# Lecture 23: Image Processing



Computer Graphics and Imaging
UC Berkeley CS184

# Case Study: JPEG Compression

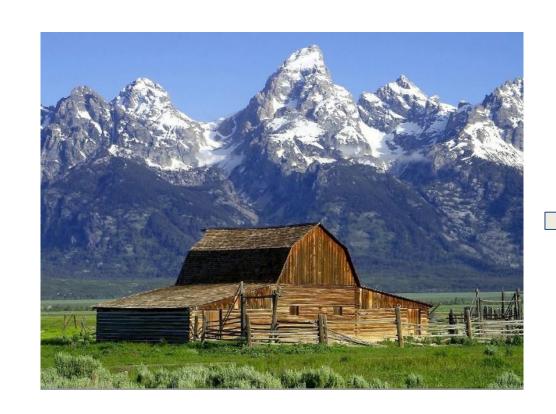
# JPEG Compression: The Big Ideas

Low-frequency content is predominant in images of the real world

#### The human visual system is:

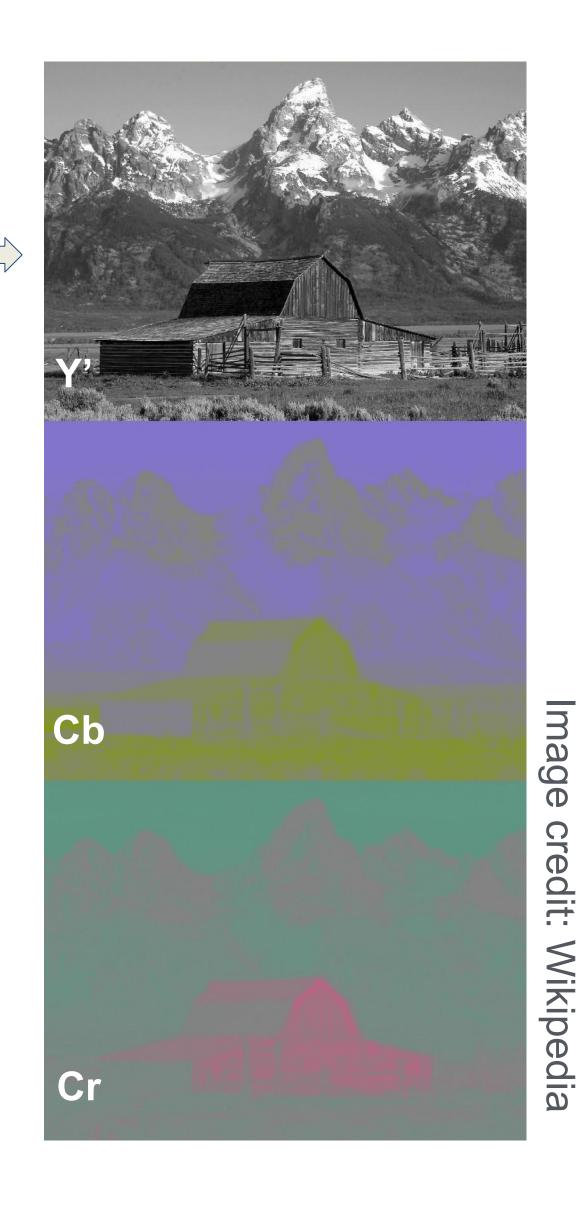
- Less sensitive to changes in chromaticity than luminance
- Less sensitive to high frequency sources of error

# Y'CbCr Color Space



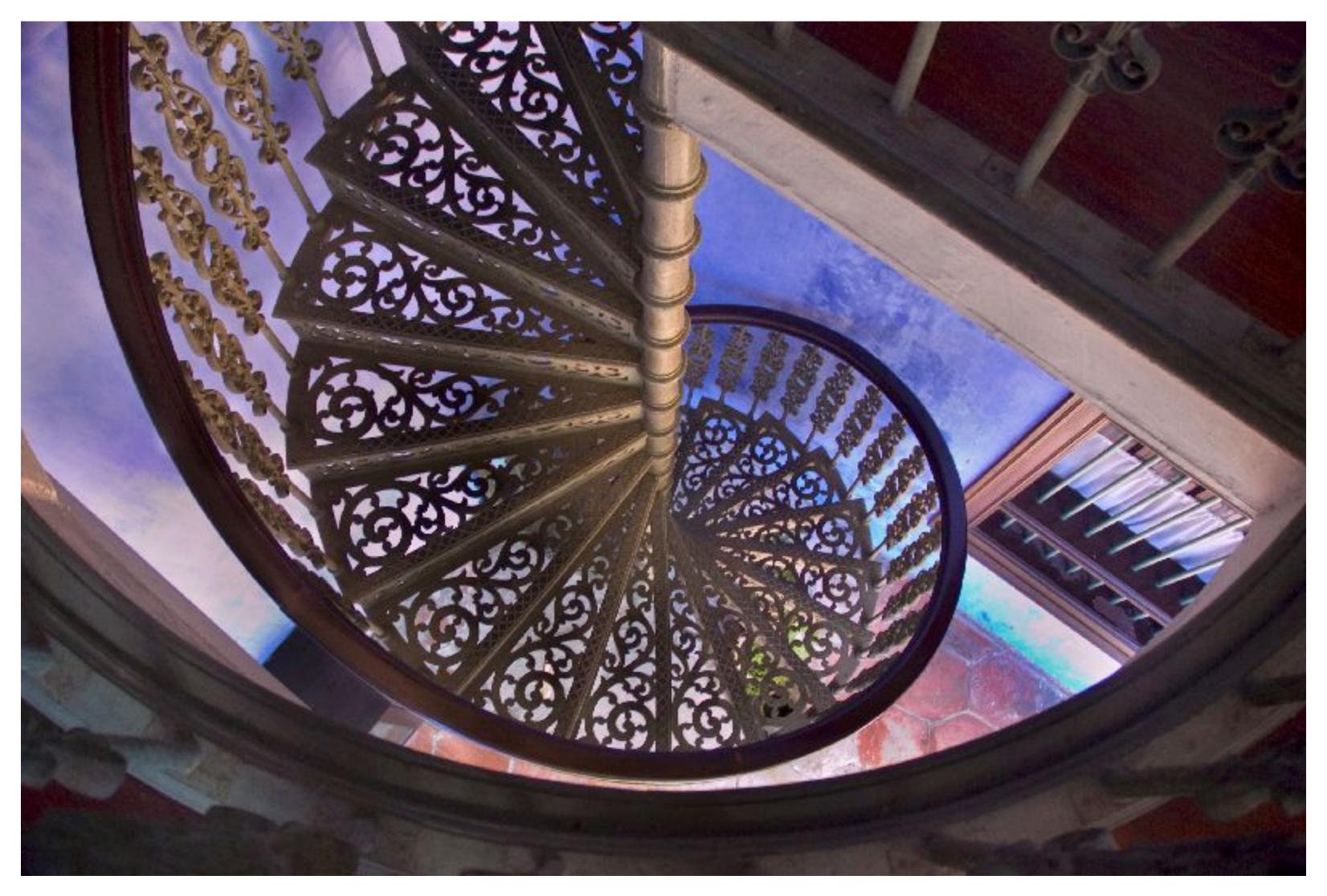
#### Y'CbCr color space:

- A perceptually- motivated color space akin to **L\*a\*b\*** .
- Y' is luma (lightness), Cb and Cr are chroma channels (blue-yellow and red-green distance from gray)



