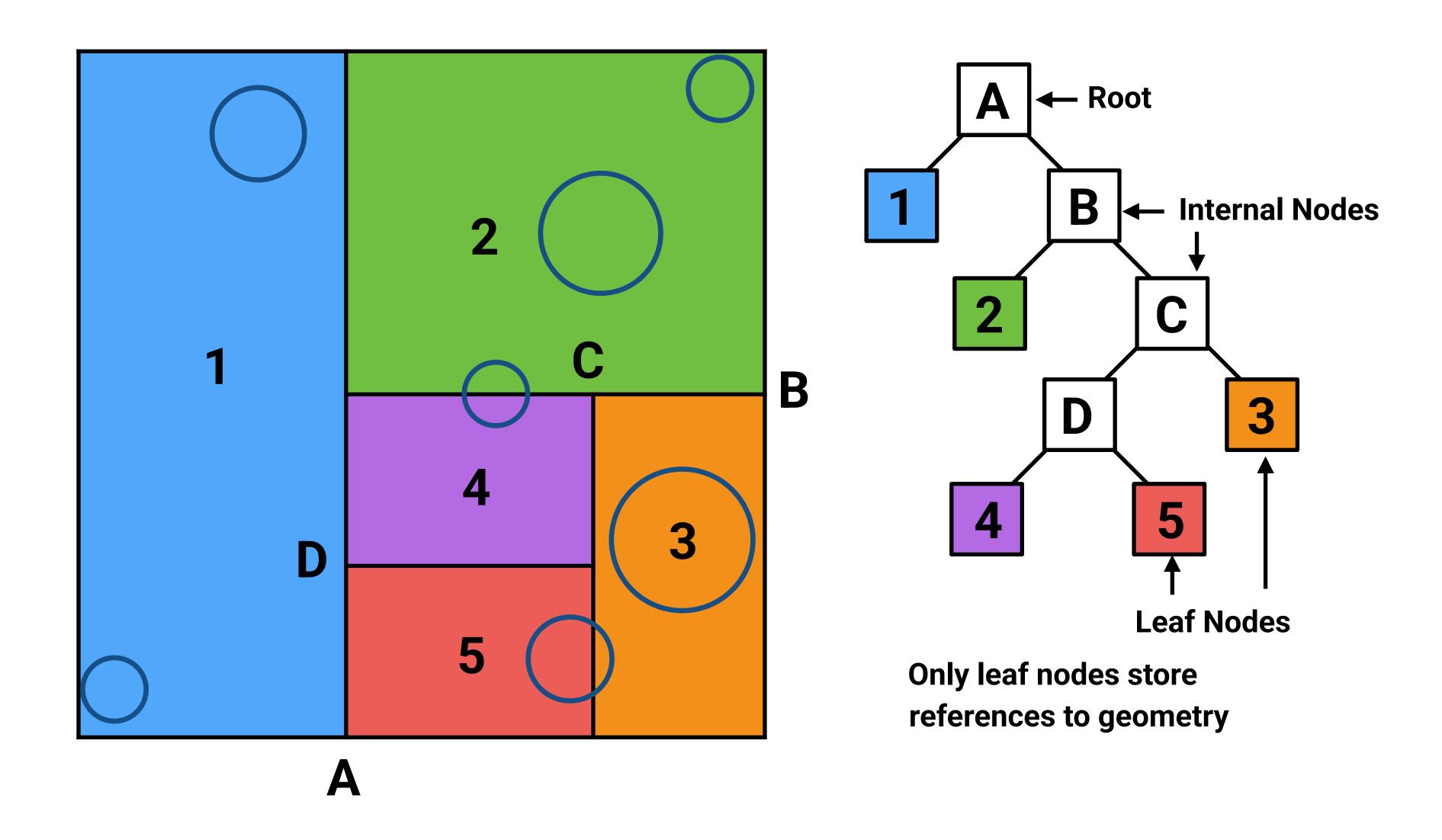
KD-Tree Spatial Partitioning

KD-Tree Pre-Processing



- Find bounding box
- Recursively split cells, axis-aligned planes
- Until termination criteria met (e.g. max splits or min objs)
- Store obj references with each leaf node

KD-Tree Pre-Processing



KD-Trees

Internal nodes store:

- ☐ split axis: x, y, or z axis
- ☐ split position: coordinate of split plane along axis
- ☐ children: reference to child nodes

Leaf nodes store:

- list of objects
- ☐ Intersection Cache

KD-Tree Pre-Processing

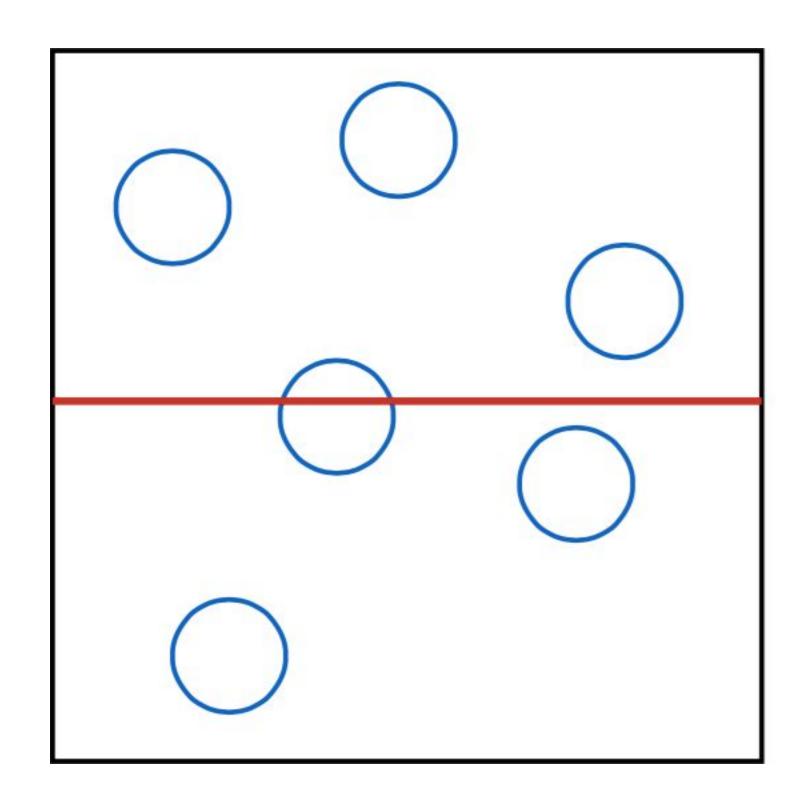
Choosing the split plane

- Simple: midpoint, median split
- Ideal: split to minimize expected cost of ray intersection

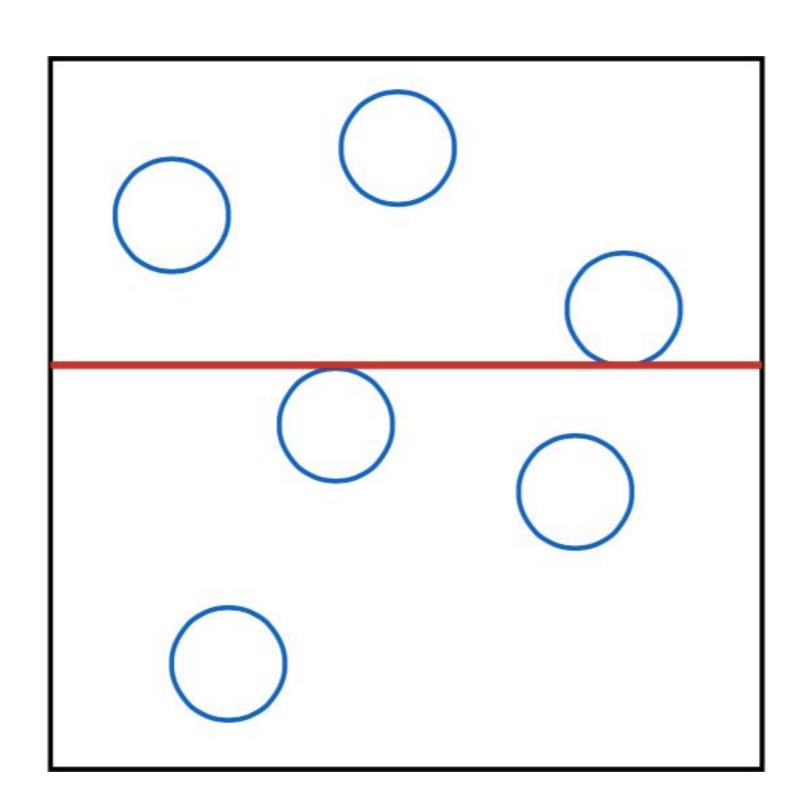
Termination criteria?

- Simple: common to prescribe maximum tree depth (empirical $8 + 1.3 \log N_{\rm obis}$) [PBRT]
- Ideal: stop when splitting does not reduce expected cost of ray intersection

