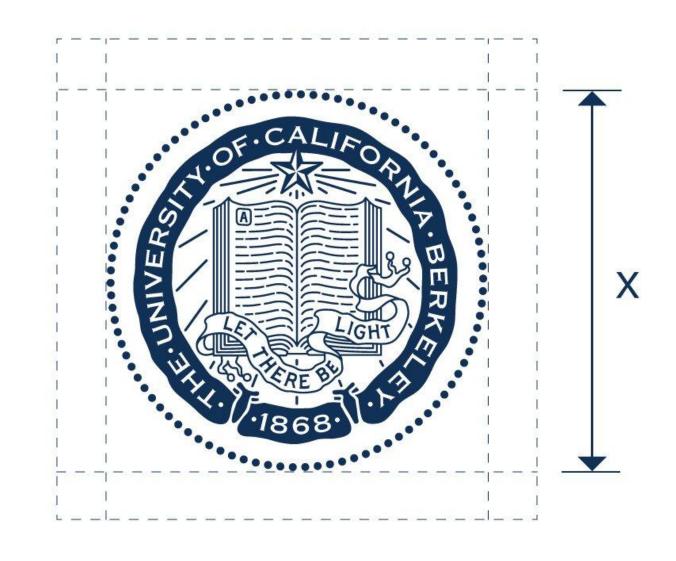
Lecture 26: 3D Reconstruction and Generation



Computer Graphics and Imaging UC Berkeley CS184

Ethan

Weber

ed by

Professor Angjoo Kanazawa

at UC Berkeley

Wisconsin

-2016

MIT

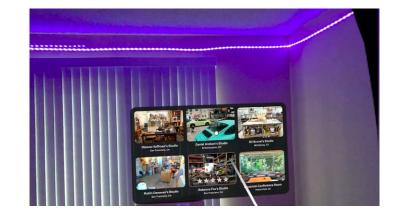
2016-2021

Berkeley

2021-2025

Meta Reality Labs

2025-



Acknowledgements

Thanks to Ethan Webber and Matthew Tancik the slides!