\*Omitting discussion of nonlinear gamma encoding in Y' channel

# Example Image



**Original picture** 

# Y' Only (Luma)



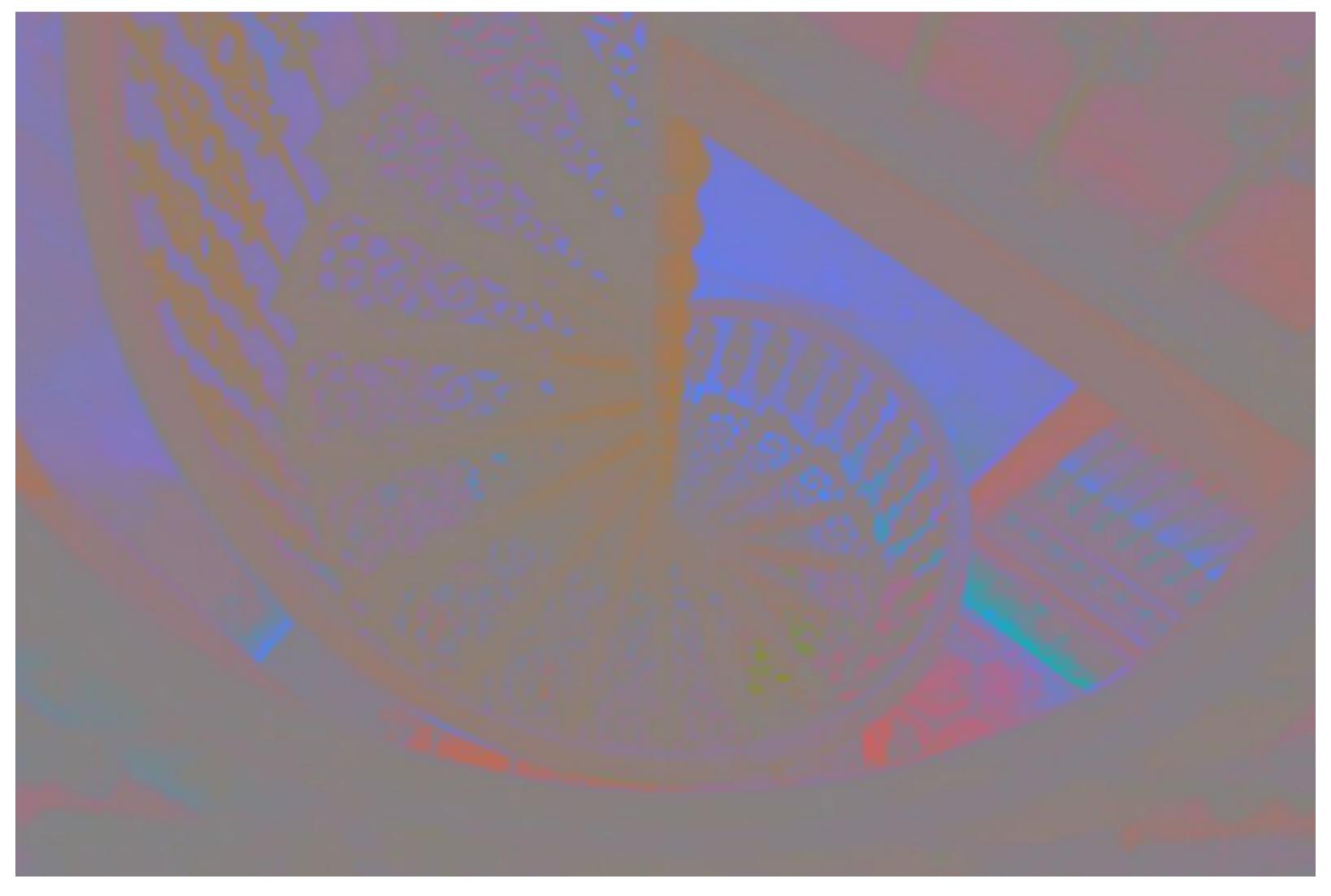
Luma channel

# Downsampled Y'



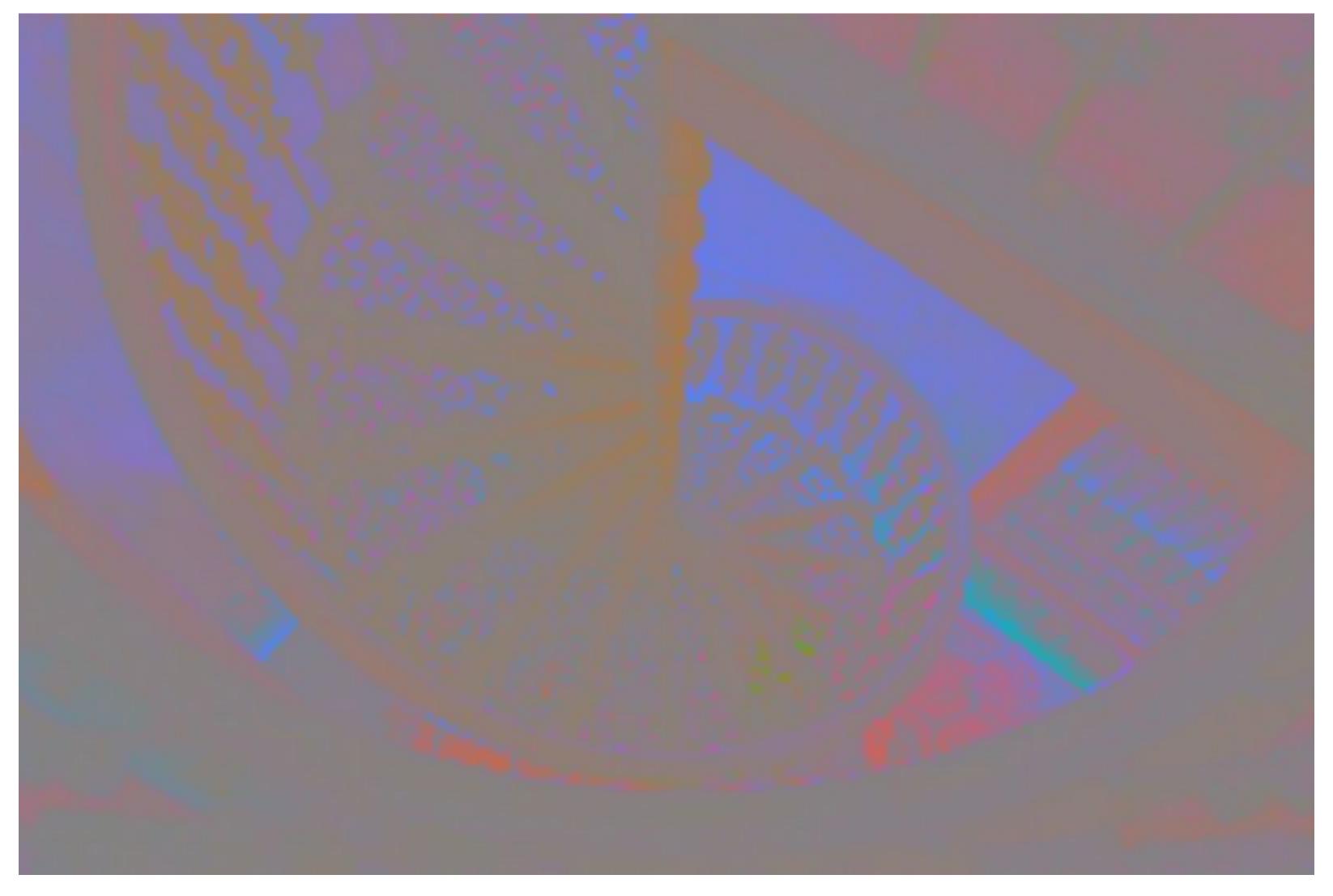
4x4 downsampled luma channel

# CbCr Only (Chroma)



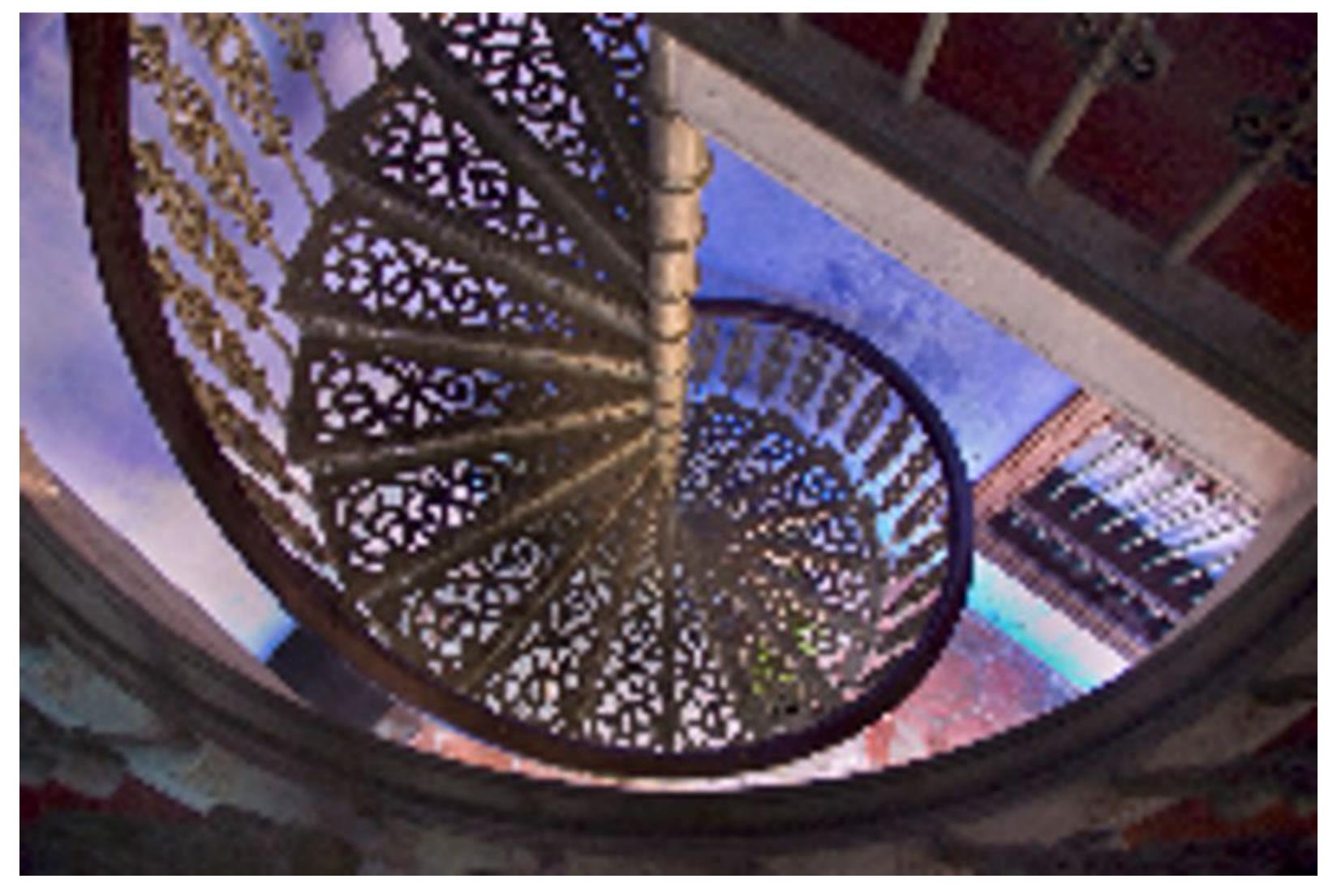
**CbCr channels** 

# Downsampled CbCr



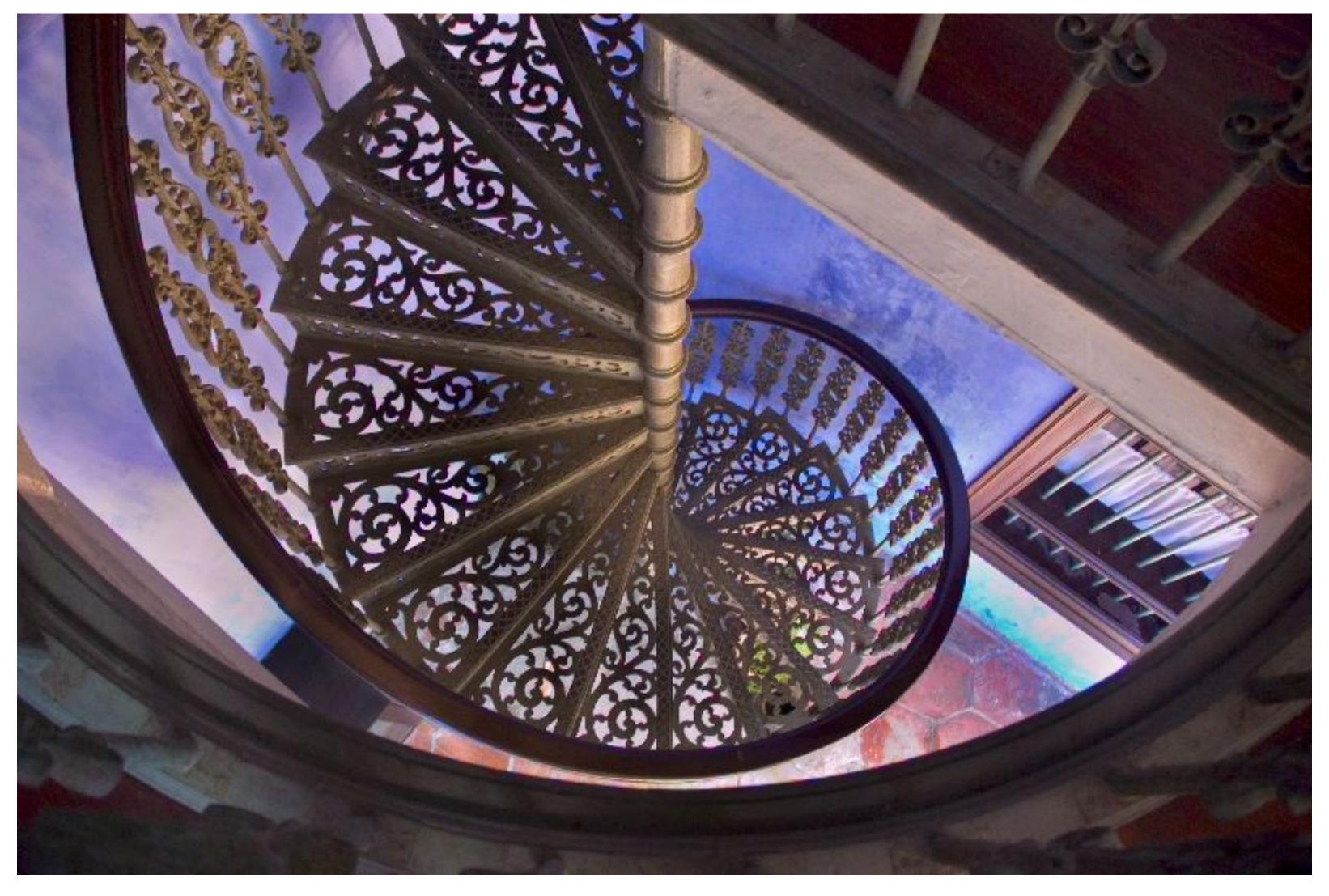
4x4 downsampled CbCr channels

## Example: Compression in Y' Channel



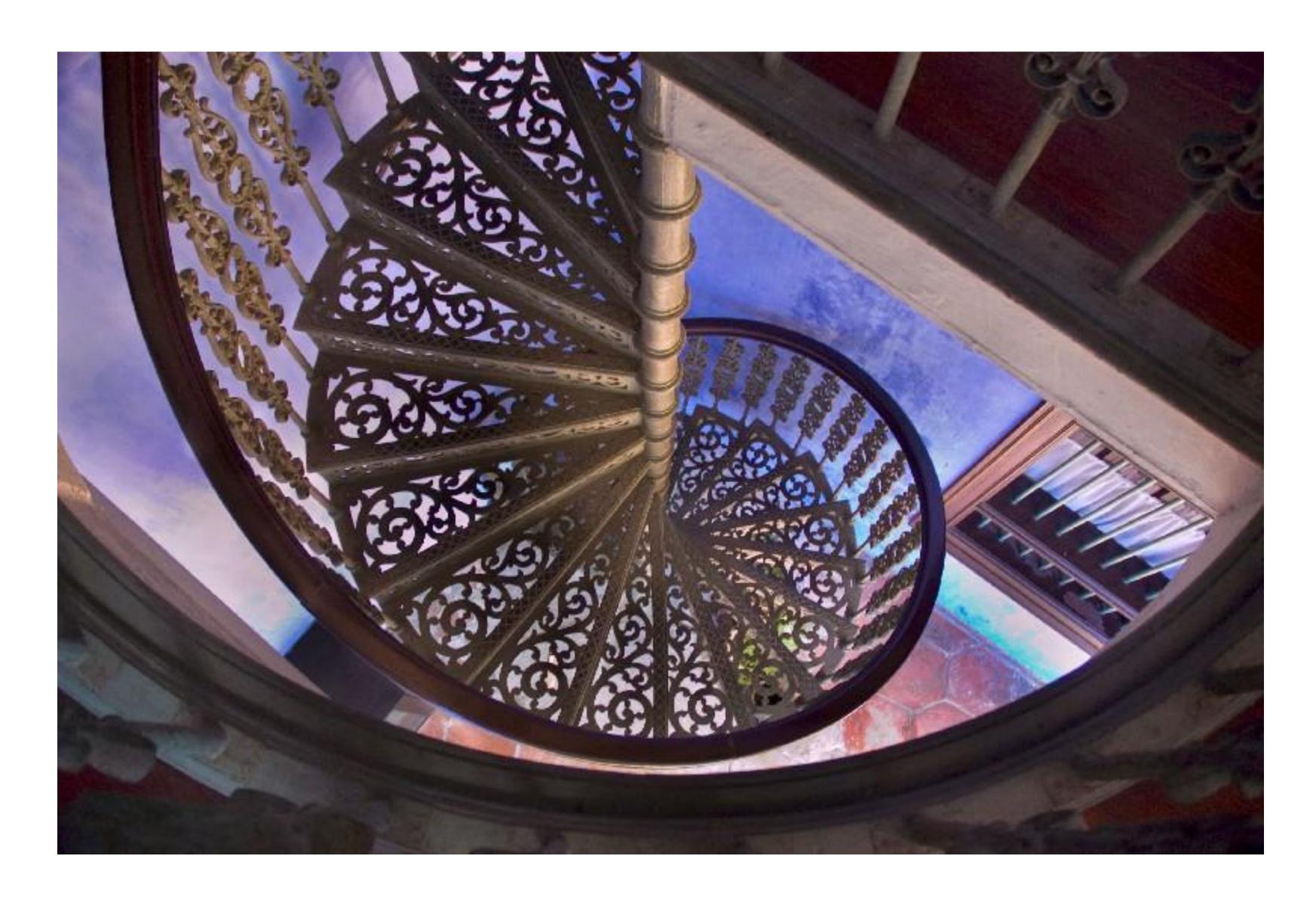
4x4 downsampled Y', full-resolution CbCr

# Example: Compression in CbCr Channels



Full-resolution Y', 4x4 down sampled CbCr

# Original Image



### JPEG: Chroma Subsampling in Y'CbCr Space

Subsample chroma channels (e.g. to 4:2:2 or 4:2:0 format)

#### 4:2:2 representation: (retain 2/3 values)

- Store Y' at full resolution
- Store Cb, Cr at half resolution in horizontal dimension

#### 4:2:0 representation: (retain 1/2 values)

- Store Y' at full resolution
- Store Cb, Cr at half resolution in both dimensions











### JPEG: Discrete Cosine Transform (DCT)

basis[i, j] = 
$$\cos \left[ \pi \frac{i}{N} \left( x + \frac{1}{2} \right) \right] \times \cos \left[ \pi \frac{j}{N} \left( y + \frac{1}{2} \right) \right]$$

Apply discrete cosine transform (DCT) to each 8x8 block of image values

DCT computes projection of image onto 64 basis functions: basis[i, j]

Applied DCT to 8x8 pixel blocks of Y' channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)

#### JPEG Quantization: Prioritize Low Frequencies

$$\begin{bmatrix} -415 & -30 & -61 & 27 & 56 & -20 & -2 & 0 \\ 4 & -22 & -61 & 10 & 13 & -7 & -9 & 5 \\ -47 & 7 & 77 & -25 & -29 & 10 & 5 & -6 \\ -49 & 12 & 34 & -15 & -10 & 6 & 2 & 2 \\ 12 & -7 & -13 & -4 & -2 & 2 & -3 & 3 \\ -8 & 3 & 2 & -6 & -2 & 1 & 4 & 2 \\ -1 & 0 & 0 & -2 & -1 & -3 & 4 & -1 \\ 0 & 0 & -1 & -4 & -1 & 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

**Quantization Matrix** 

Result of DCT (encoded in cosine basis)