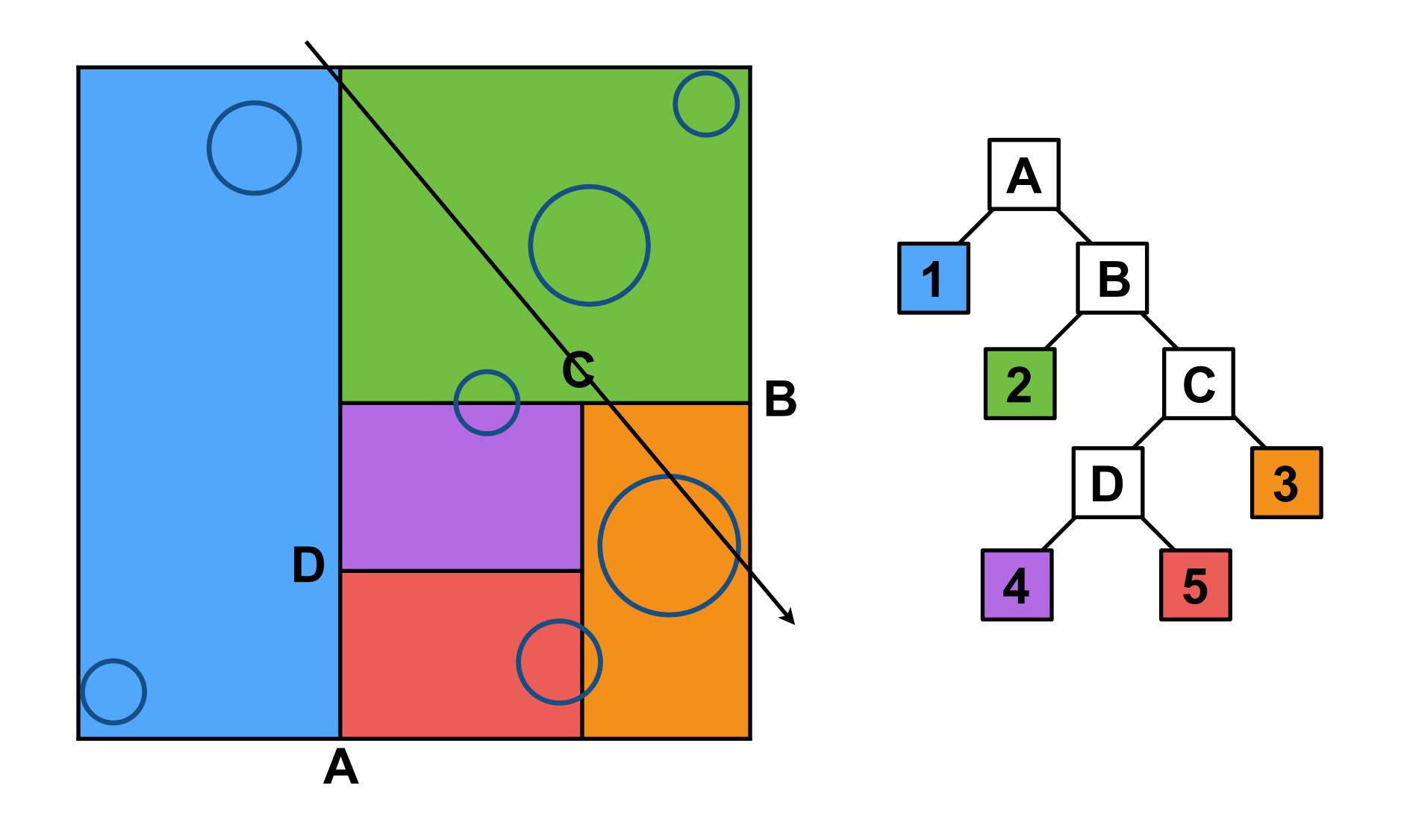
Simple Hierarchy Construction

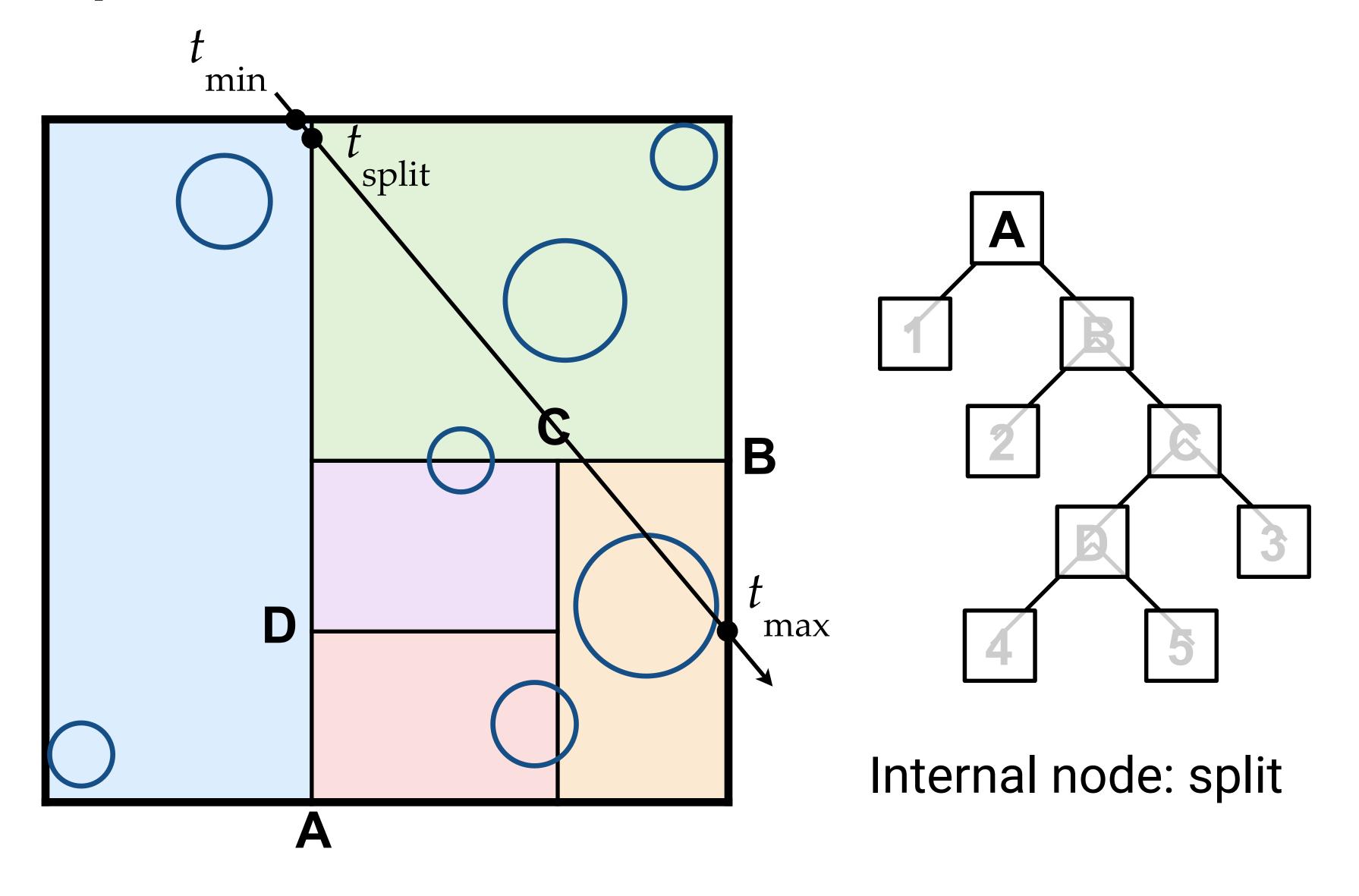


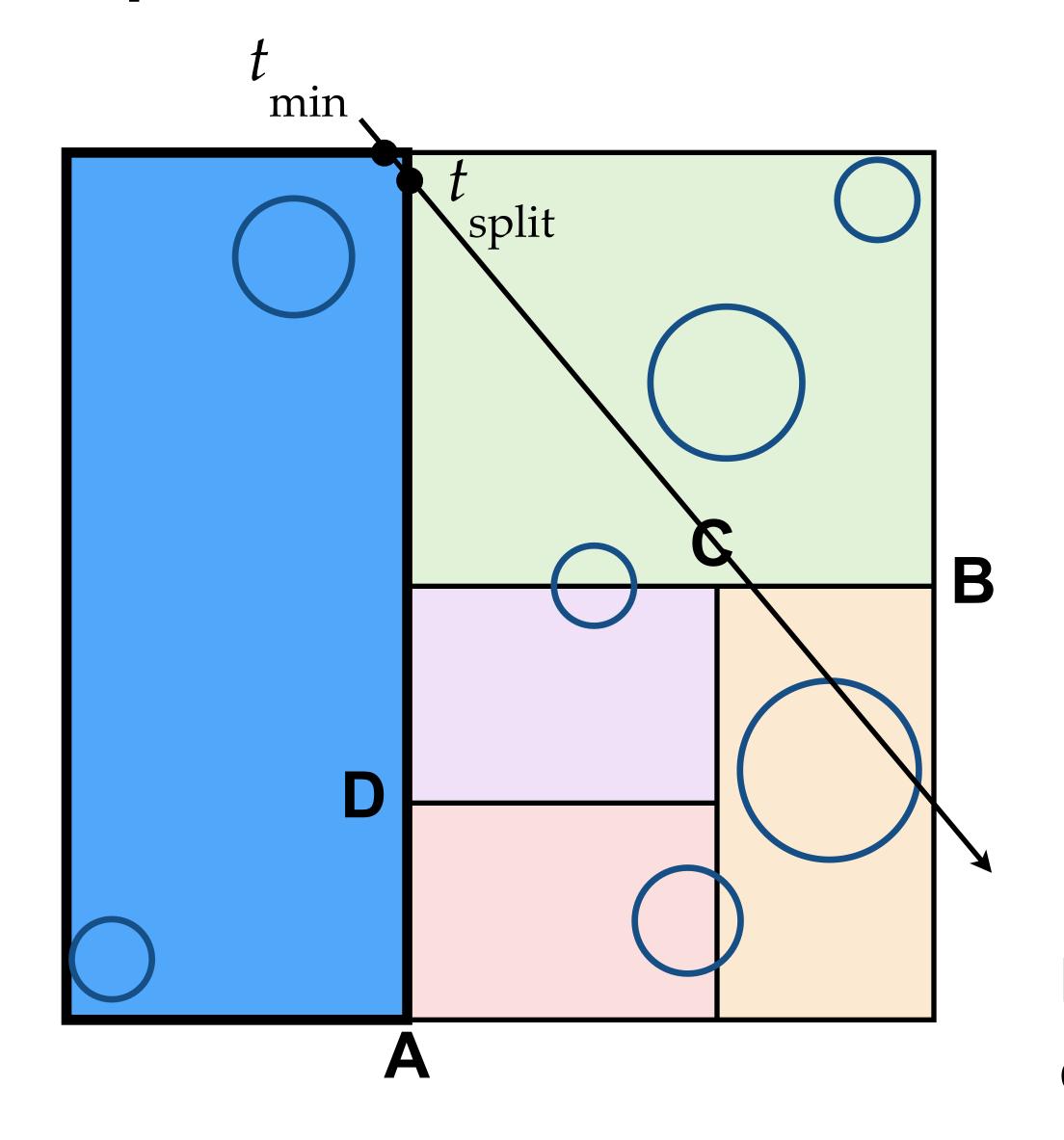
Split at midpoint

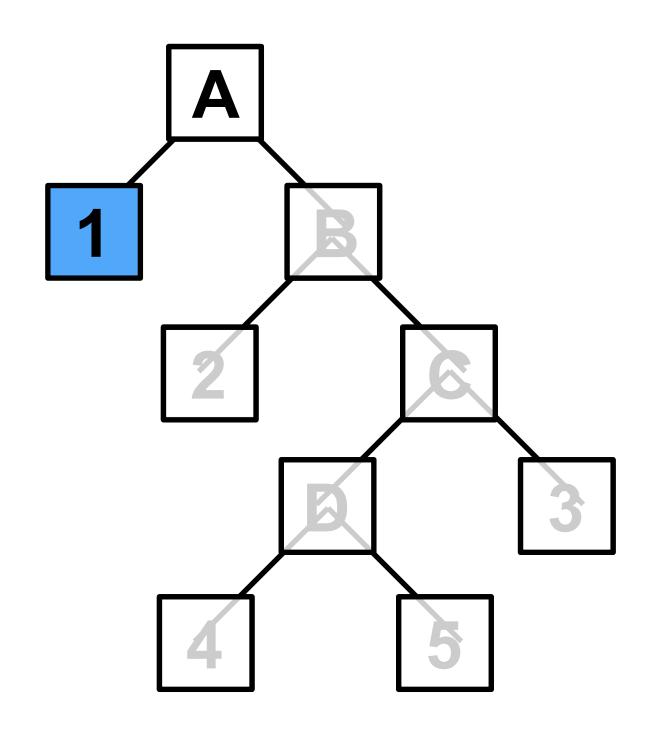