Overview

3D Reconstruction

2

3

3D Generation

NeRF

Structure-from-Motion

Novel-View Synthesis

Open-Source Tools

Limitations

Text-Only Conditioned

Image & Pose Conditioned

Scene Completion

Large-Scale Datasets

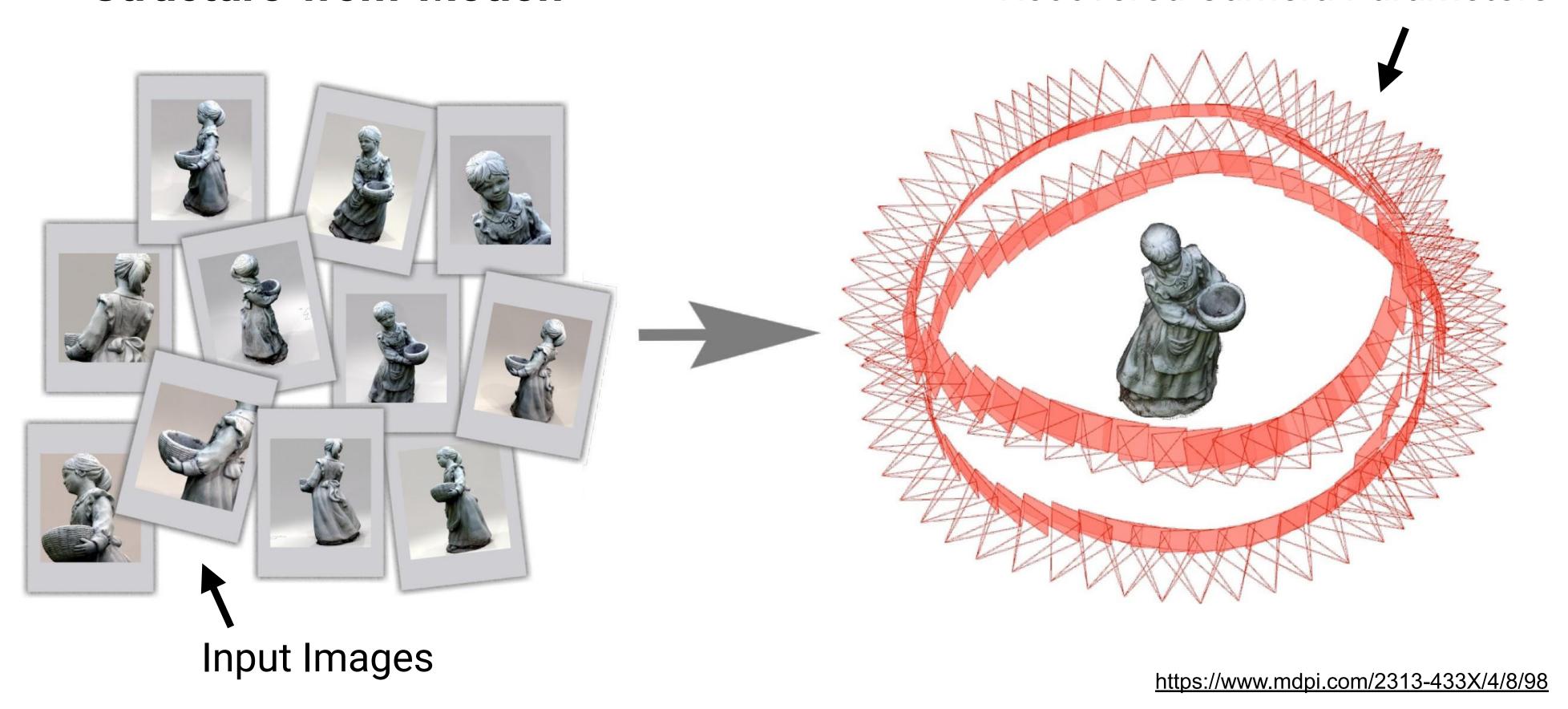
Large-Scale Datasets

Scene Understanding

Robotics Manipulation

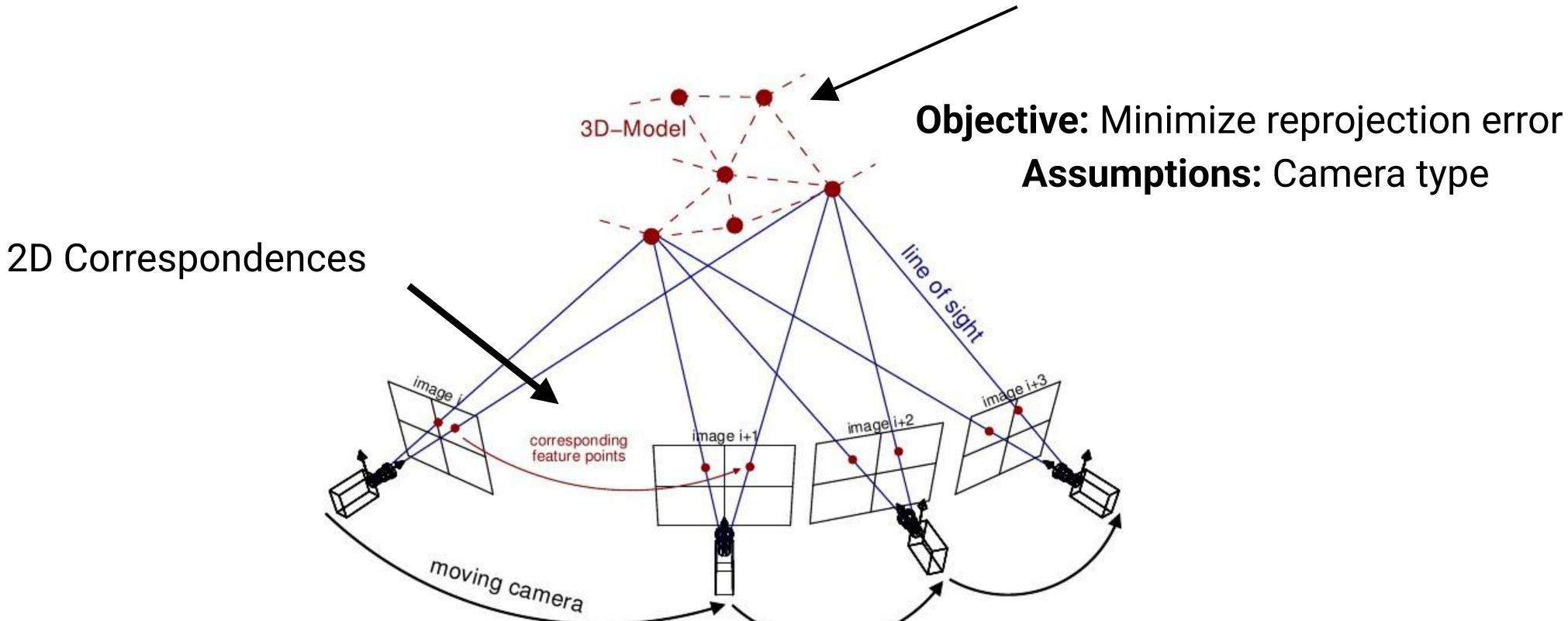
Structure-from-Motion

Recovered Camera Parameters

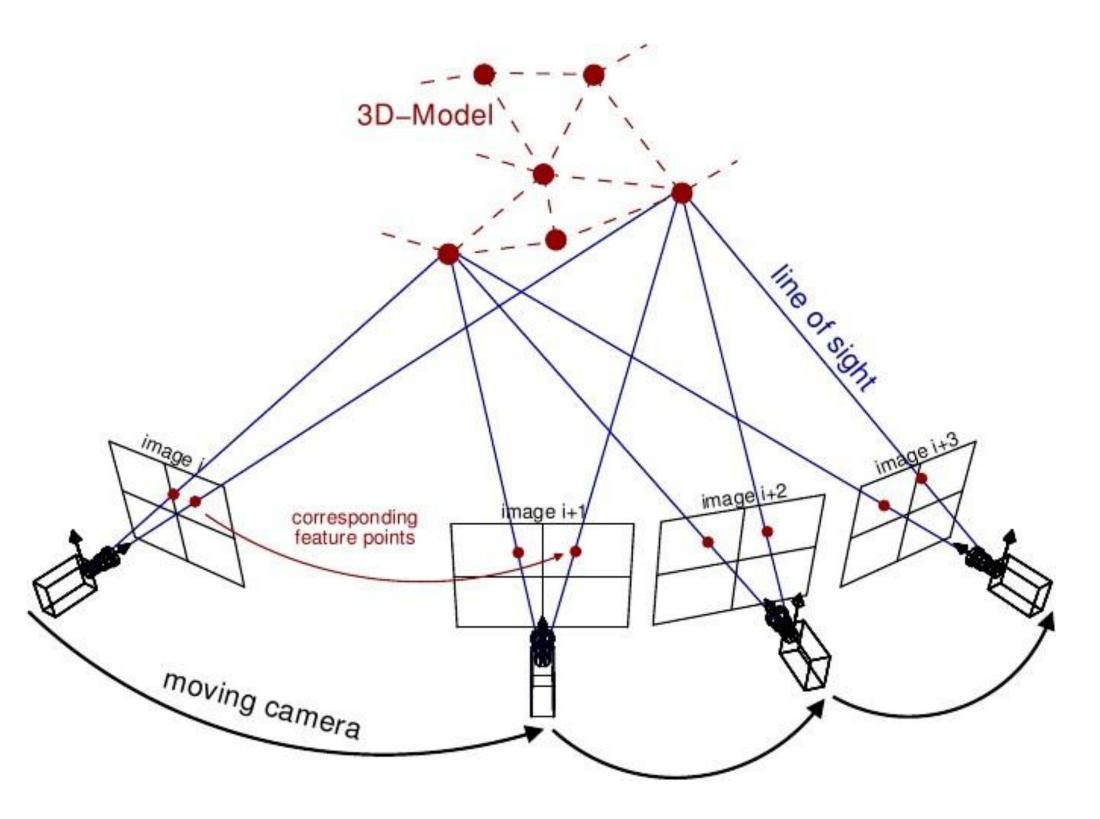


Structure-from-Motion

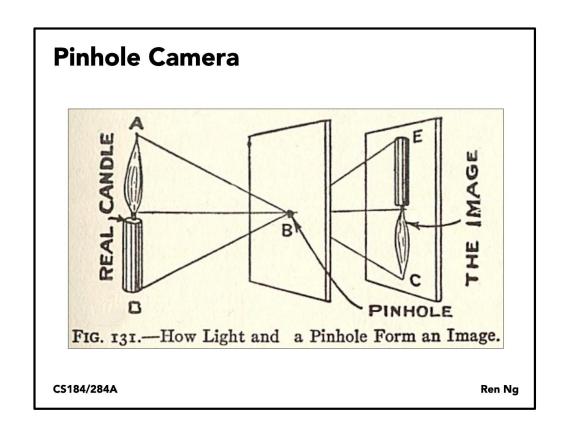
Backprojected 3D Points



Structure-from-Motion



Objective: Minimize reprojection error Assumptions: Camera type