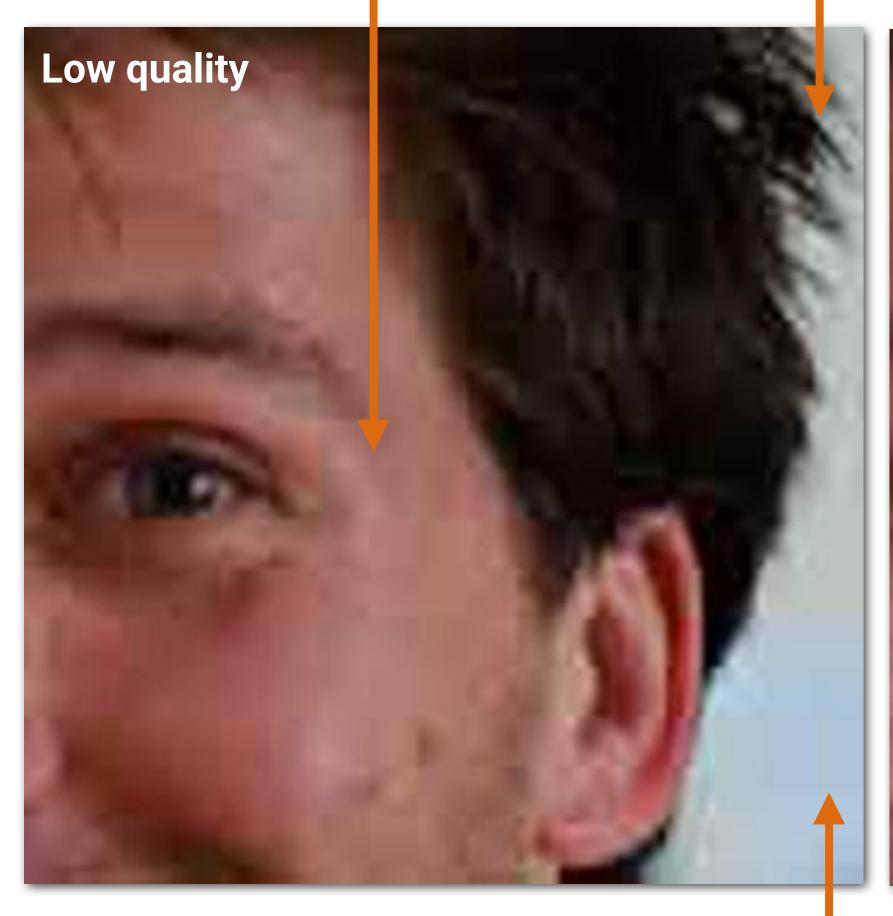
Quantization produces only a few bits per coefficient (small values)

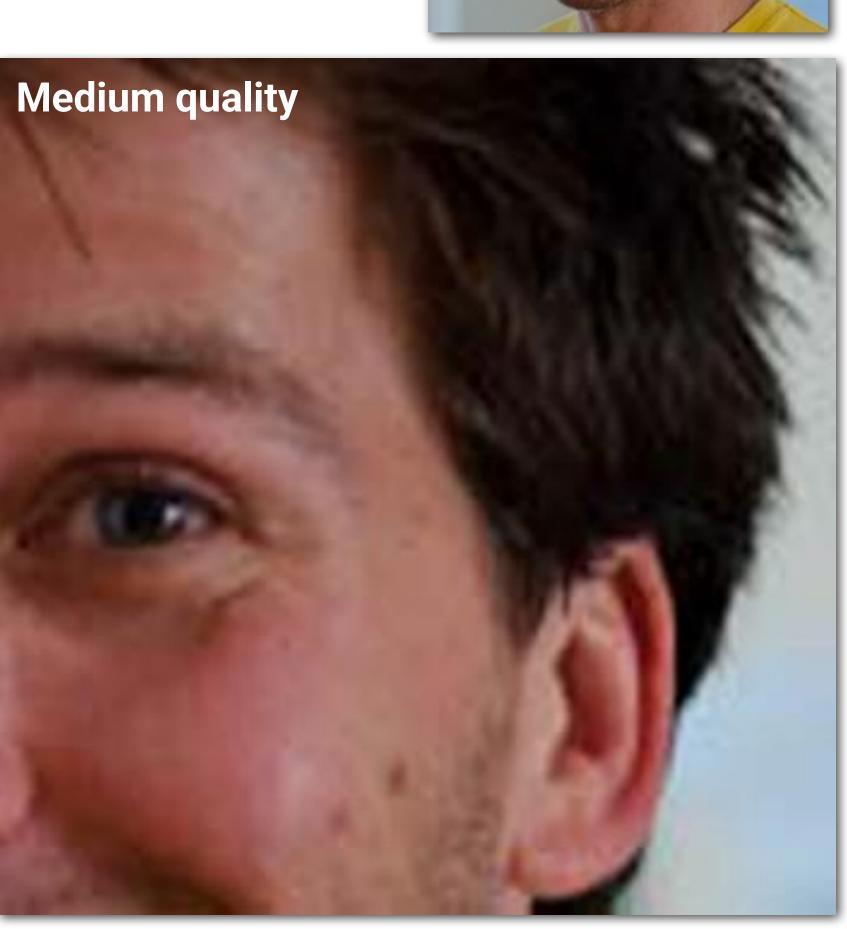
Note: quantization zeros out many coefficients!

## JPEG: Compression Artifacts

Noticeable 8x8 pixel block boundaries

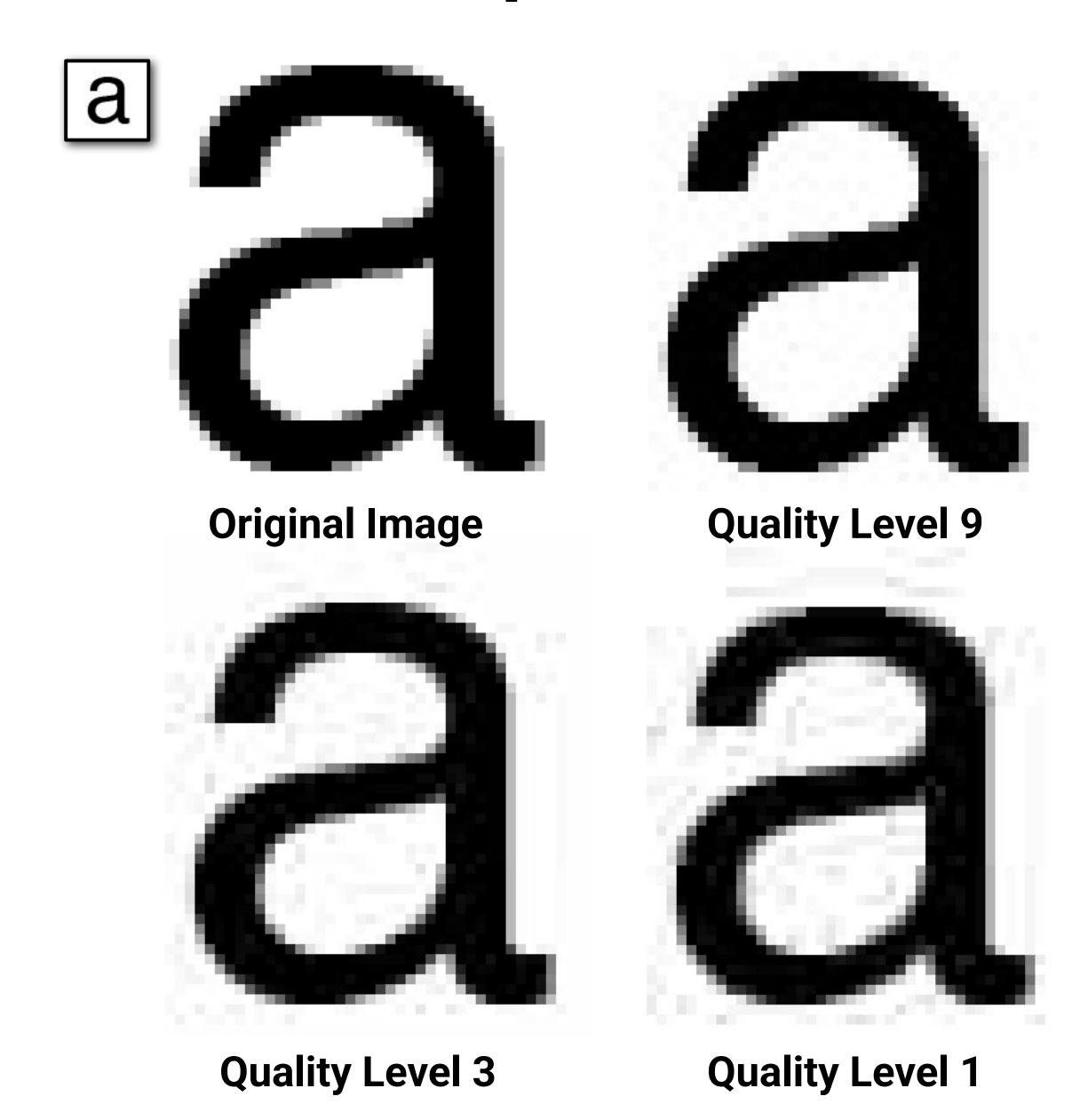
Noticeable error near large color gradients



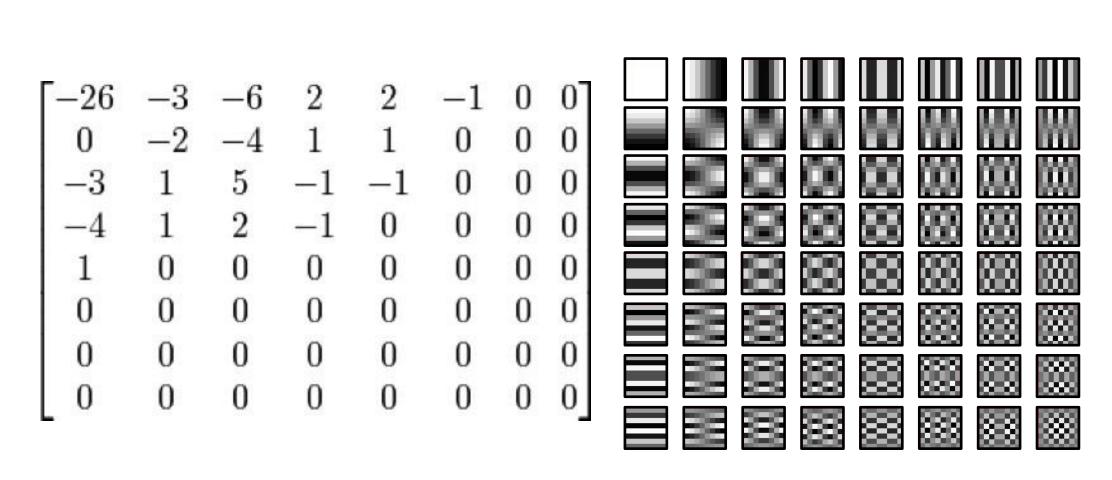


Low-frequency regions of image represented accurately even under high compression

# JPEG: Compression Artifacts

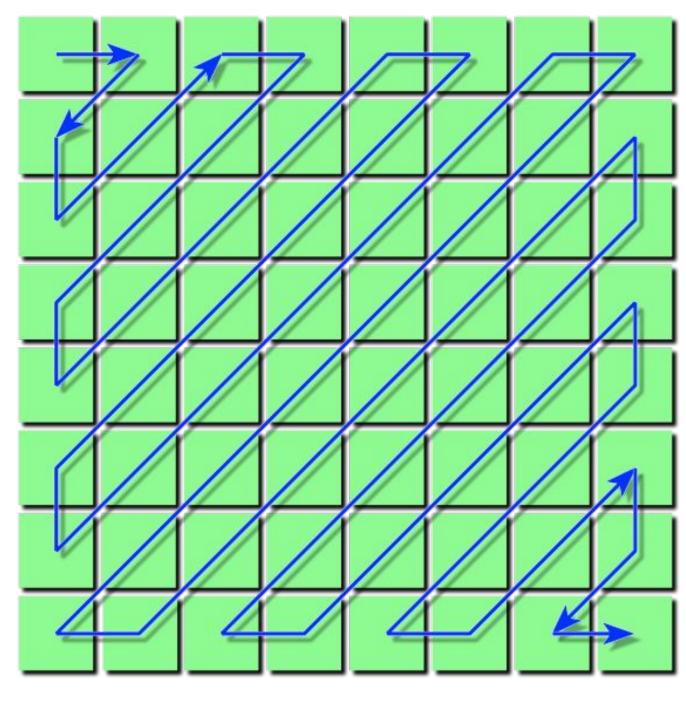


#### Lossless Compression of Quantized DCT Values



**Quantized DCT Values** 

**Basis functions** 



Reordering

#### **Entropy encoding: (lossless)**

- Reorder values
- Run-length encode (RLE) 0's
- Huffman encode non-zero values

# JPEG Compression Summary

- 1. Convert image to Y'CbCr color space
- 2. Downsample CbCr (to 4:2:2 or 4:2:0) (information loss occurs here)
- 3. For each color channel (Y', Cb, Cr):

For each 8x8 block of values

**Compute DCT** 

Quantize results Reorder values (information loss occurs here)

**Run-length encode 0-spans** 

Huffman encode non-zero values

#### Theme: Exploit Perception in Visual Computing

# JPEG is an example of exploiting characteristics of human perception to build efficient visual systems

#### We are perceptually insensitive to color errors:

 Separate luminance from chrominance in color representations (e.g, Y'CbCr) and compress chrominance