Split at median

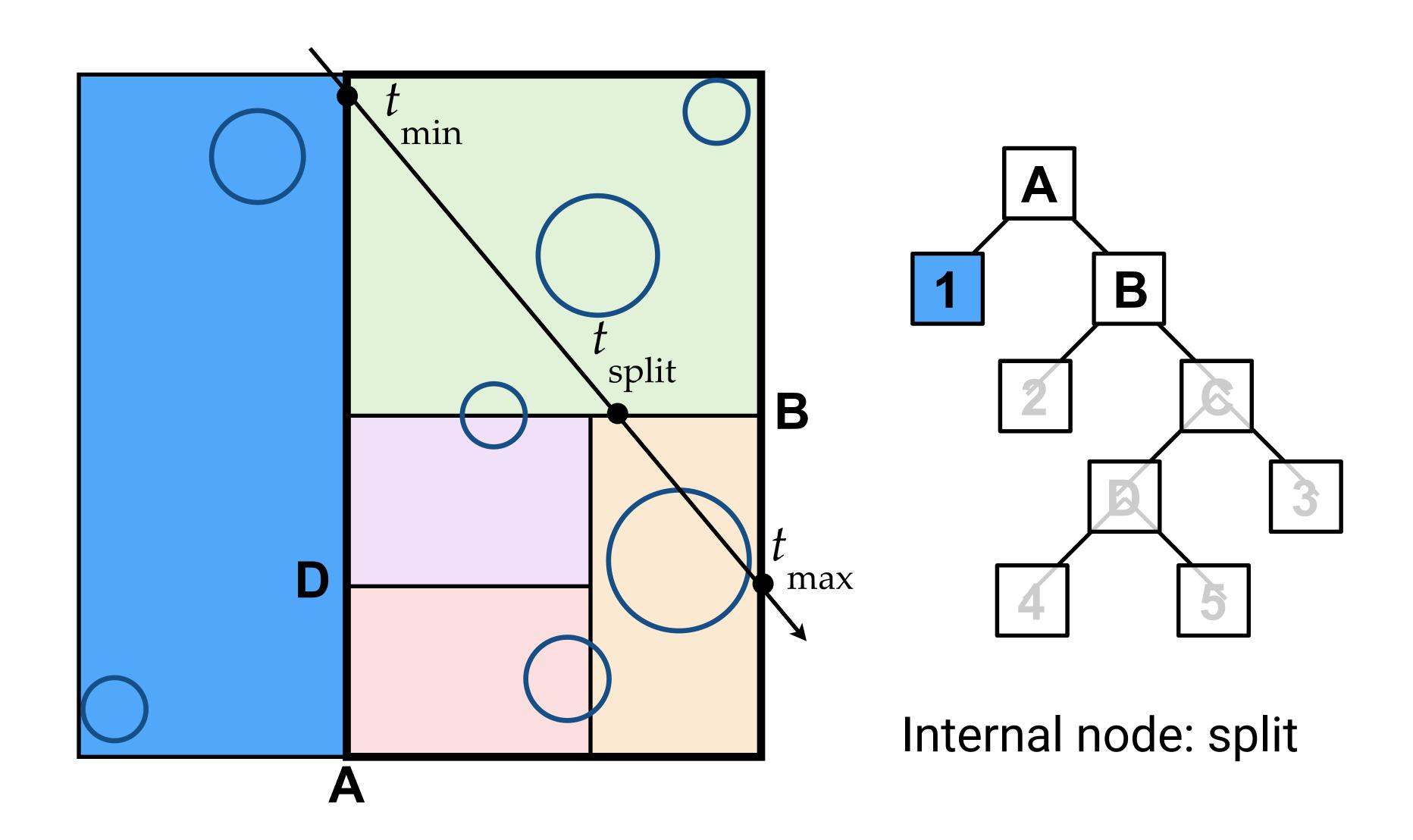


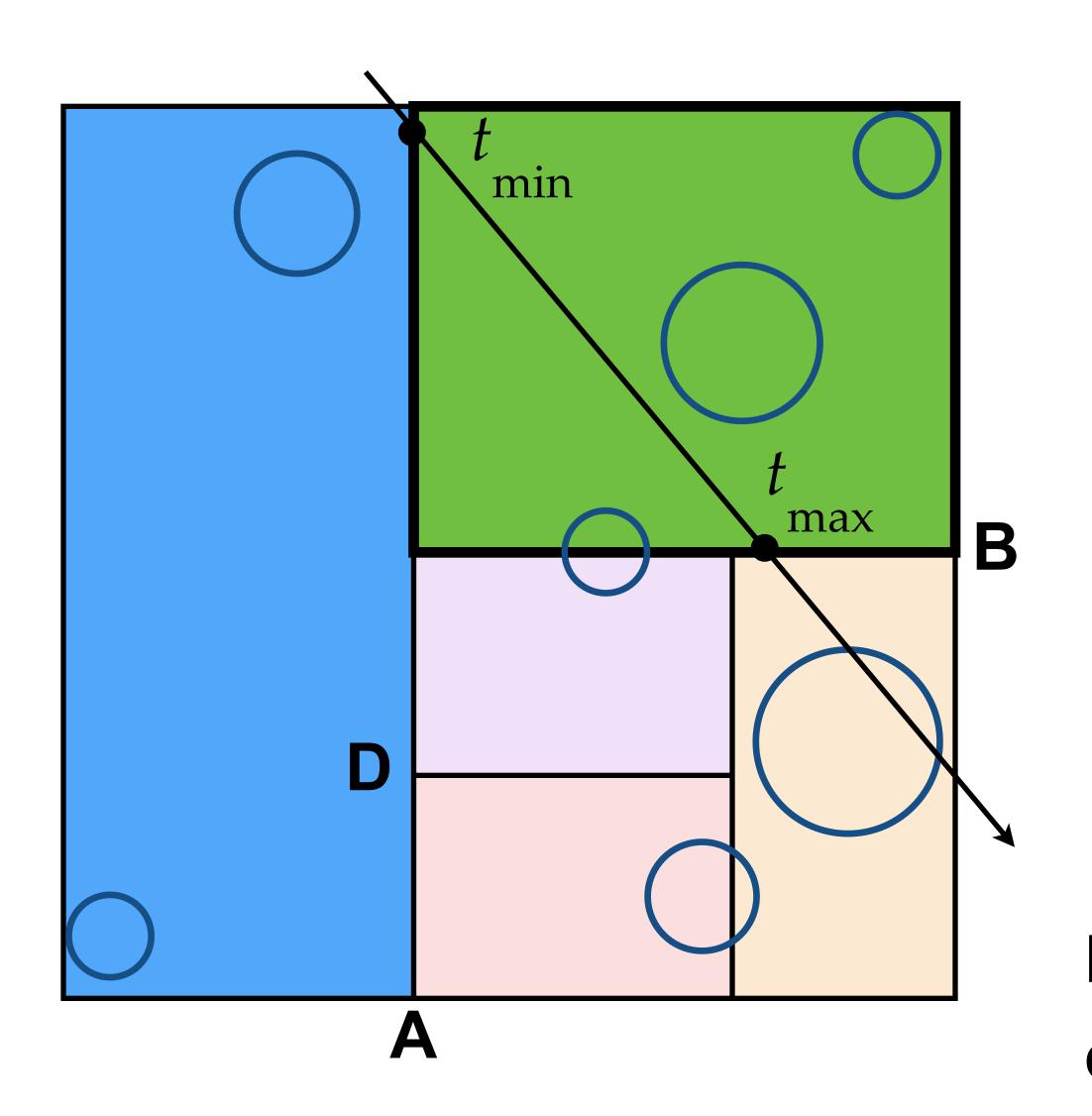


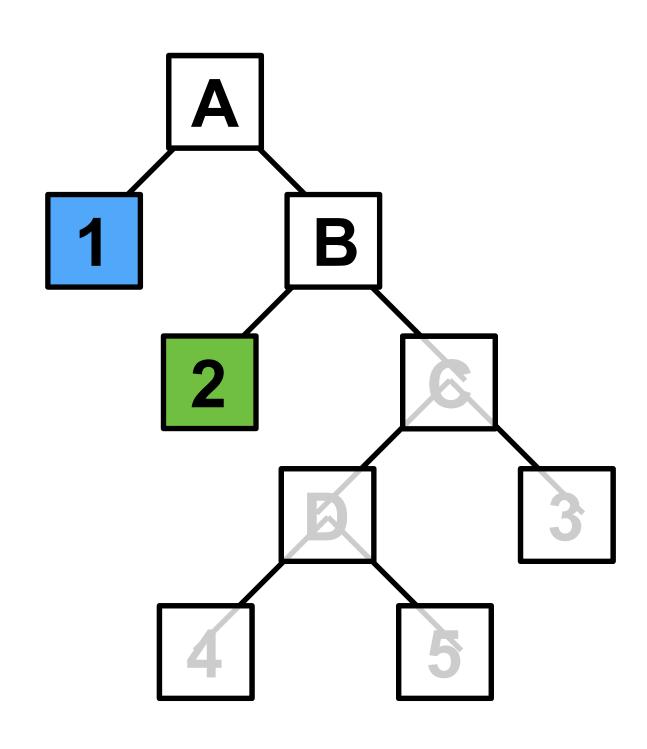




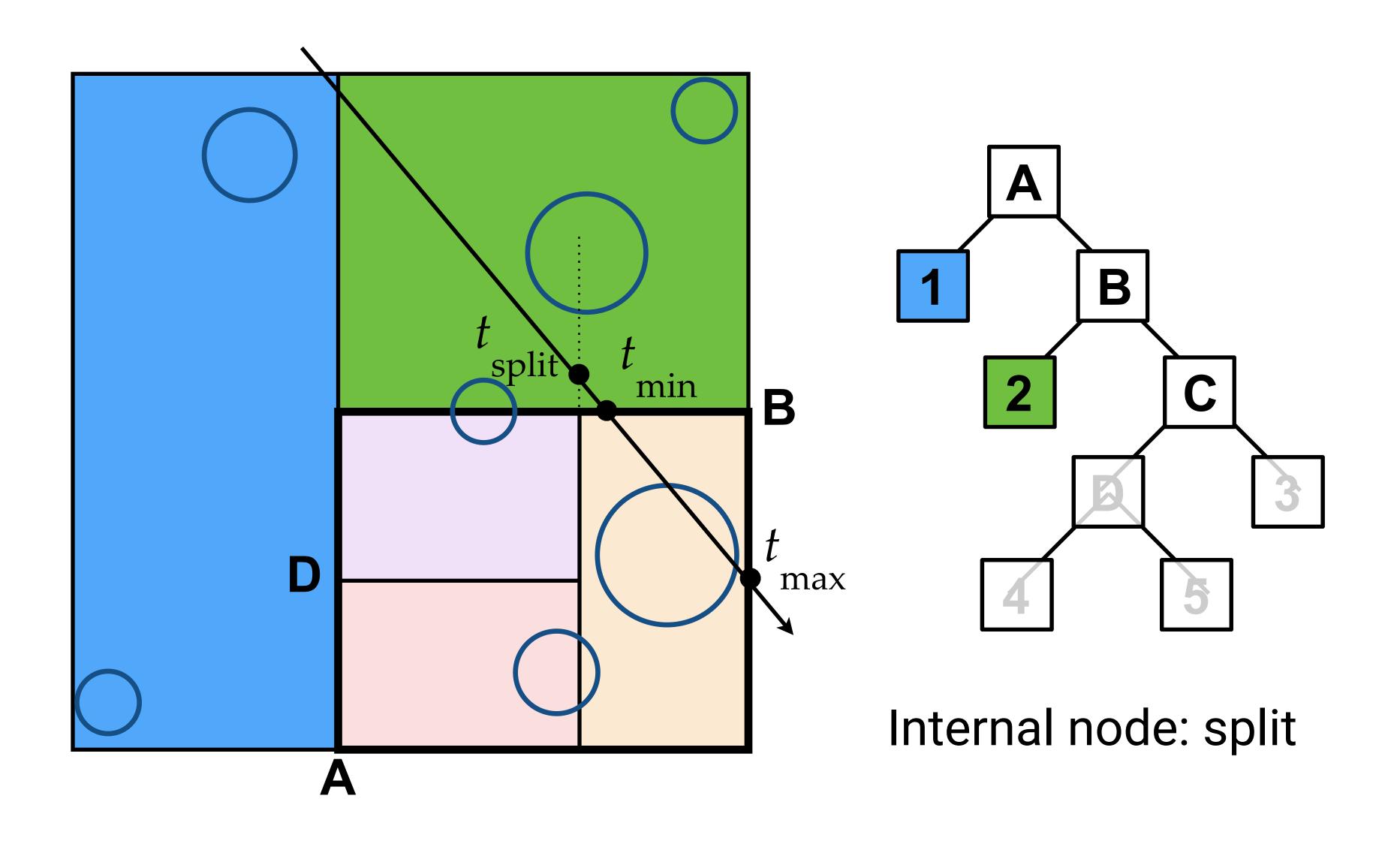
Leaf node: intersect all objects

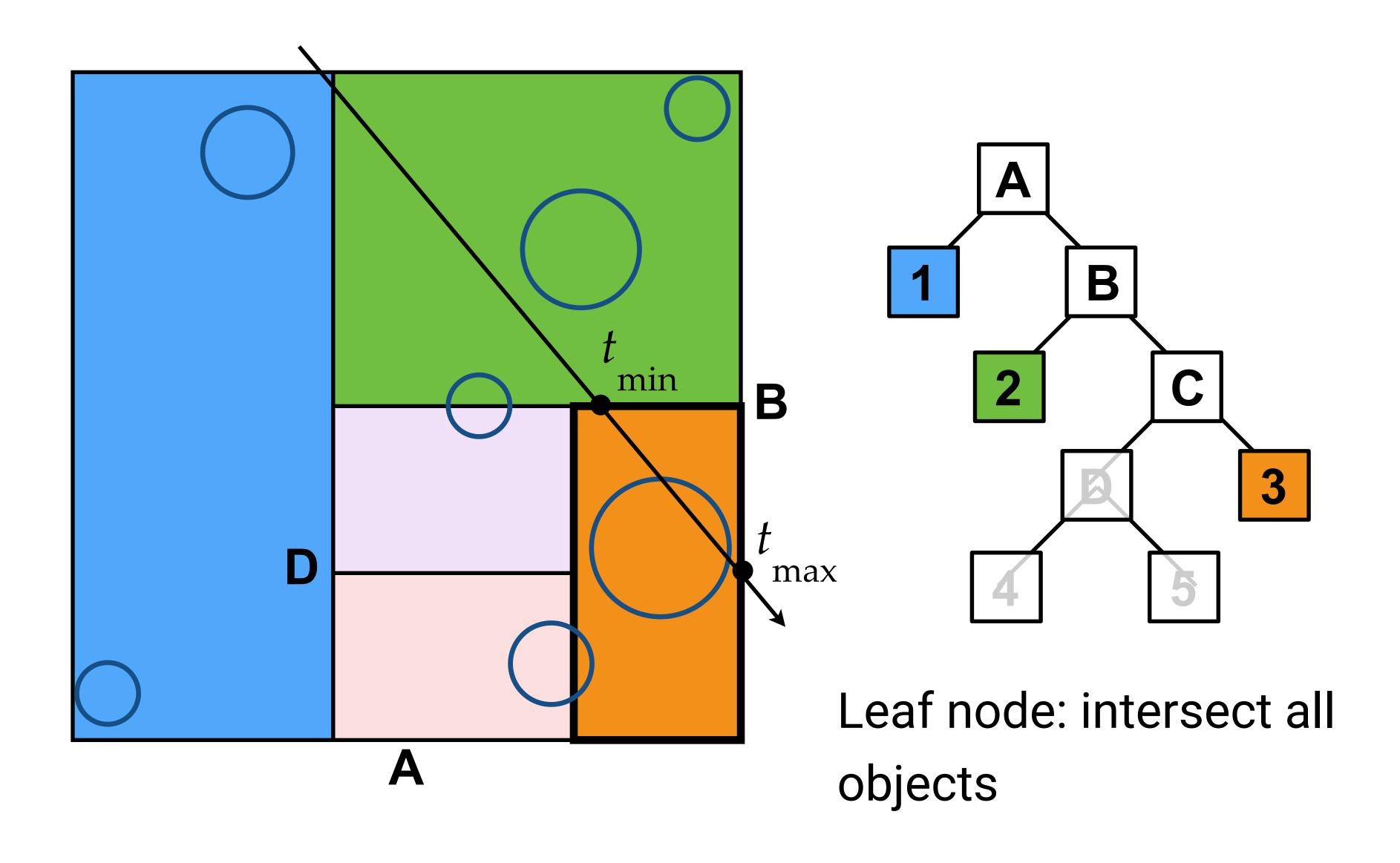


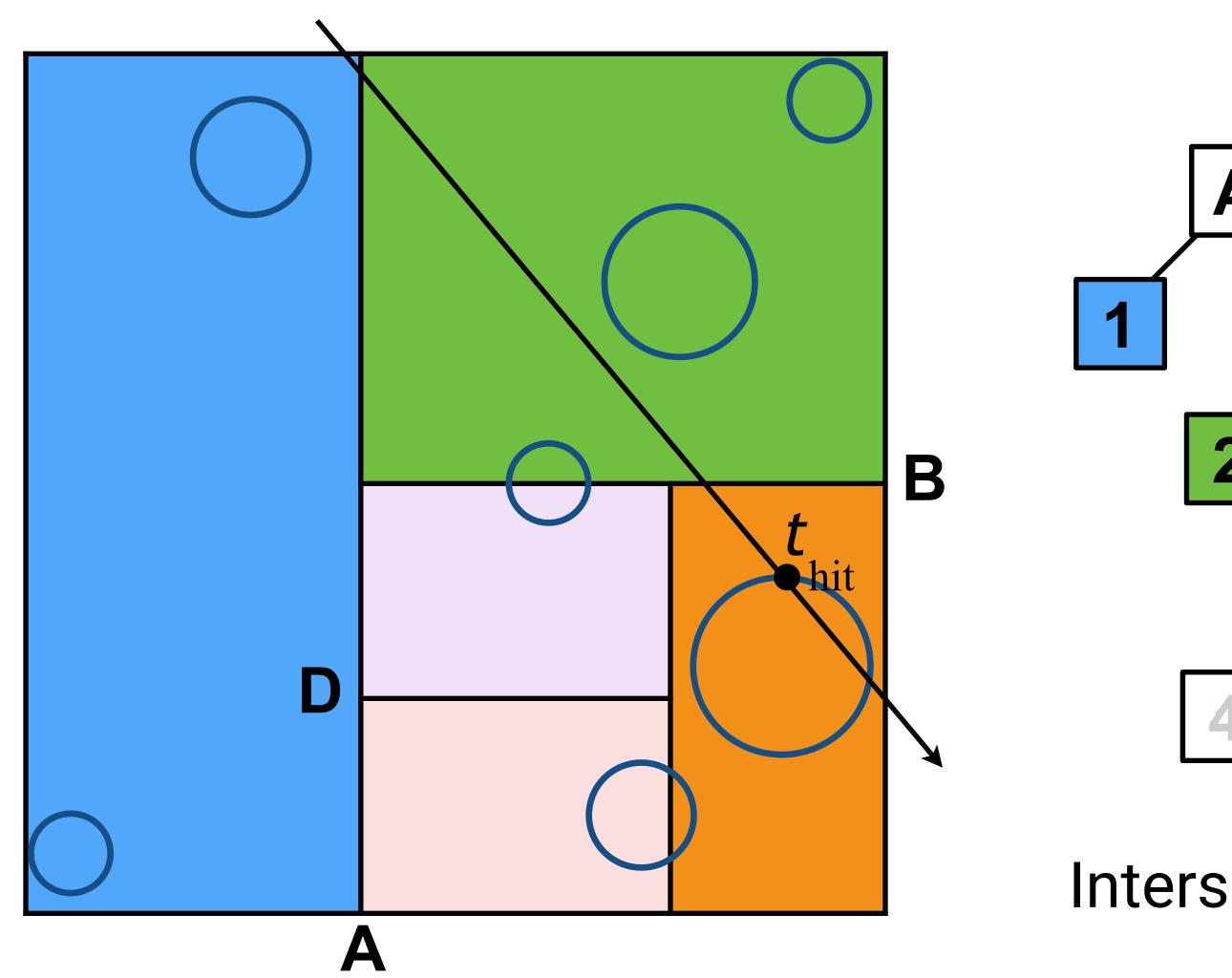


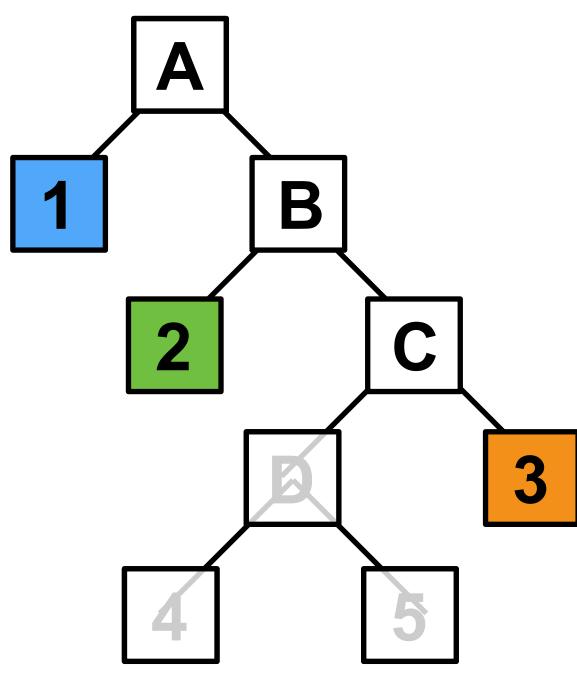


Leaf node: intersect all objects





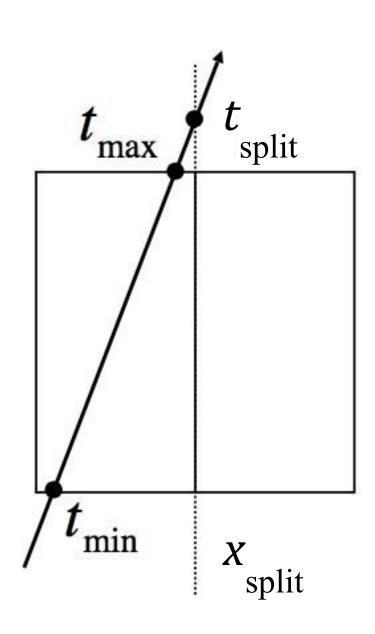




Intersection found!