#### We are less perceptually sensitive to high-frequency error

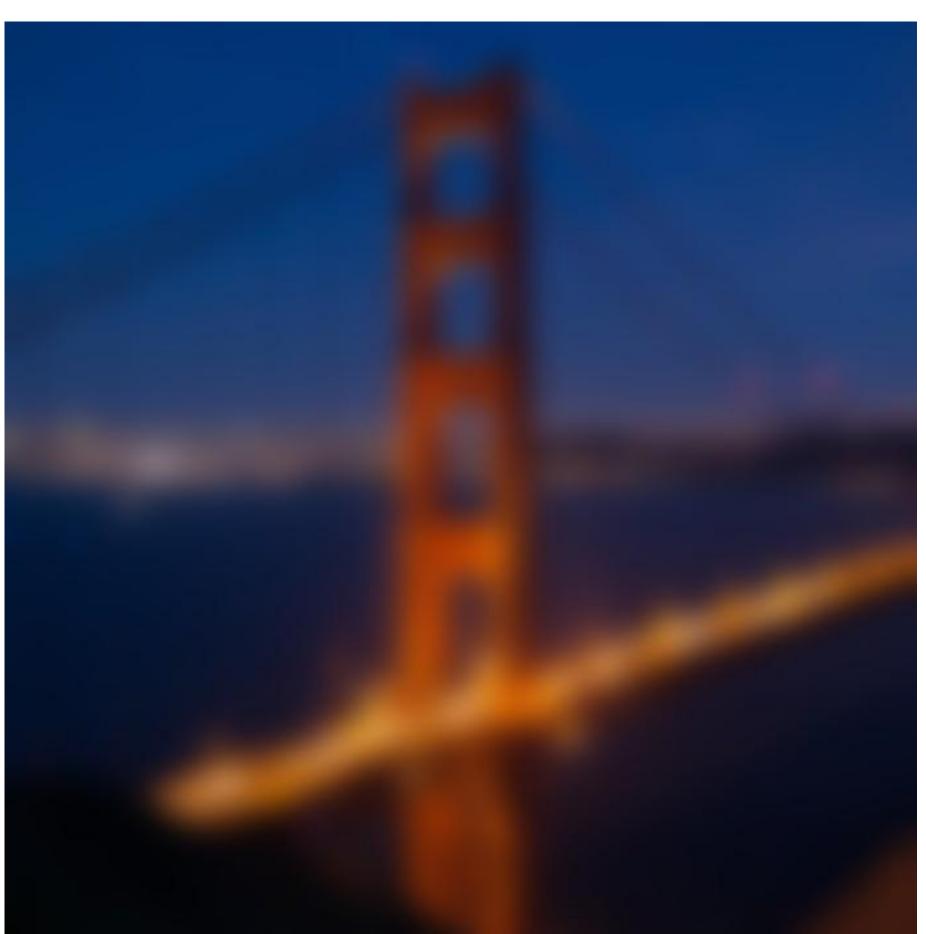
 Use a frequency-based encoding (cosine transform) and compress high-frequency values

#### We perceive lightness non-linearly (not discussed in this lecture)

 Encode pixel values non-linearly to match perceived brightness using gamma curve

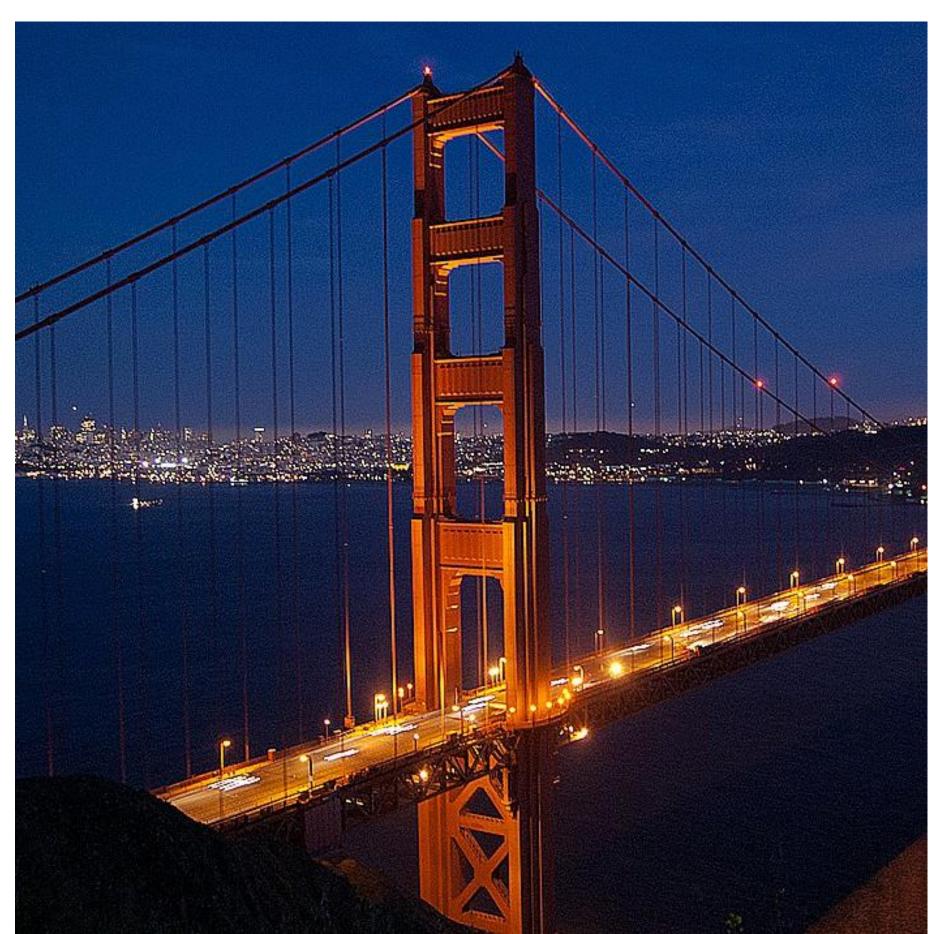
# Image Processing Operations



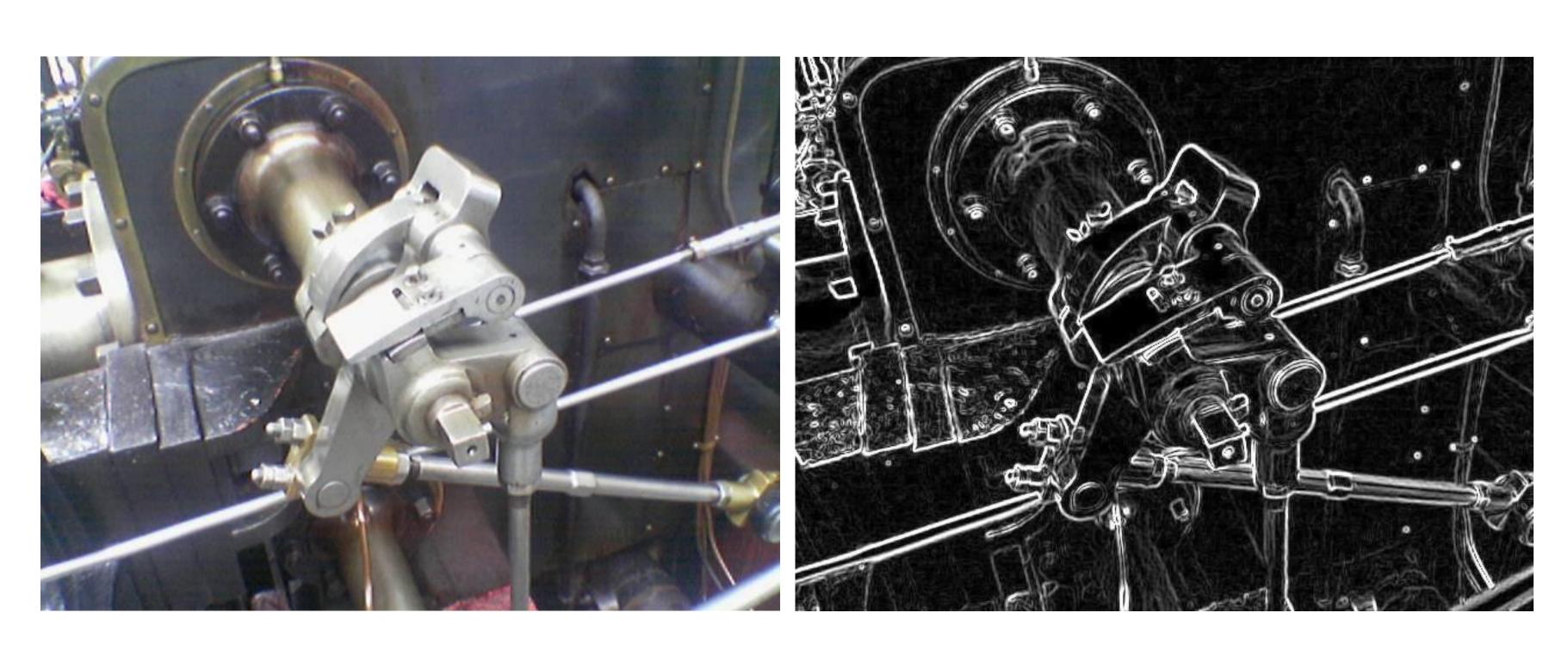


Blur





Sharpen

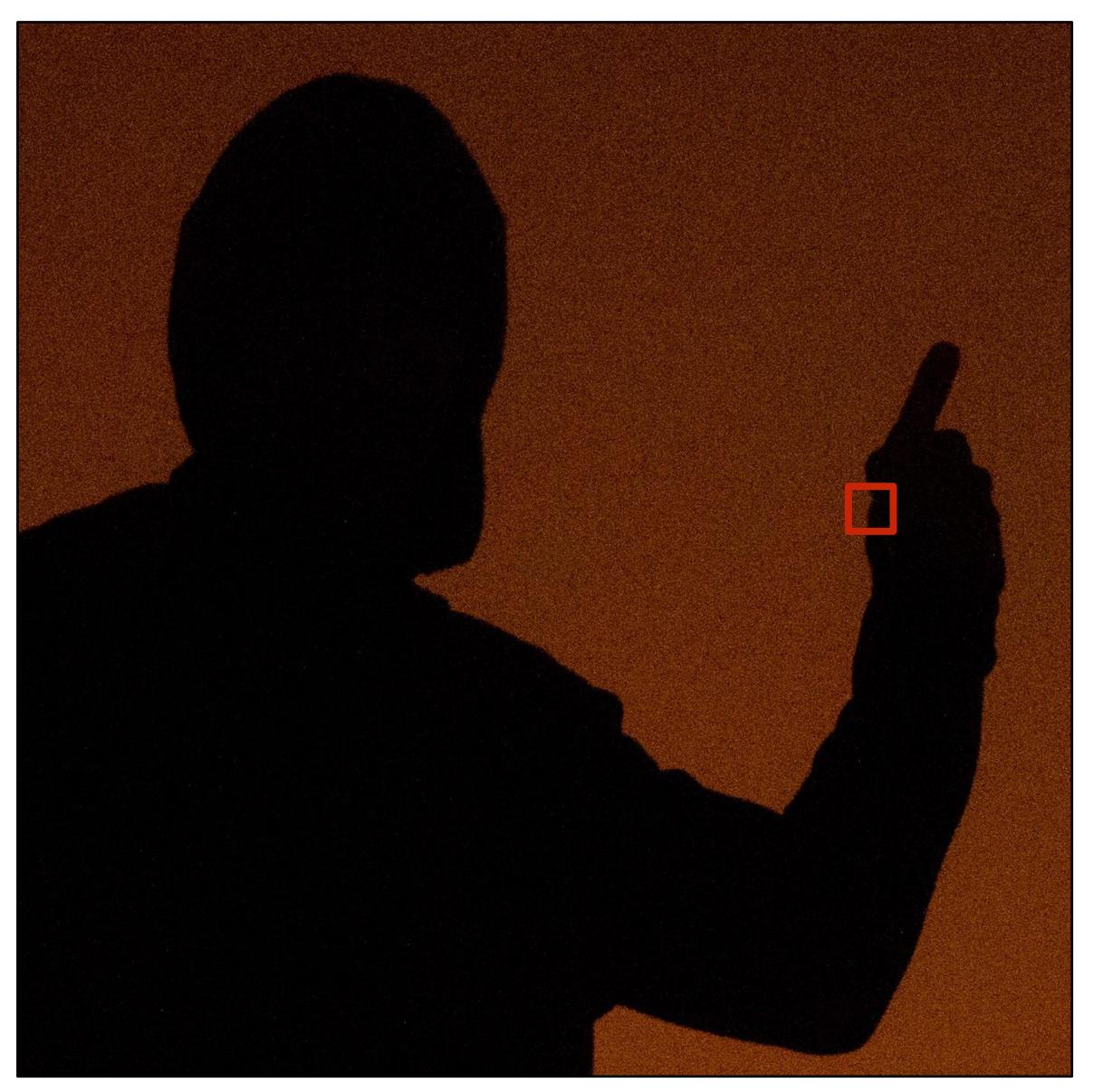


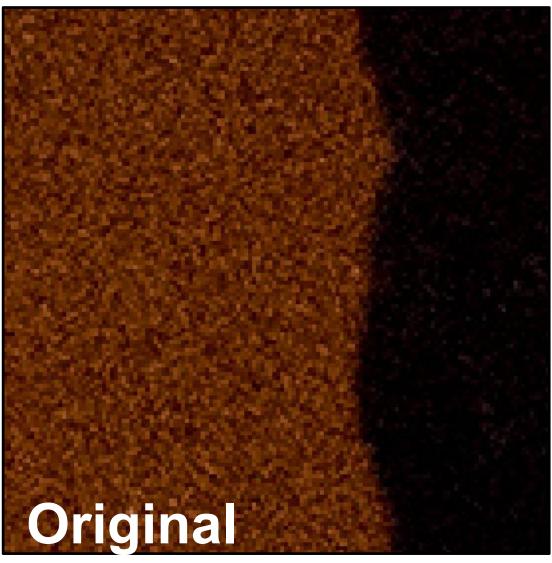
**Edge Detection** 

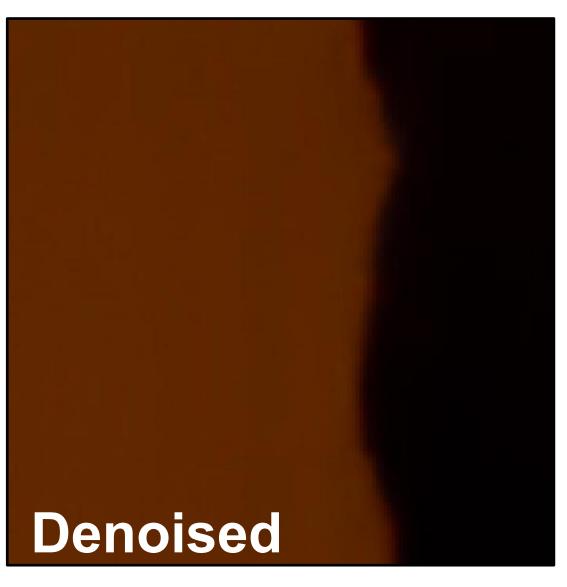


A "Smart" Blur (Preserves Crisp Edges)