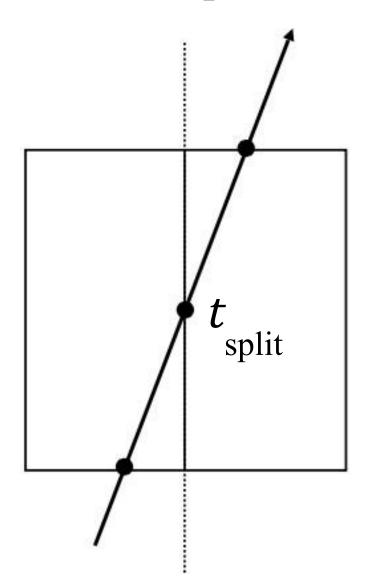
KD-Trees Traversal - Recursive Step

W.L.O.G. consider x-axis split with ray moving right



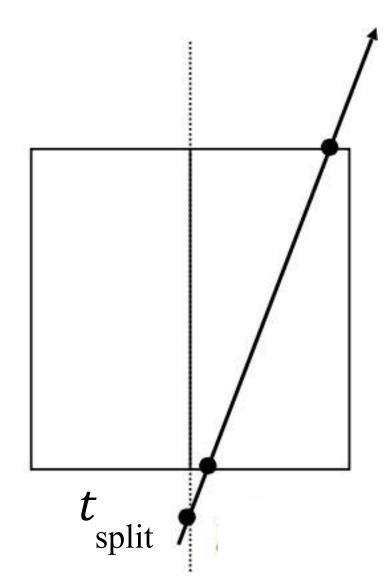
$$t_{\text{max}} < t_{\text{split}}$$

Intersect(L,tmin,tmax)



$$t_{\min} < t_{\min} < t_{\max}$$

Intersect(L,tmin,tsplit)
Intersect(R,tsplit,tmax)



$$t < t$$
 split min

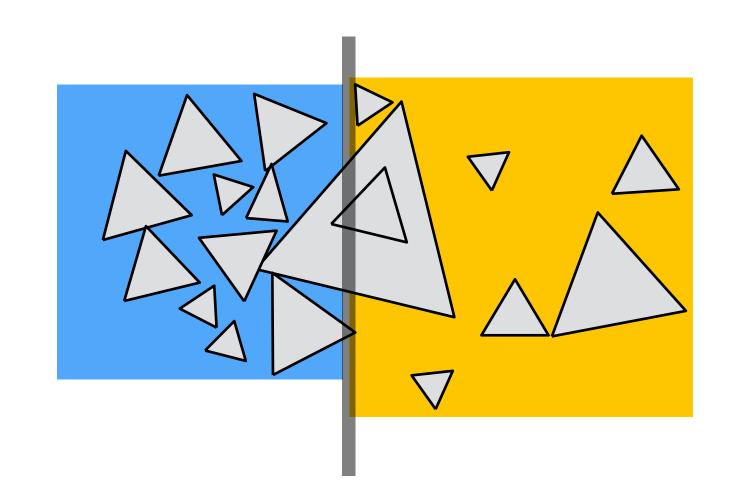
Intersect(R,tmin,tmax)

Object Partitions & Bounding Volume Hierarchy (BVH)

Spatial vs Object Partitions

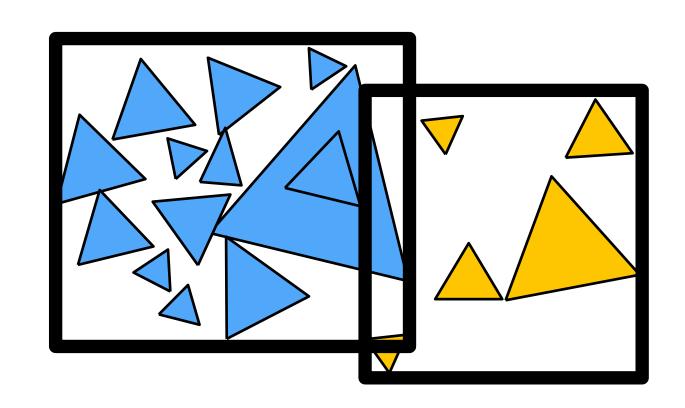
Spatial partition (e.g.KD-tree)

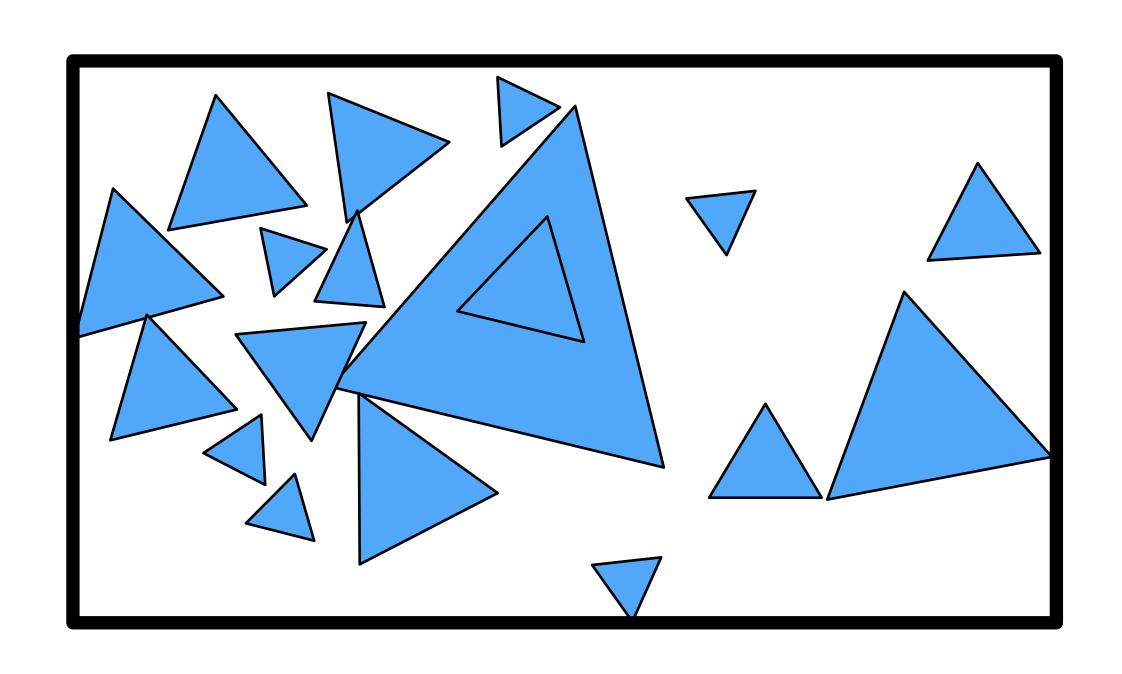
- Partition space into nonoverlapping regions
- Objects can be contained in multiple regions

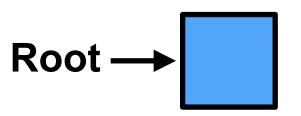


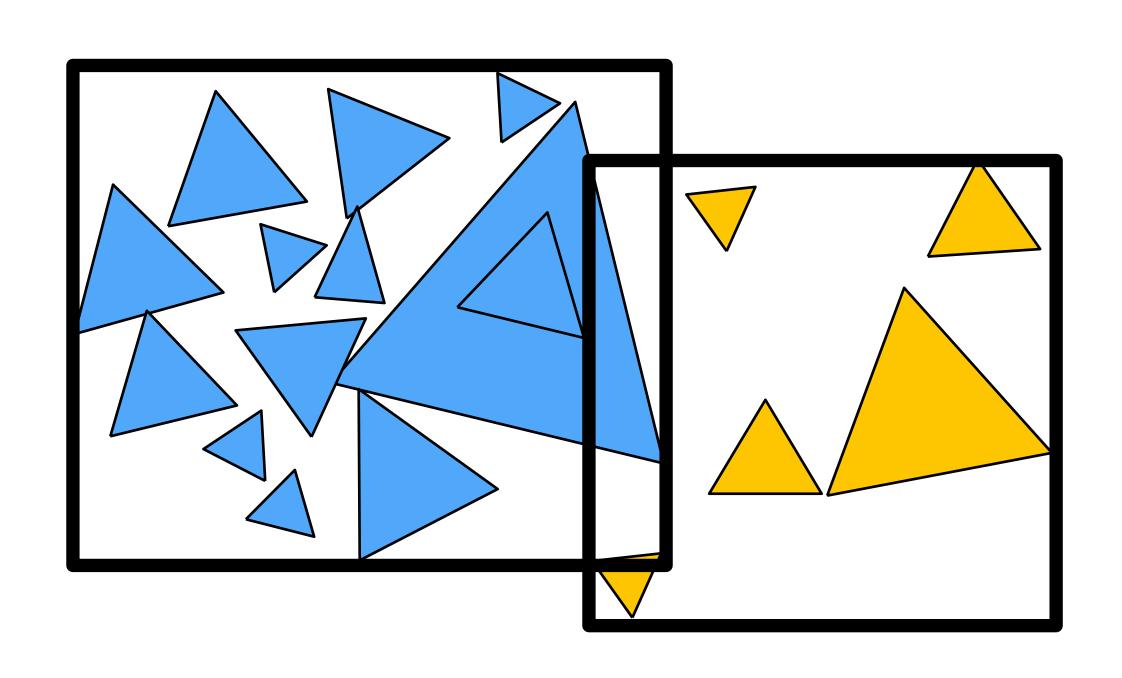
Object partition (e.g. BVH)

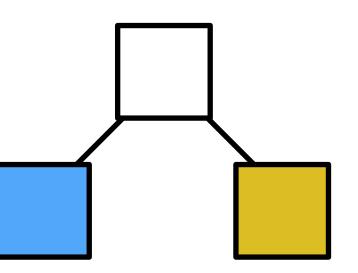
- Partition set of objects into disjoint subsets
- Bounding boxes for each set may overlap in space

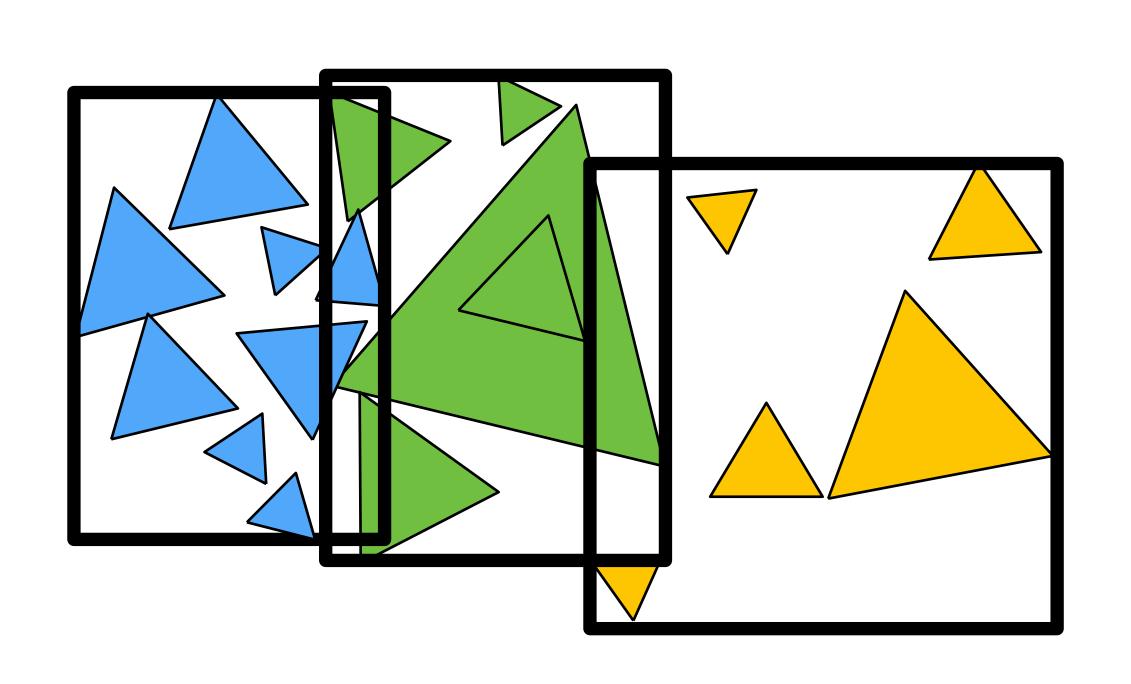


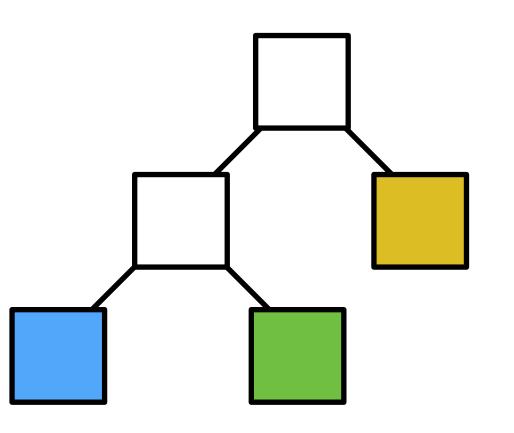


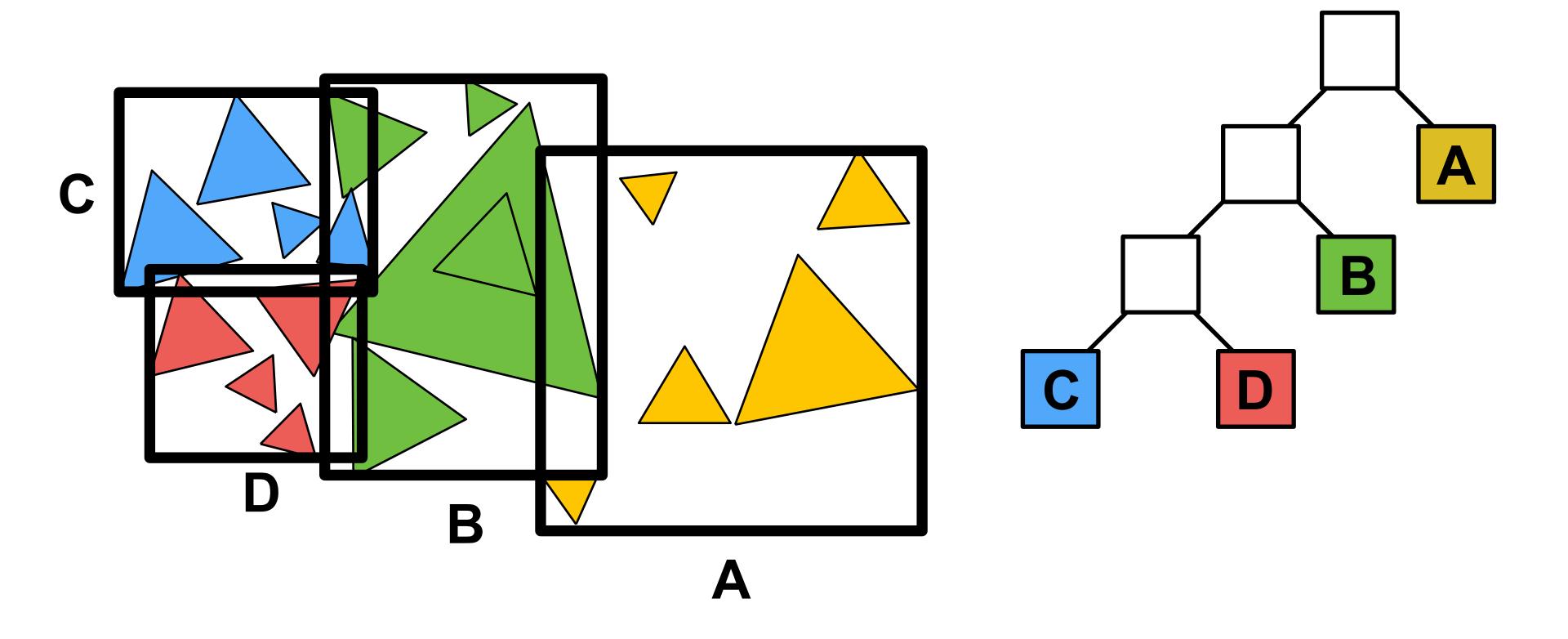












Internal nodes store:

- Bounding box
- Children: reference to child

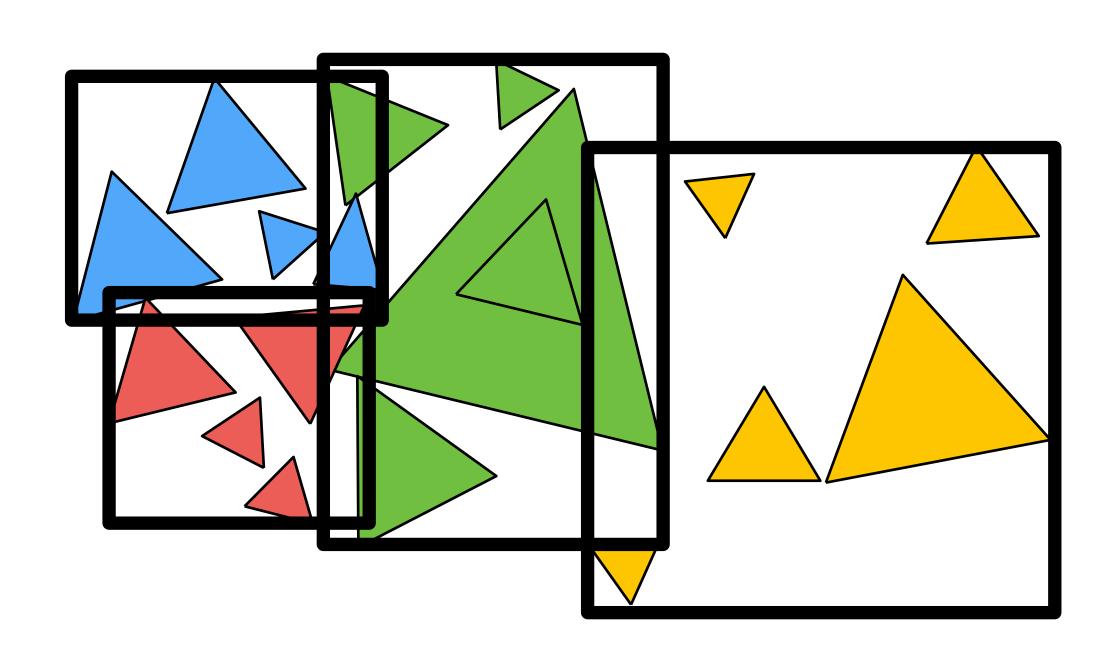
Nodes Leaf nodes store:

- Bounding box
- List of objects

Nodes represent subset of primitives in scene

All objects in subtree

BVH Pre-Processing



- 1. Find bounding box
- 2. Recursively split set of objects in two subsets
- 3. Stop when there are just a few objects in each set
- 4. Store obj reference(s) in each leaf node

BVH Pre-Processing

Choosing the set partition

- Choose a spatial dimension to partition over (e.g. x,y,z)
- Simple 1: Split objects around spatial midpoint
- Simple 2: Split at location of median object
- Ideal: split to minimize expected cost of ray intersection

Termination criteria?