# Denoising



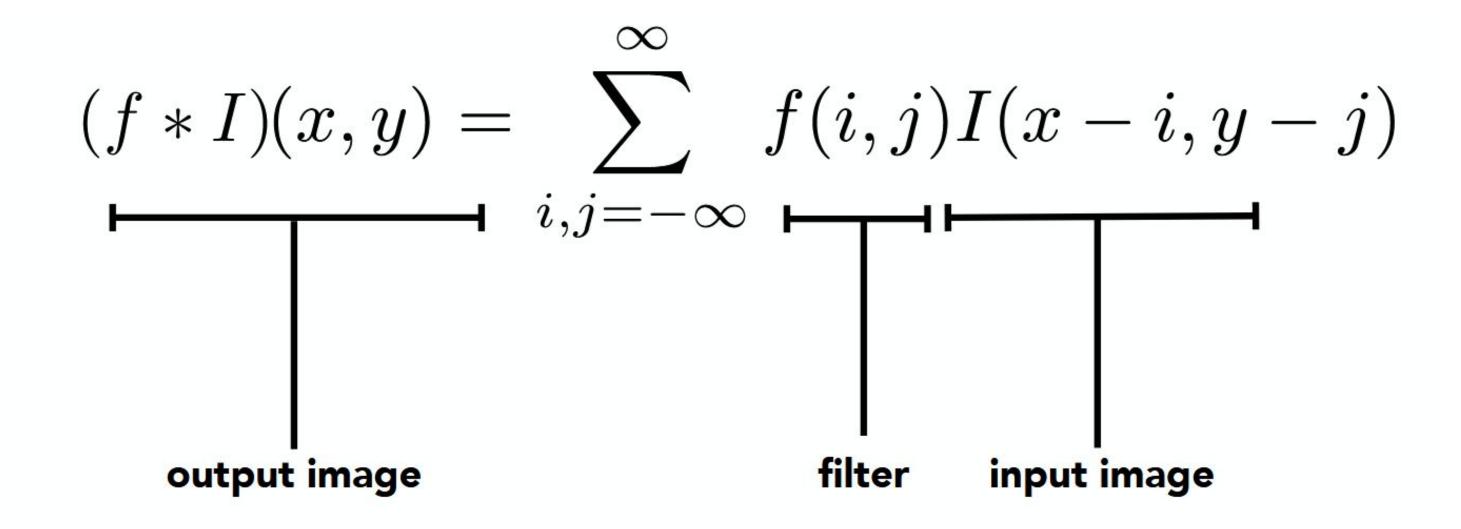




### Review: Convolution

$$\frac{(f*g)(x)}{\int_{-\infty}^{\infty} f(y)g(x-y)dy}$$
output signal filter input signal

### Discrete 2D Convolution



Consider f(i,j) that is nonzero only when:  $-1 \leq i,j \leq 1$ 

Then: 
$$(f*g)(x,y) = \sum_{i,j=-1}^1 f(i,j)I(x-i,y-j)$$

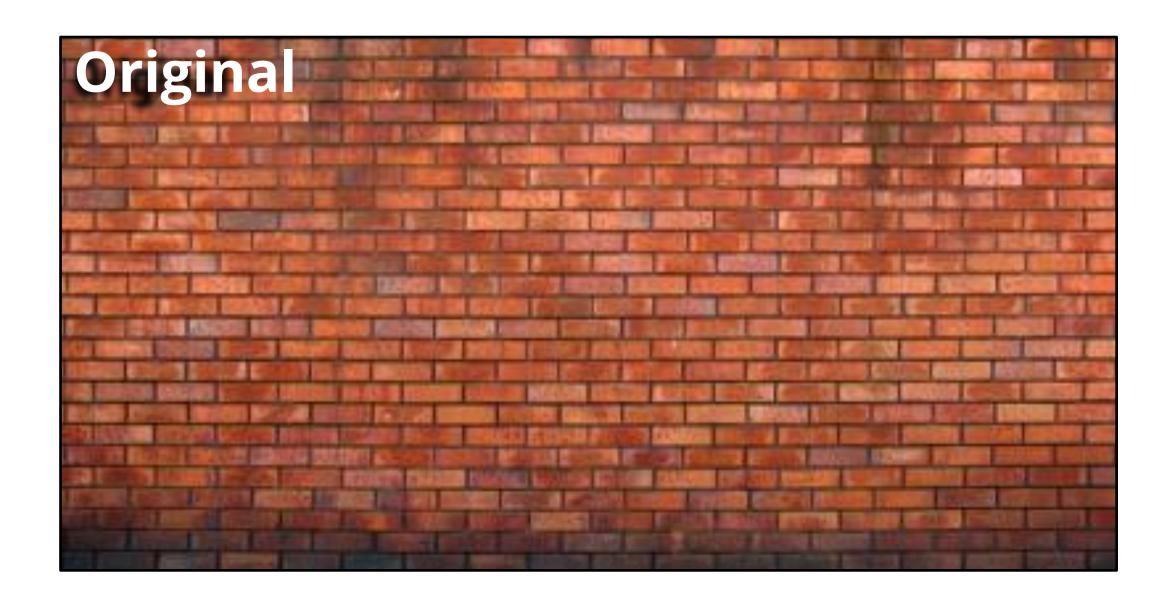
And we can represent f(i,j) as a 3x3 matrix of values.

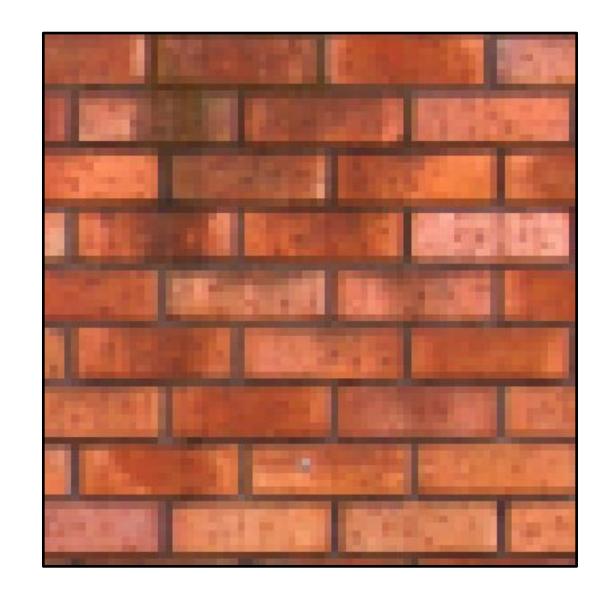
These values are often called "filter weights" or the "kernel".

# Simple 3x3 Box Blur

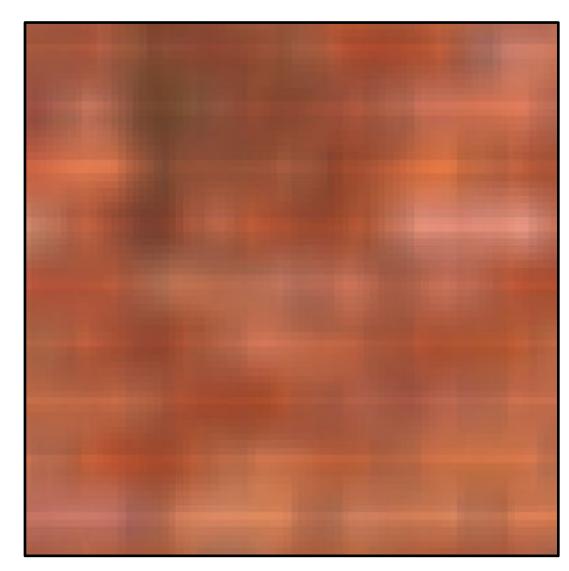
```
Will ignore boundary pixels
float input[(WIDTH+2) * (HEIGHT+2)];
                                                       today and assume output
float output[WIDTH * HEIGHT]; ←
                                                       image is smaller than input
                                                       (makes convolution loop
float weights[] = \{1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9\}
                                                       bounds much simpler to write)
                      1./9, 1./9, 1./9,
                      1./9, 1./9, 1./9};
for (int j=0; j<HEIGHT; j++) {</pre>
   for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<3; jj++)</pre>
          for (int ii=0; ii<3; ii++)
             tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
      output[j*WIDTH + i] = tmp;
```

## 7x7 Box Blur









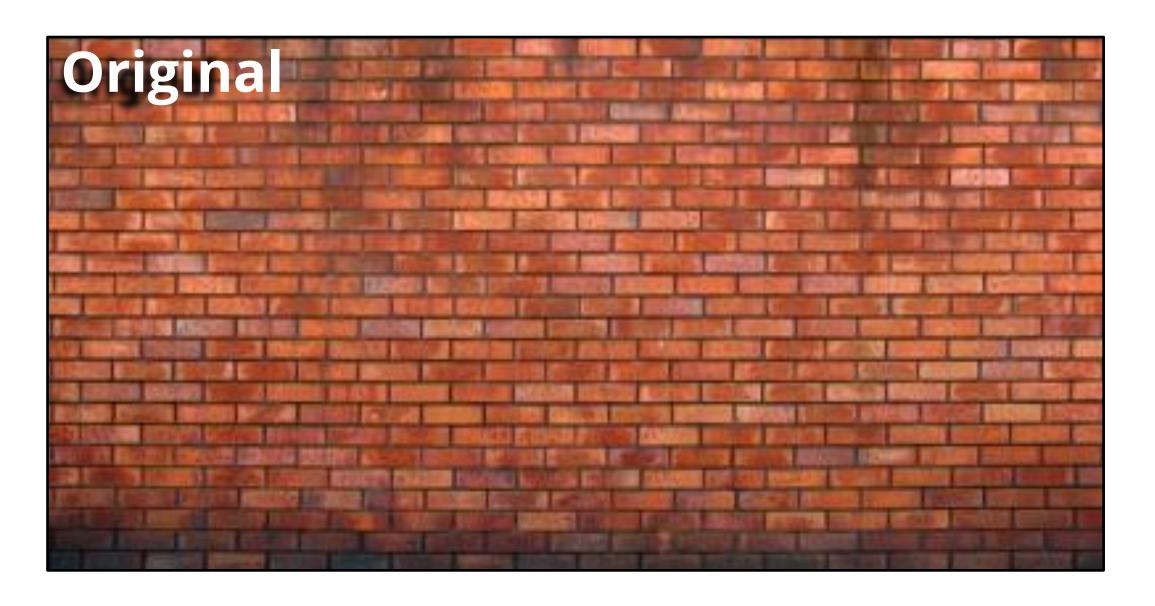
### Gaussian Blur

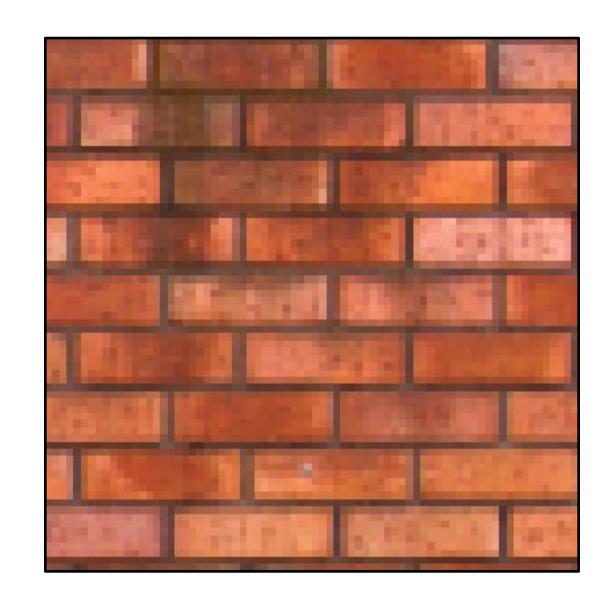
Obtain filter coefficients from sampling 2D Gaussian

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

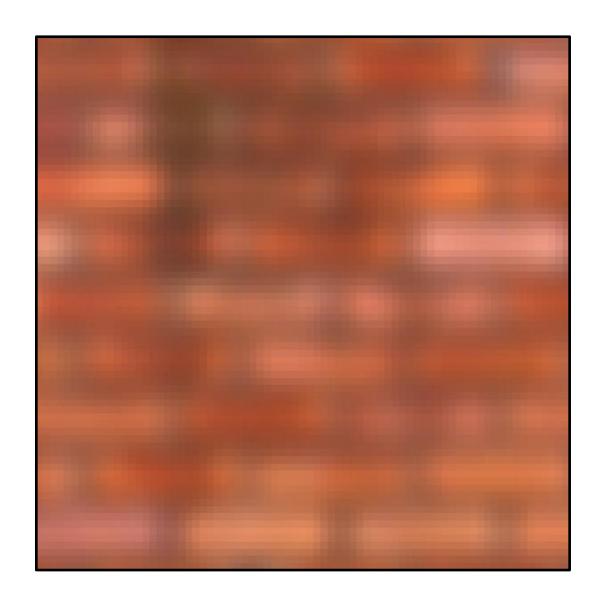
- Produces weighted sum of neighboring pixels (contribution falls off with distance)
  - Truncate filter beyond certain distance

### 7x7 Gaussian Blur

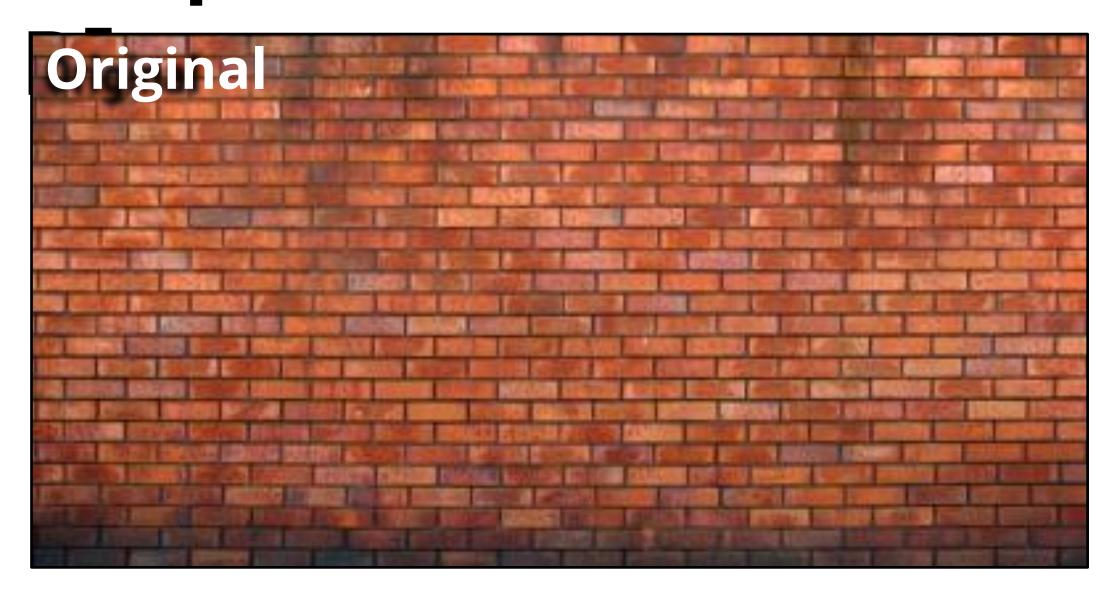


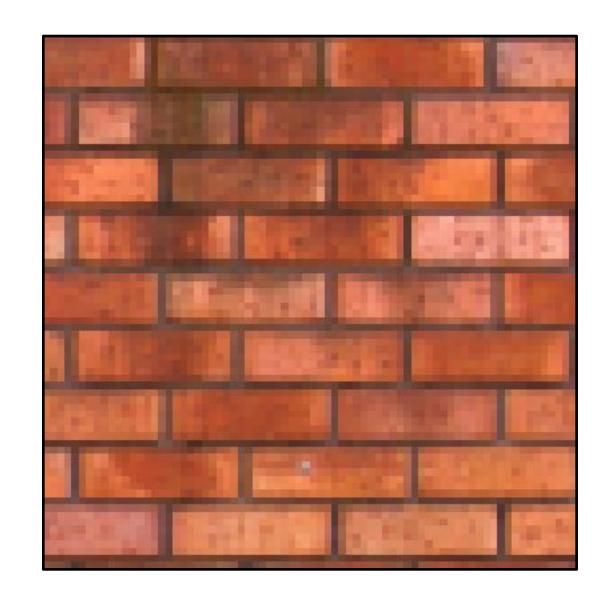


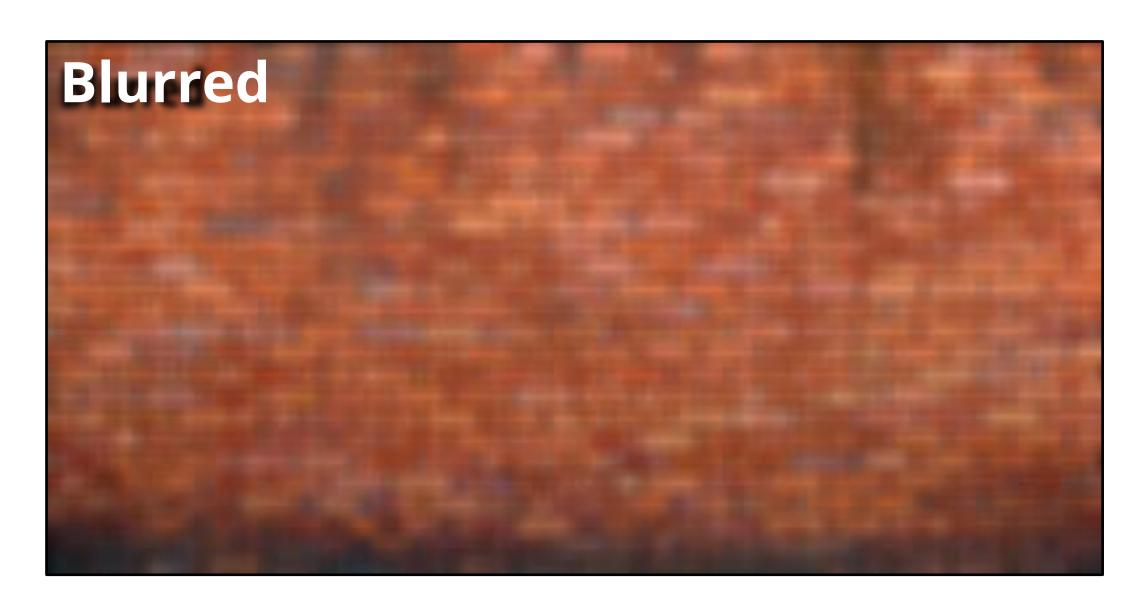


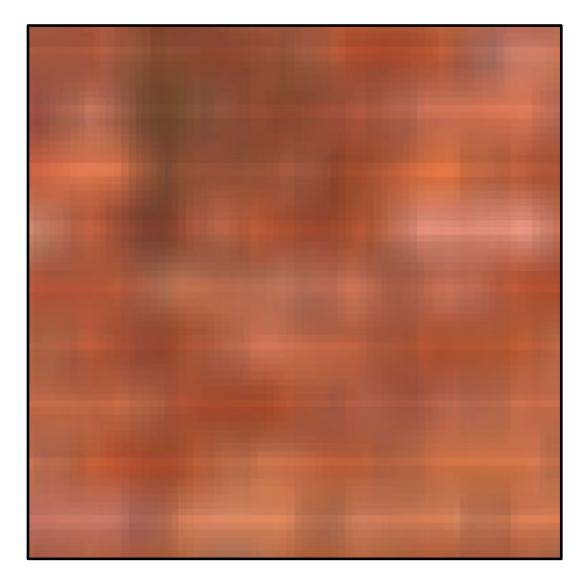


# Compare: 7x7 Box





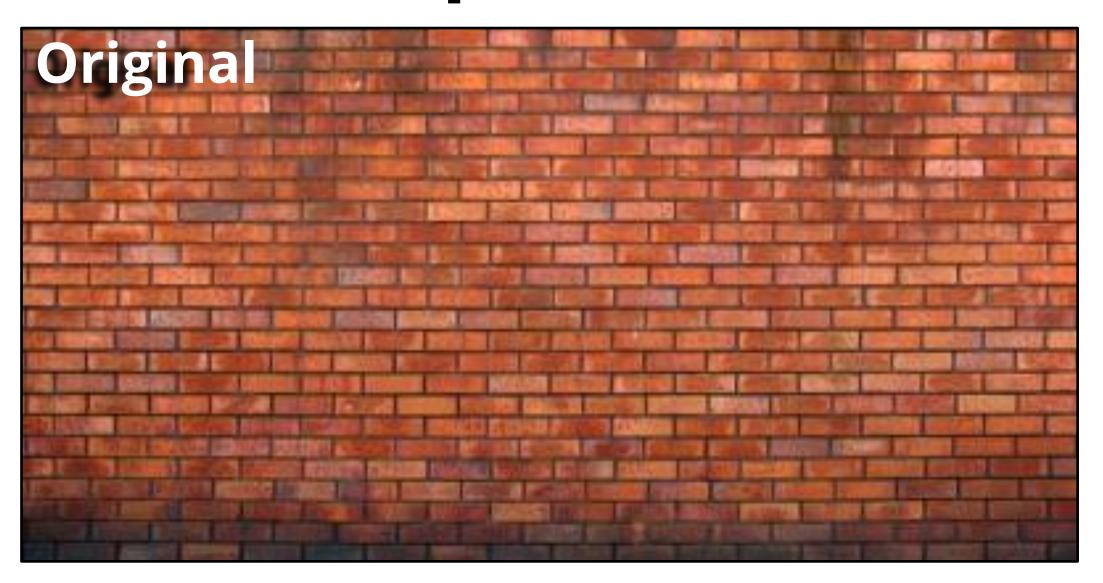


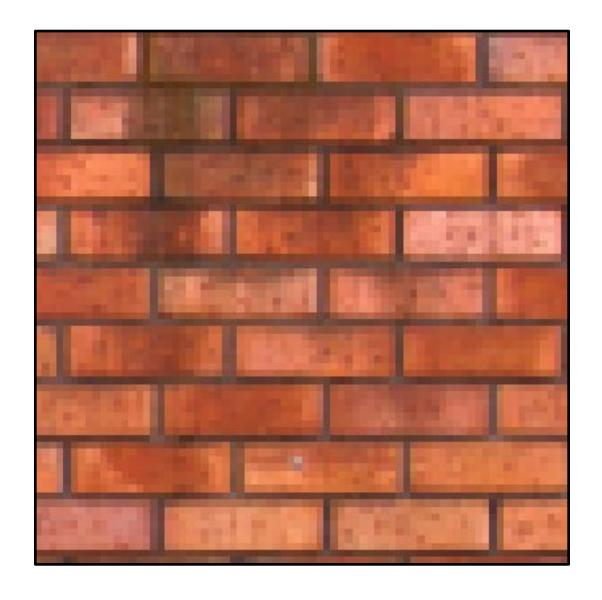


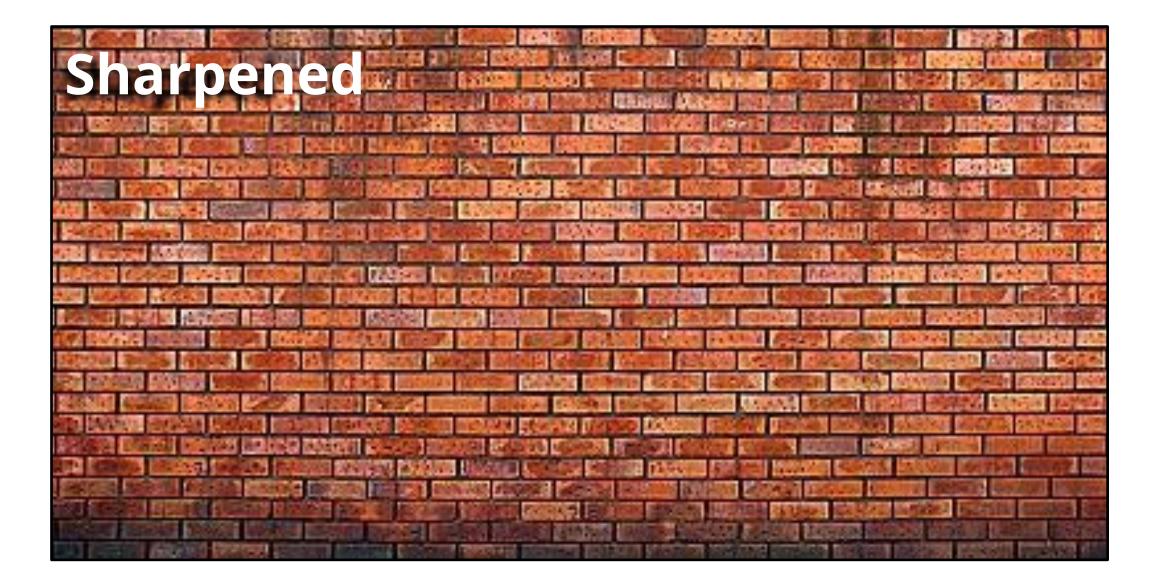
#### What Does this Convolution Filter Do?

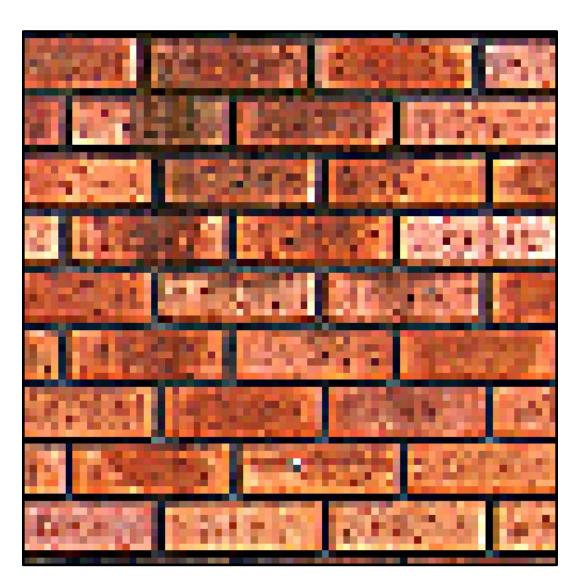
$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

# 3x3 Sharpen Filter









#### What Do these Convolution Filters Do?

$$egin{bmatrix} -1 & 0 & 1 \ -2 & 0 & 2 \ -1 & 0 & 1 \ \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

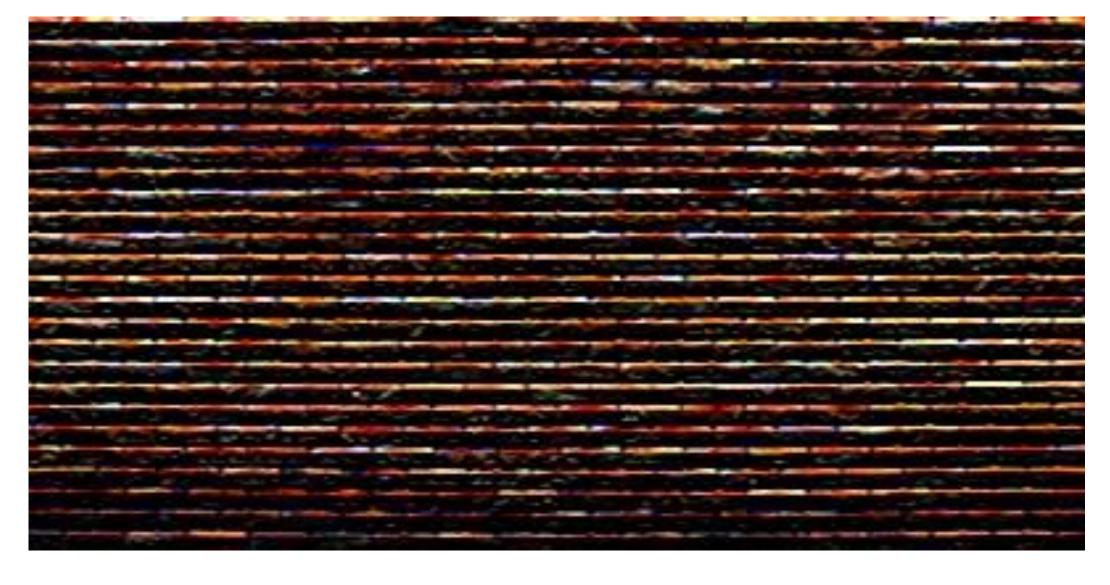
**Extracts horizontal** gradients

**Extracts vertical** gradients

### Gradient Detection Filters



Horizontal gradients



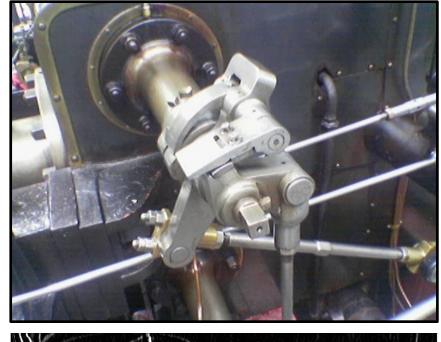
Vertical gradients

**Note:** you can think of a filter as a pattern detector, and the output pixel as the "response" to the region surrounding it (this is a common interpretation in computer vision)