- Simple: stop when node contains few elements (e.g. 5)
- Ideal: stop when splitting does not reduce expected cost of ray intersection

BVH Recursive Traversal

return closer of hit1, hit2;

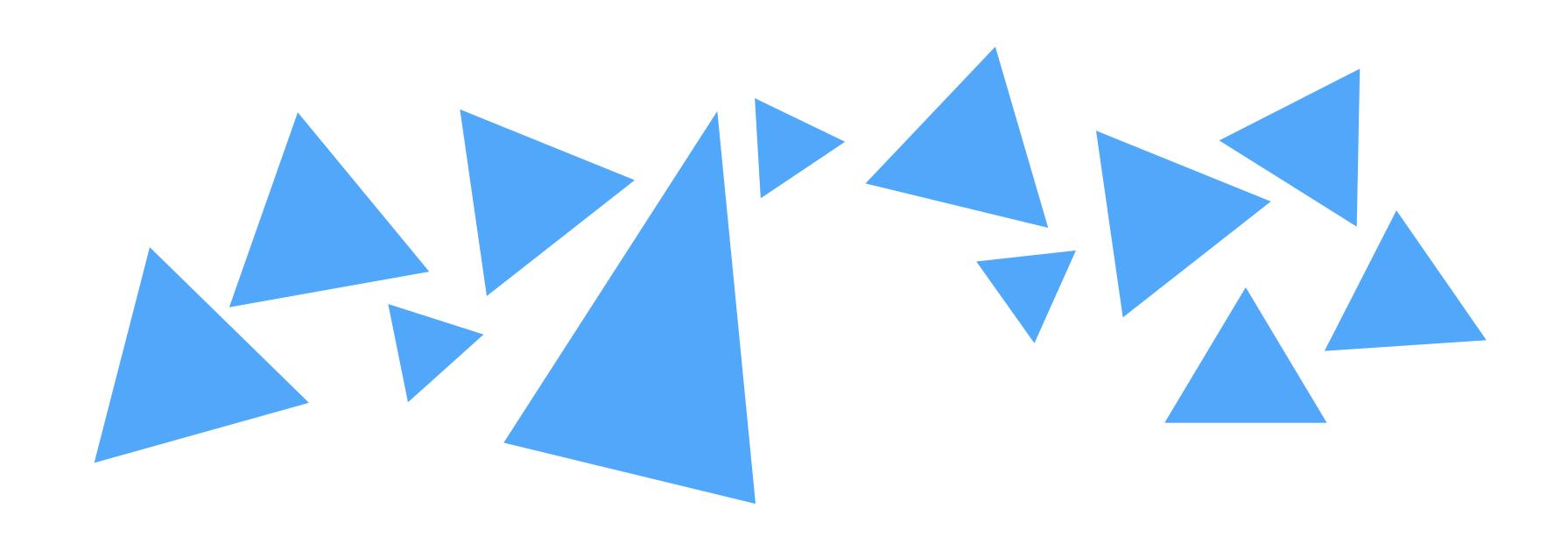
```
Intersect(Ray ray, BVH node)
  if (ray misses node.bbox)
   return;

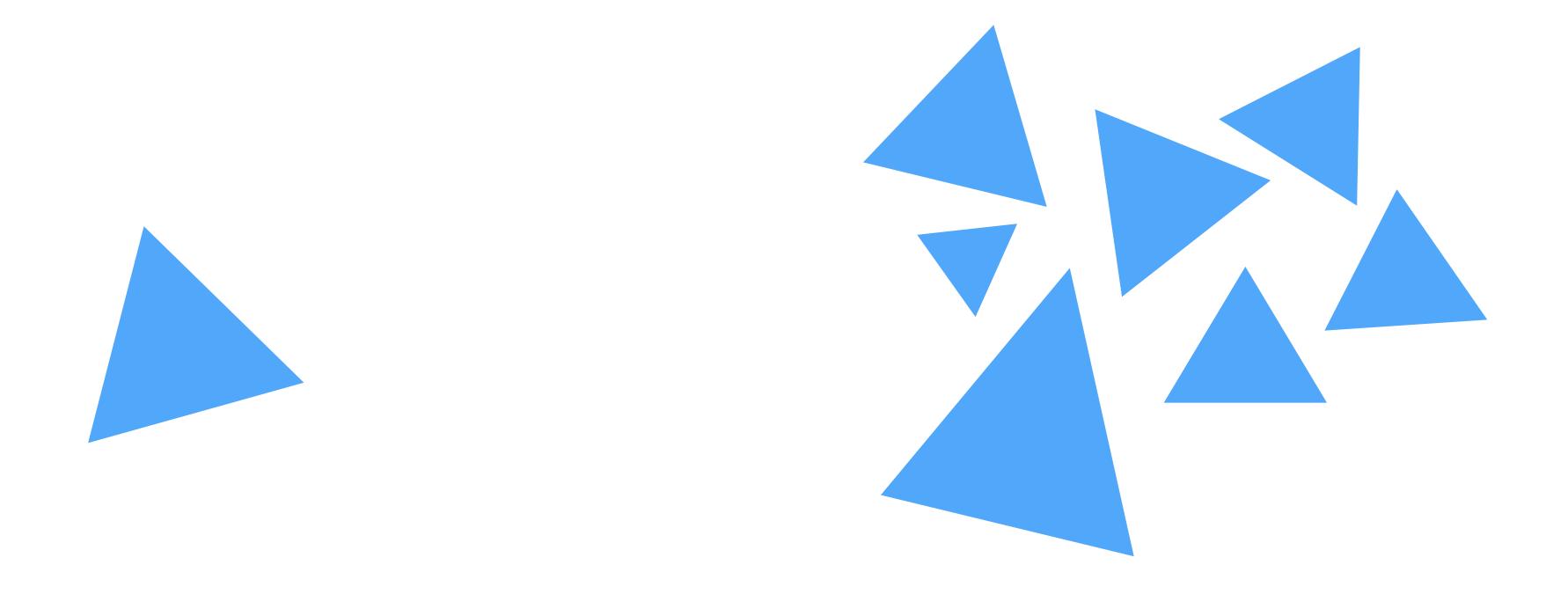
if (node is a leaf node)
  test intersection with all objs;
  return closest intersection;

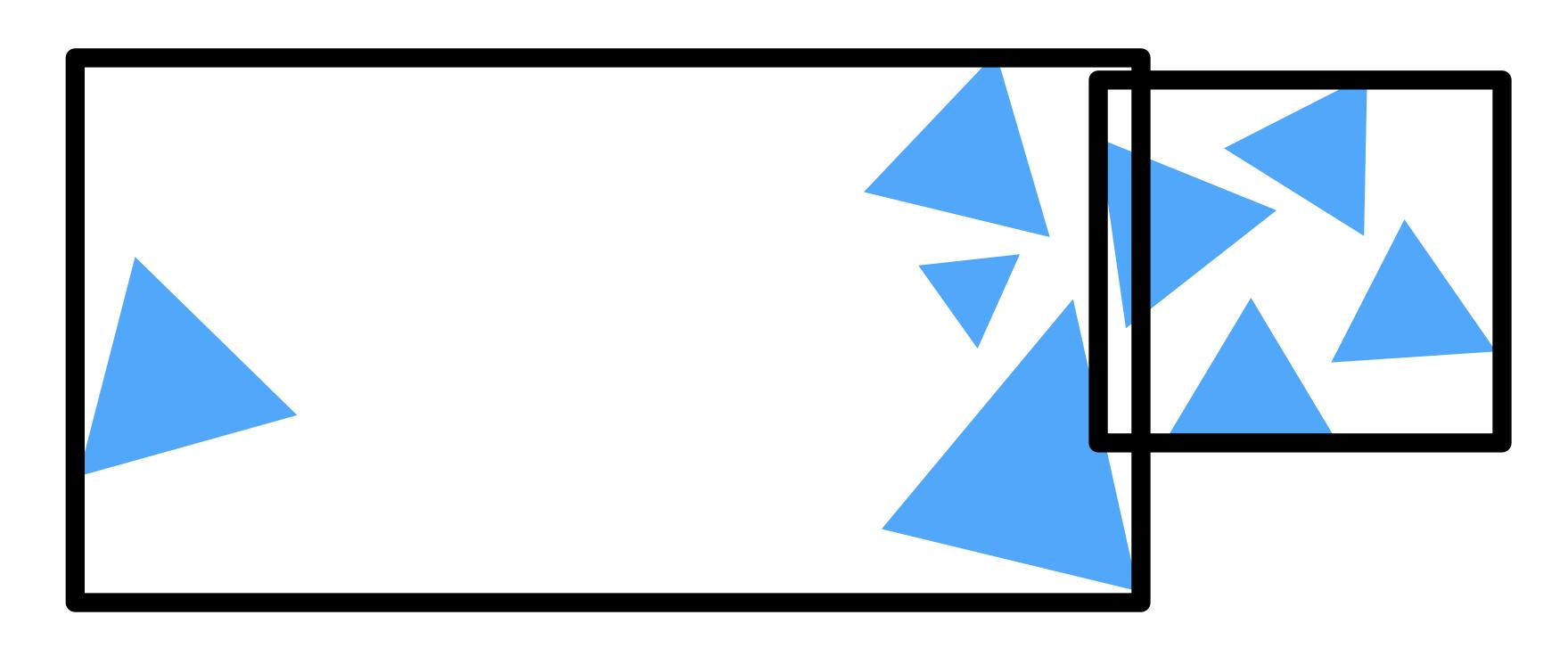
hit1 = Intersect (ray, node.child1);
  hit2 = Intersect (ray, node.child2);
```

Jakarta

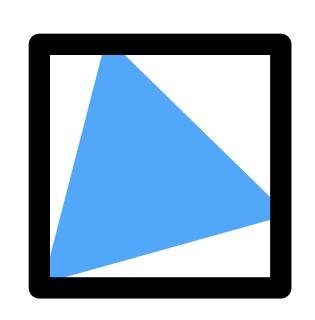
Optimizing Hierarchical Partitions: (How to Split?)

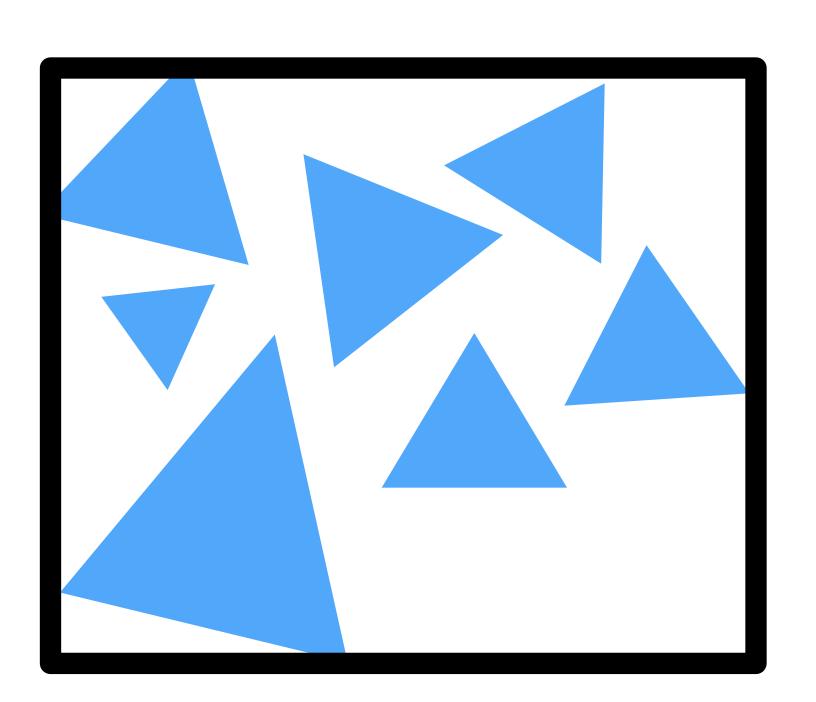






Split at median element?
Child nodes have equal numbers of elements





Is this a better split?