# Sobel Edge Detection

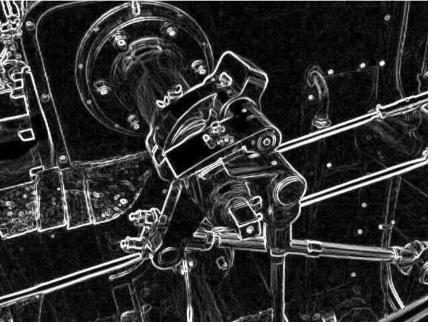
$$G_{\mathbf{x}} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * \mathbf{I}$$

$$G_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * I$$









#### Find pixels with large gradients

$$G = \sqrt{{G_x}^2 + {G_y}^2}$$
 Given Pixel-wise operation on images

# Tunis

# Algorithmic Cost of Convolution Based Image Processing

#### Cost of Convolution with N x N Filter?

```
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = \{1./9, 1./9, 1./9, 1./9, 1./9, 1./9, 1./9\}
                    1./9, 1./9, 1./9,
                    1./9, 1./9, 1./9};
for(int j=0; j<HEIGHT; j++) {</pre>
  for(int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for(intii=0; ii<3; ii++)</pre>
           tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj * 3 + ii];
          output[j*WIDTH + i] = tmp;
```

# Separable Filters

A filter is separable if it's the product of two other filters

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} * \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

• Exercise: write a 2D gaussian filter for vertical/horizontal gradient detection as a product of 1D filters (they are separable!)

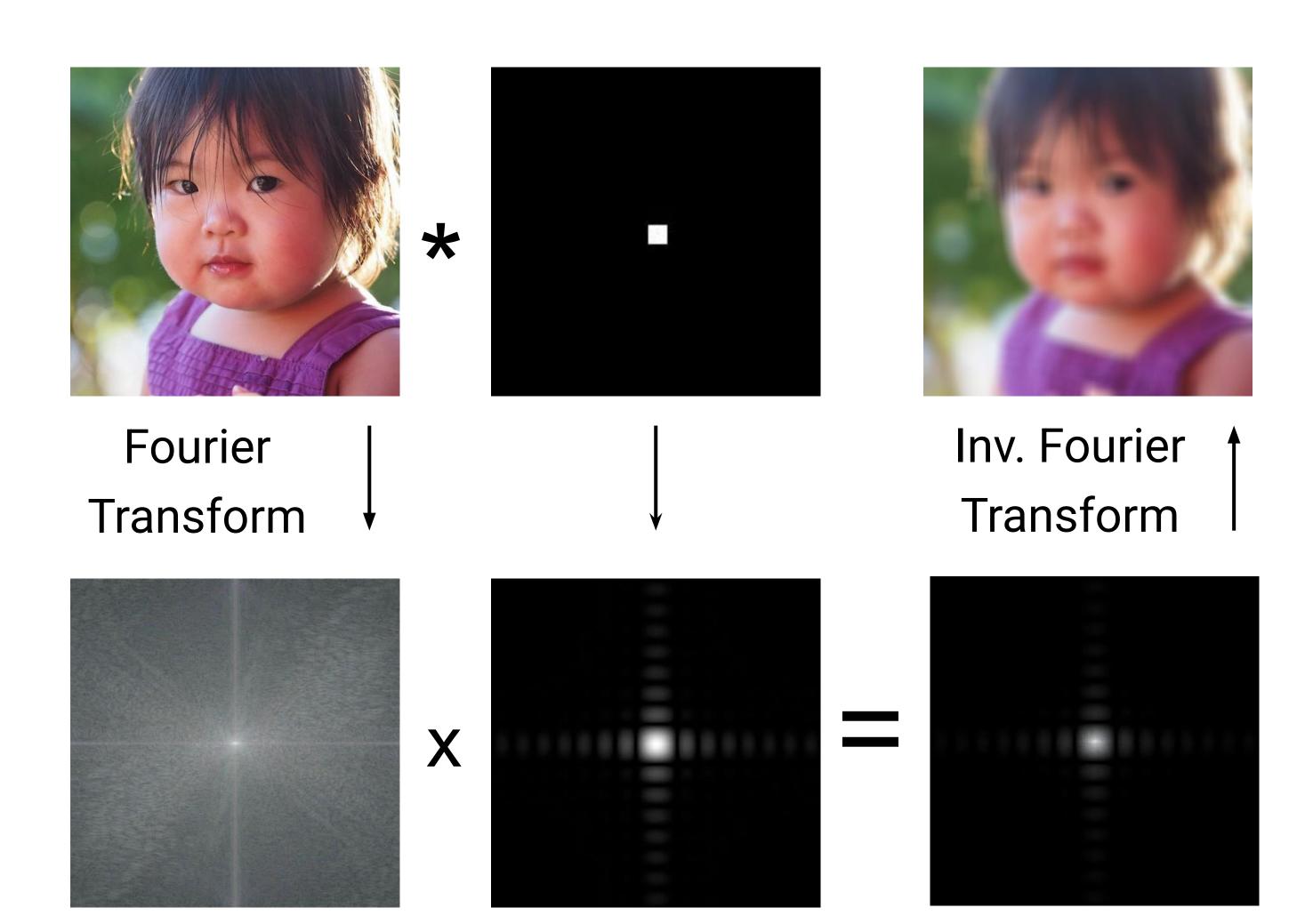
**Key property:** 2D convolution with separable filter can be written as two 1D convolutions!

#### Fast 2D Box Blur via Two 1D Convolutions

```
int WIDTH = 1024
int HEIGHT = 1024;
                                                    Total work per image = 6 x WIDTH x HEIGHT
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
                                                    For NxN filter: 2N x WIDTH x HEIGHT
float output[WIDTH * HEIGHT];
                                                    Extra cost of this approach?
float weights[] = \{1./3, 1./3, 1./3\};
for (int j=0; j<(HEIGHT+2); j++)
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int ii=0; ii<3; ii++)
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp_buf[j*WIDTH + i] = tmp;
  }
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
```

### Recall: Convolution Theorem

Spatial Domain



Frequency Domain

# Efficiency?

When is it faster to implement a filter by convolution in the spatial domain?

When is it faster to implement a filter by multiplication in the **frequency domain**?

# Data-Dependent Filters

### Median Filter

- Replace pixel with **median** of its neighbors
- Useful noise reduction filter.
- unlike gaussian blur, one bright pixel doesn't drag up the average for entire region
- Not linear, not separable
- Filter weights are 1 or 0
   (depending on image content)

```
uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++)
  for (int i=0; i<WIDTH; i++)
   output[j*WIDTH + i] =
        // compute median of pixels
        // in surrounding 5x5 pixel window</pre>
```



original image



3px median filter

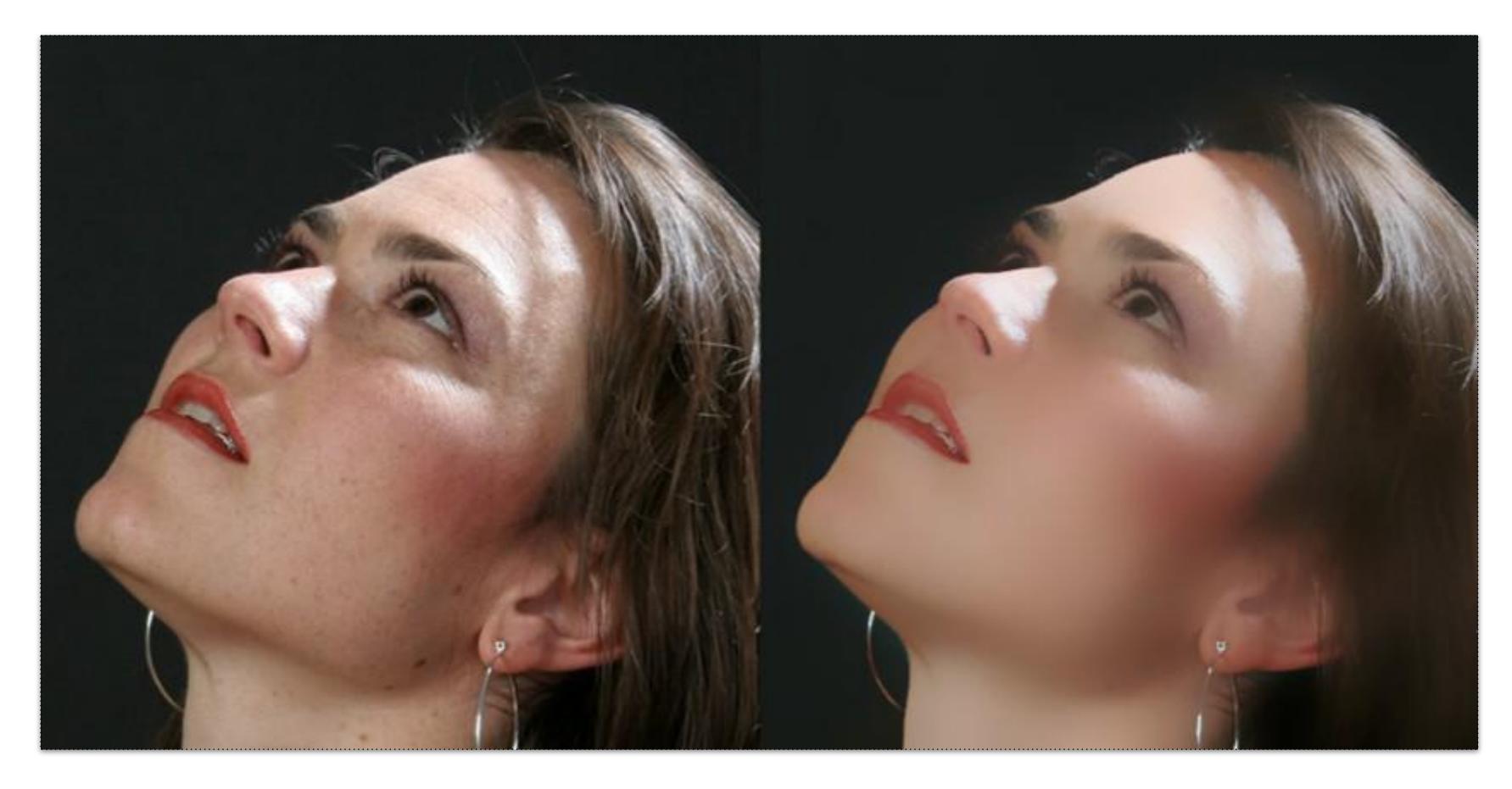


1px median filter



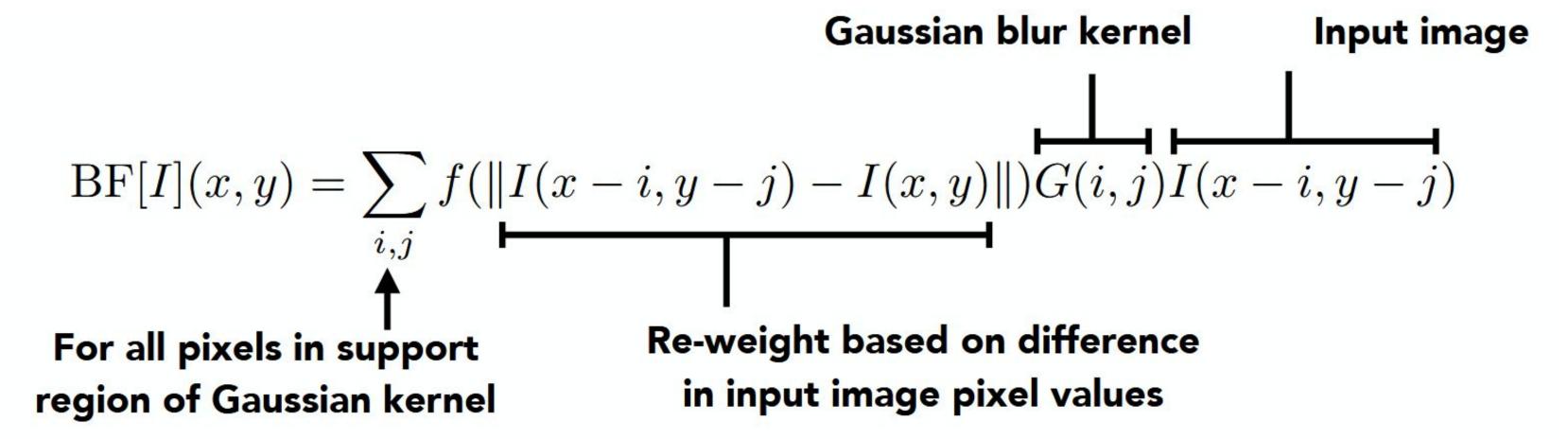
10px median filter

## Bilateral Filter

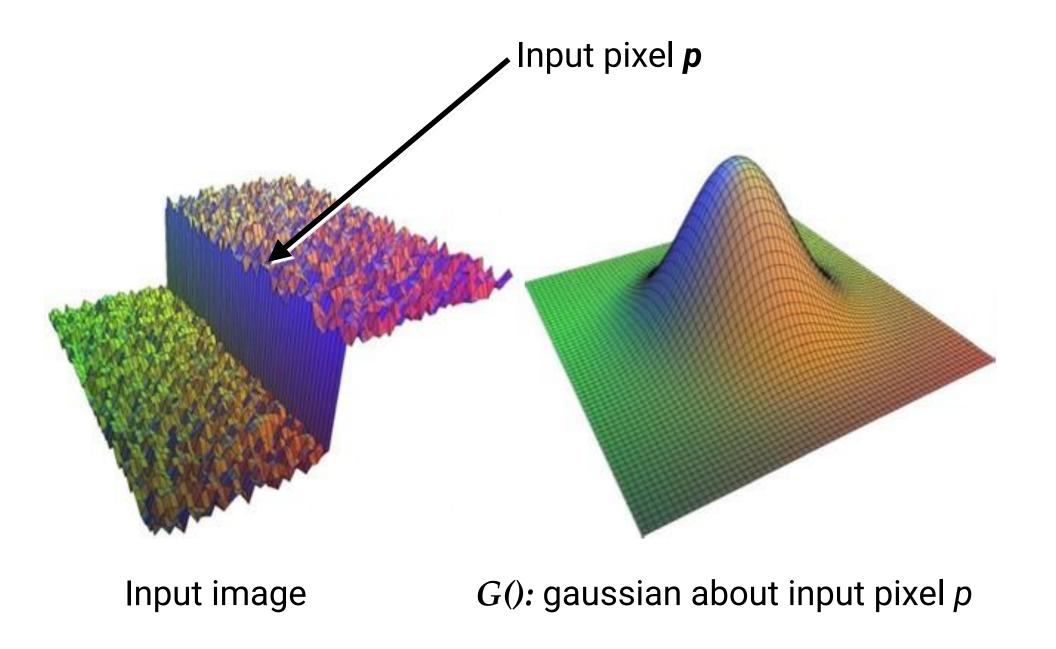


Example use of bilateral filter: removing noise while preserving image edges

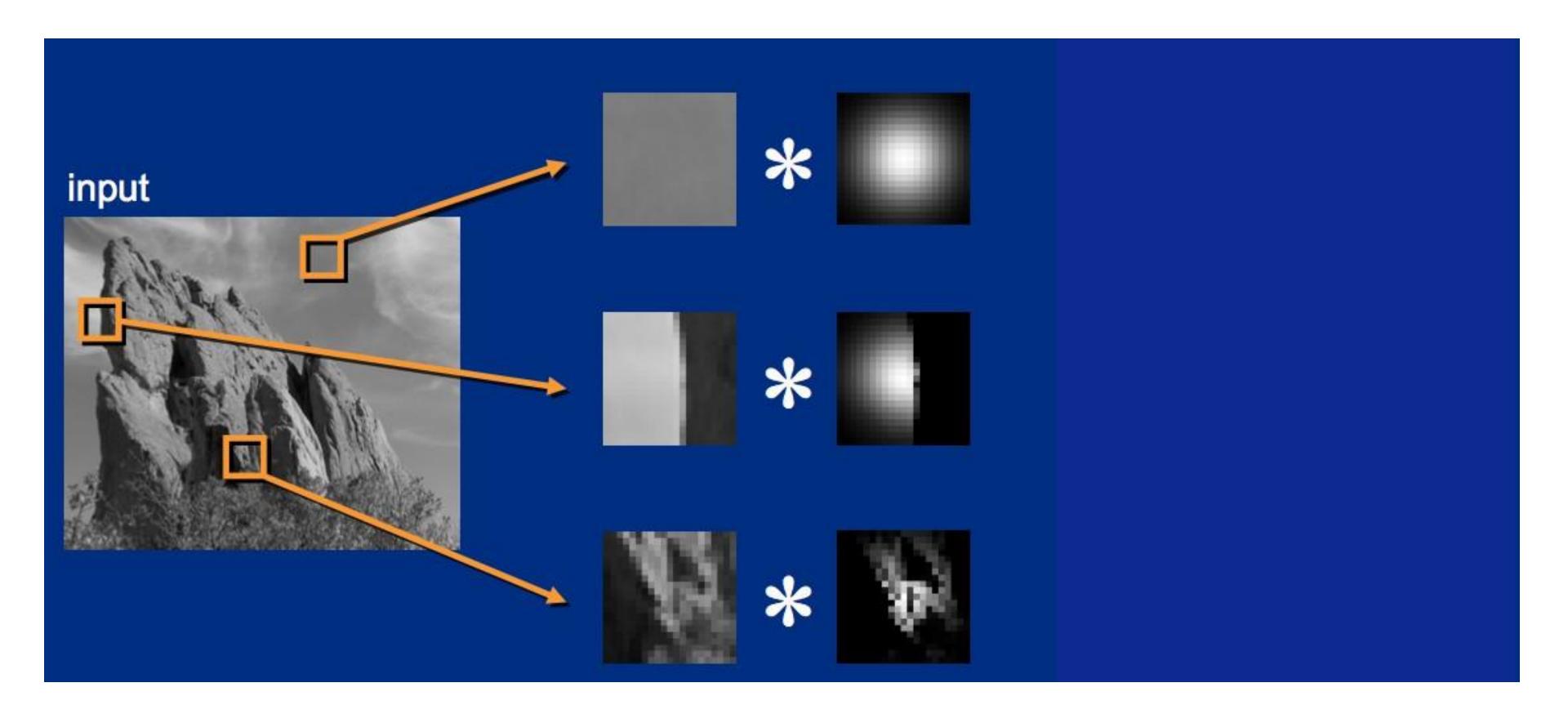
### **Bilateral Filter**



## Bilateral Filter



#### Bilateral Filter: Kernel Depends on Image Content



# Data-Driven Image Processing:

Image Manipulation by Example

# Texture Synthesis

**Input:** low-resolution texture image

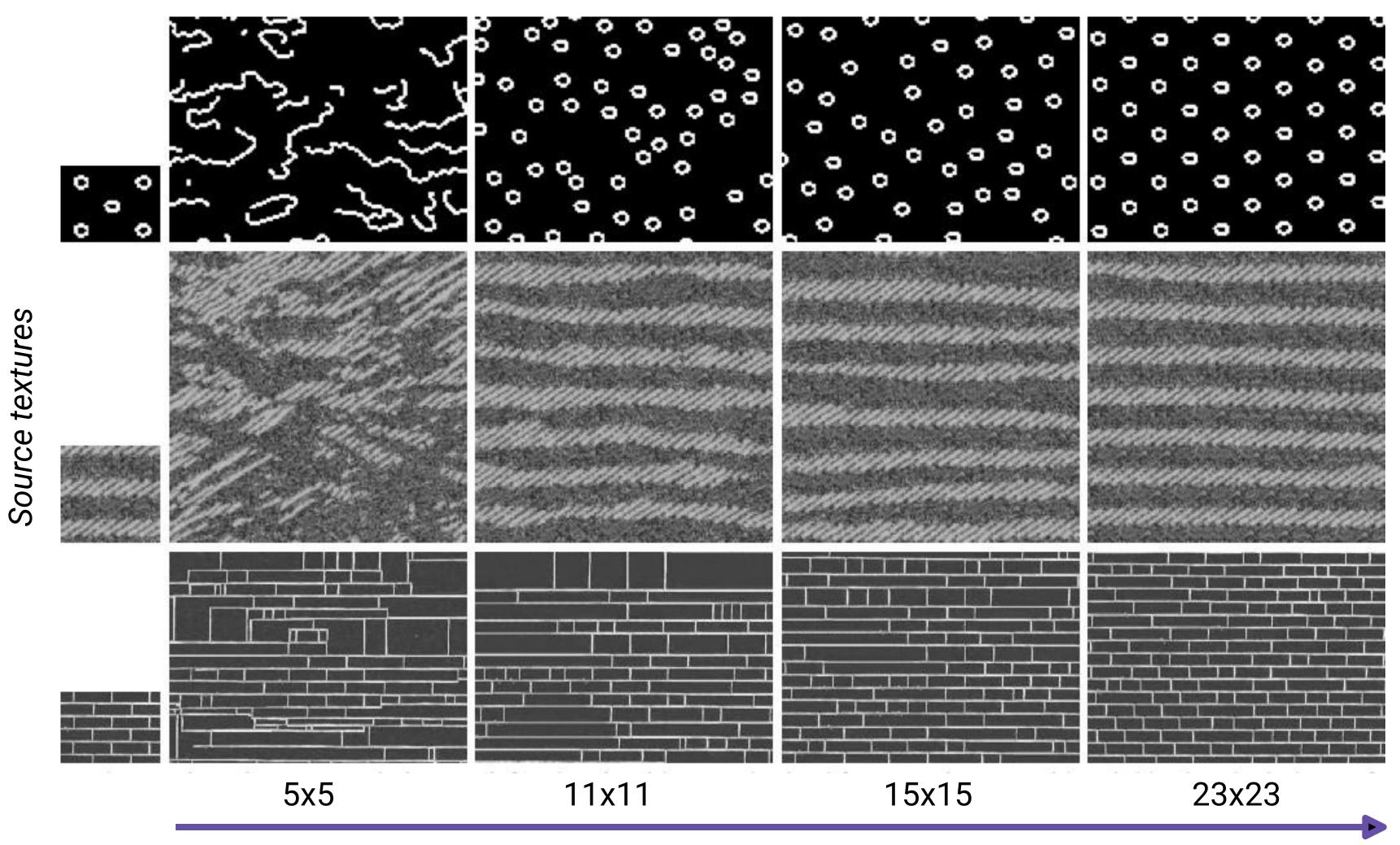
Desired output: high-resolution texture that appears "like" the input

### Algorithm: Non-Parametric Texture Synthesis

**Main idea:** For a given pixel p, find a probability distribution function for possible values of p, based on its neighboring pixels.

# Non-Parametric Texture Synthesis

Synthesized Textures



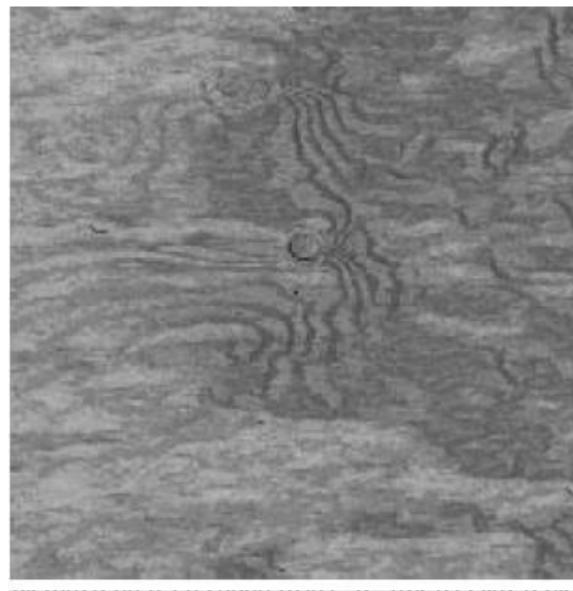
 $<sup>\</sup>triangleright$  Increasing size of neighborhood search window: w(p)

## Allows for Better Texture Synthesis

#### Synthesized Textures

#### **Source Textures**





#### **Source Textures**

ut it becomes harder to lau cound itself, at "this daily i ving rooms," as House Der escribed it last fall. He fail ut he left a ringing question ore years of Monica Lewin inda Tripp?" That now seen Political comedian Al Francext phase of the story will

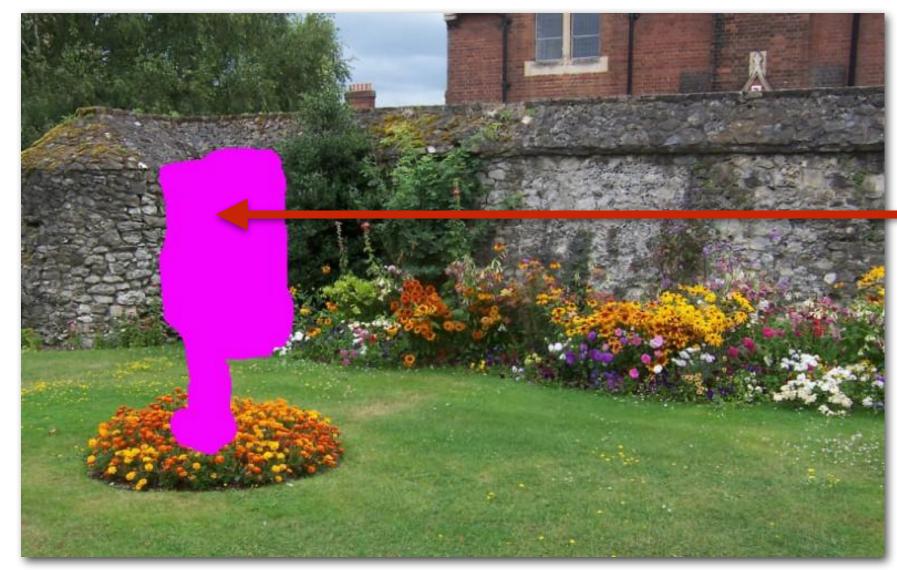


the formaction relaticoordin resett, accounts of new acres a at adabrears coune Tring rooms," as Heft he fast ad it I ars dat nocars outseas ribed it last nt hest bedian Al. I econicalHomd ith Al. Heft ars of as da Lewindailf I lian Al Ths," as Lewing questies last aticarsticall. He is dian Al last fal counda Lew, at "this dailyears dily edianicall. Hoorewing rooms," as House De fale f De und itical counsestscribed it last fall. He fall. Hefft rs oroheoned it nd it he left a ringing questica Lewin . icars coecoms," astore years of Monica Lewinow seee a Thas Fring roome stooniscat noweare left a roouse bouestof MHe lelft a Lest fast ngine launesticars Hef nd it rip?" TrHouself, a ringind itsonestid it a ring que: astical cois ore years of Moung fall. He ribof Mouse ore years ofanda Tripp?" That hedian Al Lest fasee yea nda Tripp?" Holitical comedian Alét he few se ring que olitical cone re years of the storears ofas I Frat nica L ras Lewise lest a rime li He fas questinging of, at beou

# Image Completion Example



Original Image



Masked Region



**Completion Result** 

Goal: fill in masked region with "plausible" pixel values.

See **PatchMatch** algorithm [Barnes 2009] for a fast randomized algorithm for finding similar patches.

# Things to Remember

- JPEG as an example of exploiting perception in visual systems
- Chroma subsampling and DCT Image processing via convolution
- Vary operations by changing filter kernel weights
- Fast separable filter implementation: multiple 1D filters
- Data-dependent image processing techniques
  - Bilateral filtering, Efros-Leung texture synthesis

# Acknowledgments

Many thanks to Kayvon Fatahalian for this lecture!