Smaller bounding boxes, avoid overlap and empty space

Which Hierarchy Is Fastest?

Key insight: a good partition minimizes the average cost of tracing a ray.

Which Hierarchy Is Fastest?

What is the average cost of tracing a ray?

For leaf node:

```
C_isect = cost of intersecting a triangle
TriCount(node) = number of triangles in node
```

Which Hierarchy Is Fastest?

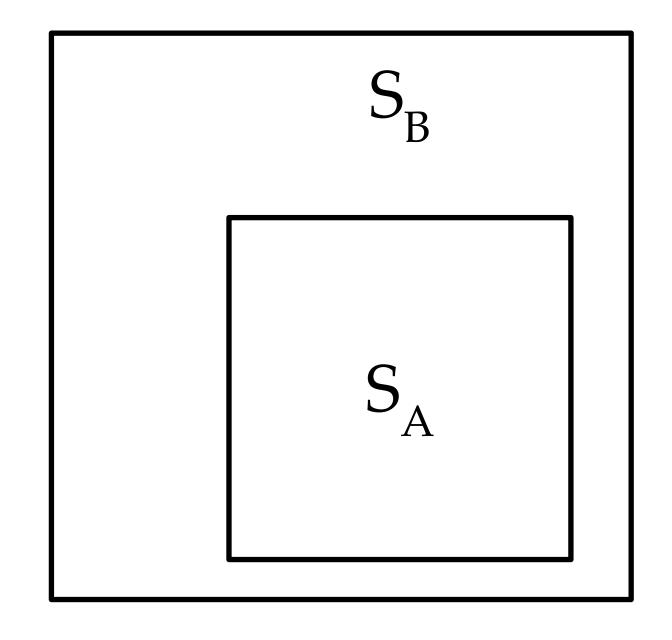
What is the average cost of tracing a ray?

For internal node:

Optimizing Hierarchical Partitions: Surface Area Heuristic Algorithm

Ray Intersection Probability

The probability of a random ray hitting a convex shape A enclosed by another convex shape B is the ratio of their surface areas, $S_{\rm A}/S_{\rm R}$.



$$P (\text{hit}A \mid \text{hit}B) = \frac{S_A}{S_B}$$

Estimating Cost with Surface Area Heuristic (SAH)

Probabilities of ray intersecting a node

 If assume uniform ray distribution, no occlusions, then probability is proportional to node's surface area

Cost of processing a node

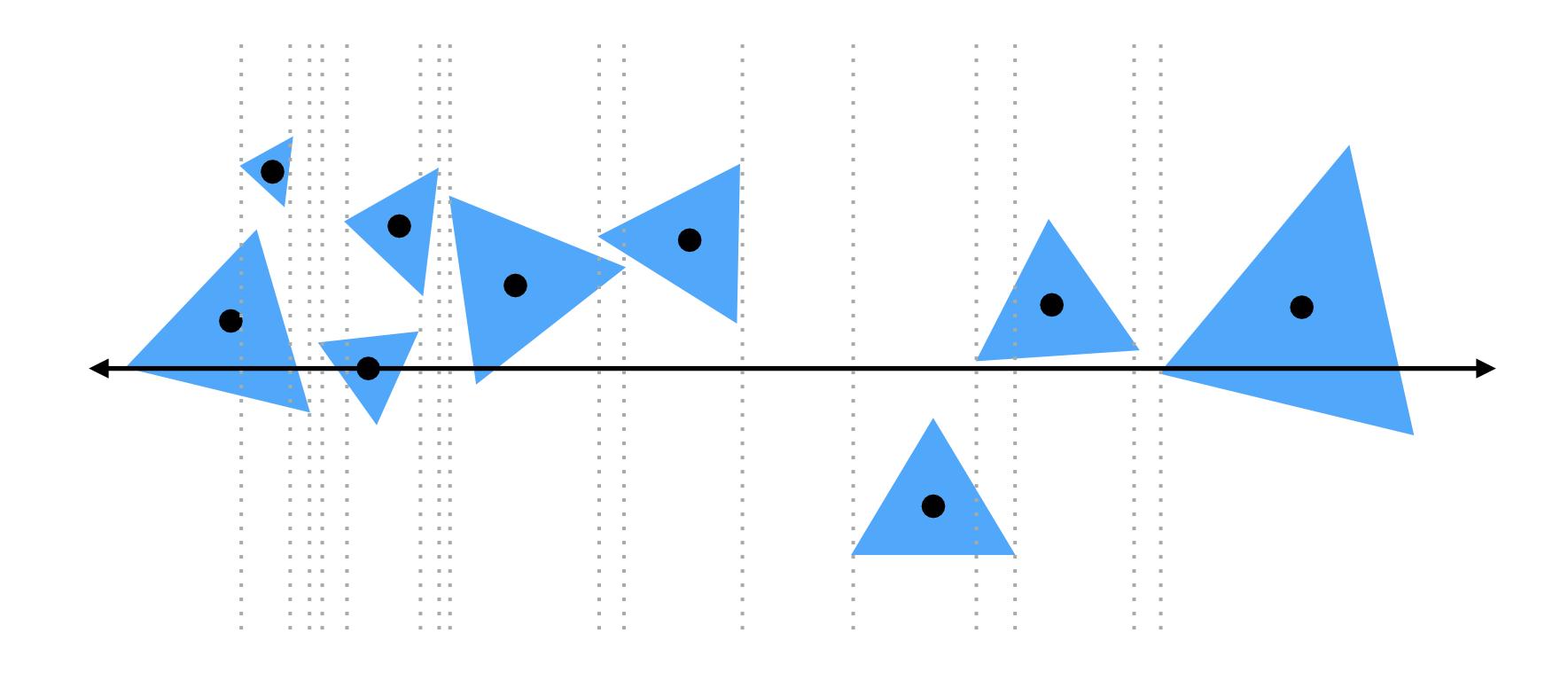
Common approximation is number triangles in node's subtree

```
Cost(cell) = C_trav + SA(L)*TriCount(L) + SA(R)*TriCount(R)
where SA(node) = surface area of bbox of node
C_trav = ratio of cost to traverse vs. cost to intersect tri
C_trav = 1:8 in PBRT [Pharr & Humphreys]
C_trav = 1:1.5 in a highly optimized version
```

Partition Implementation

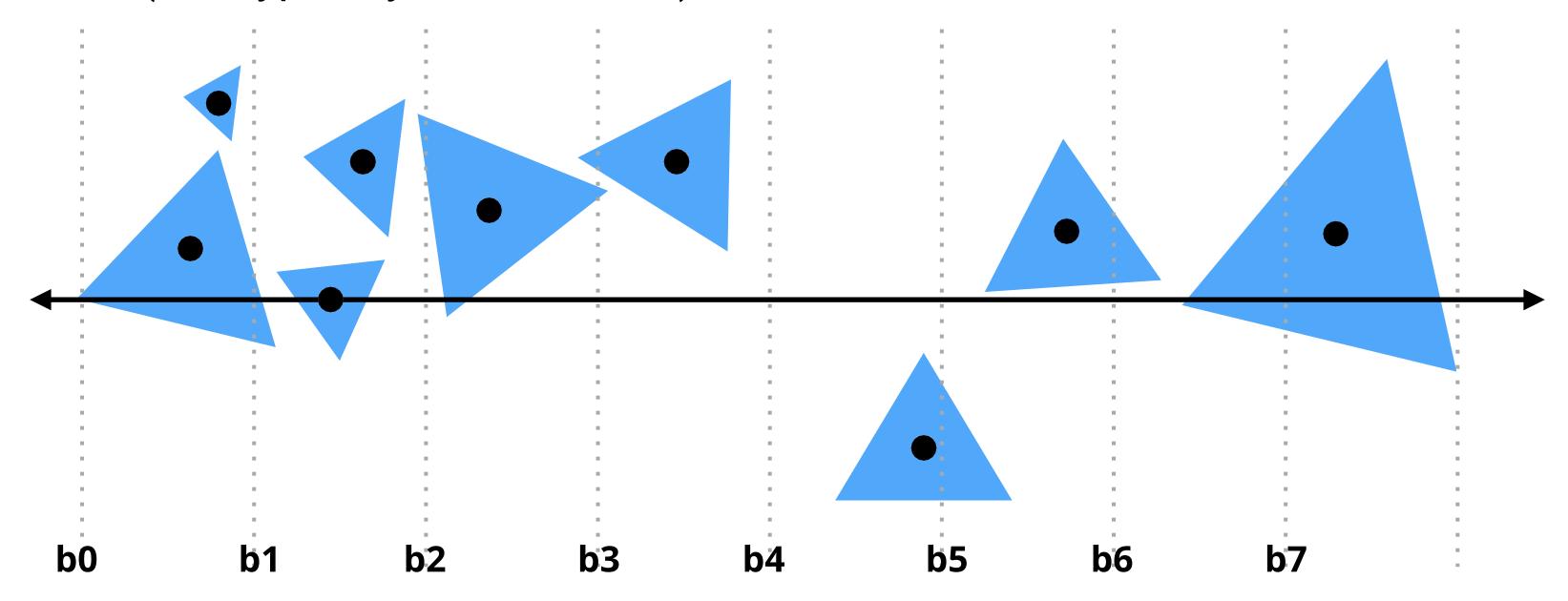
Constrain search to axis-aligned spatial partitions

- Choose an axis
- Choose a split plane on that axis
- Partition objects into two halves by centroid
- 2N-2 candidate split planes for node with N primitives. (Why?)



Partition Implementation (Efficient Approximation)

Efficient modern approximation: split spatial extent of primitives into B buckets (B is typically small: B < 32)



```
For each axis: x,y,z: initialize buckets
  For each object p innode:
    b = compute_bucket(p.centroid);
    b.bbox.union(p.bbox);
    b.prim_count++;
For each B-1 possible partitioning planes evaluate SAH
    Execute lowest cost partitioning found(or make node a leaf)
```

Cost-Optimization Applies to Spatial Partitions Too

- We only discussed optimization for BVH construction
- But principles are general and apply to spatial partitions as well
 - E.g. to optimize KD-Tree construction
 - Goal is to minimize average cost of intersecting ray with tree
 - Can apply Surface Area Heuristic
 - Note that surface area vs. number of nodes in children differs between spatial partitions and BVH

Things to Remember

- Ray-geometry intersection as solution of ray-equation substituted into implicit geometry function
- Linear vs logarithmic ray-intersection techniques
- Many techniques for accelerating ray-intersection
 - Spatial partitions: Grids and KD-Trees
 - Object partitions: Bounding Volume Hierarchies
 - Optimize hierarchy construction based on minimizing cost of intersecting ray against hierarchy
 - Leads to Surface Area Heuristic for best partition

Acknowledgments

Thanks to Pat Hanrahan, Kayvon Fatahalian, Mark Pauly and Steve Marschner for lecture resources.