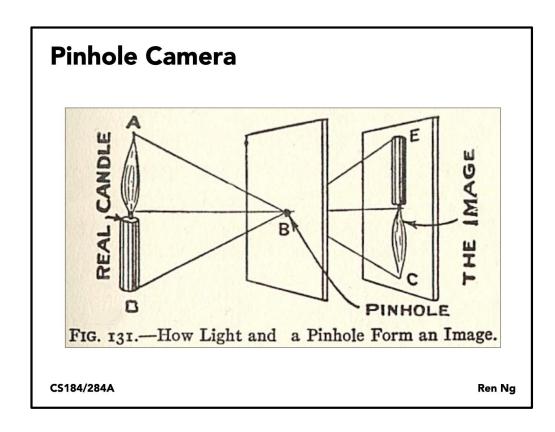


for pinhole cameras, we solve for focal length(s) and distortion parameters

Structure-from-Motion

3D-Mode mage i corresponding moving camera

Objective: Minimize reprojection error Assumptions: Camera type



for pinhole cameras, we solve for focal length(s) and distortion parameters

and we adjust the transforms to achieve a low error

Structure-from-Motion

Structure-from-Motion Revisited

JL Schönberger, JM Frahm Conference on Computer Vision and Pattern Recognition (CVPR), 2016

COLMAP

6885

3D Reconstruction on Challenging Data

"The One Where They Reconstructed 3D Humans and Environments in TV Shows"

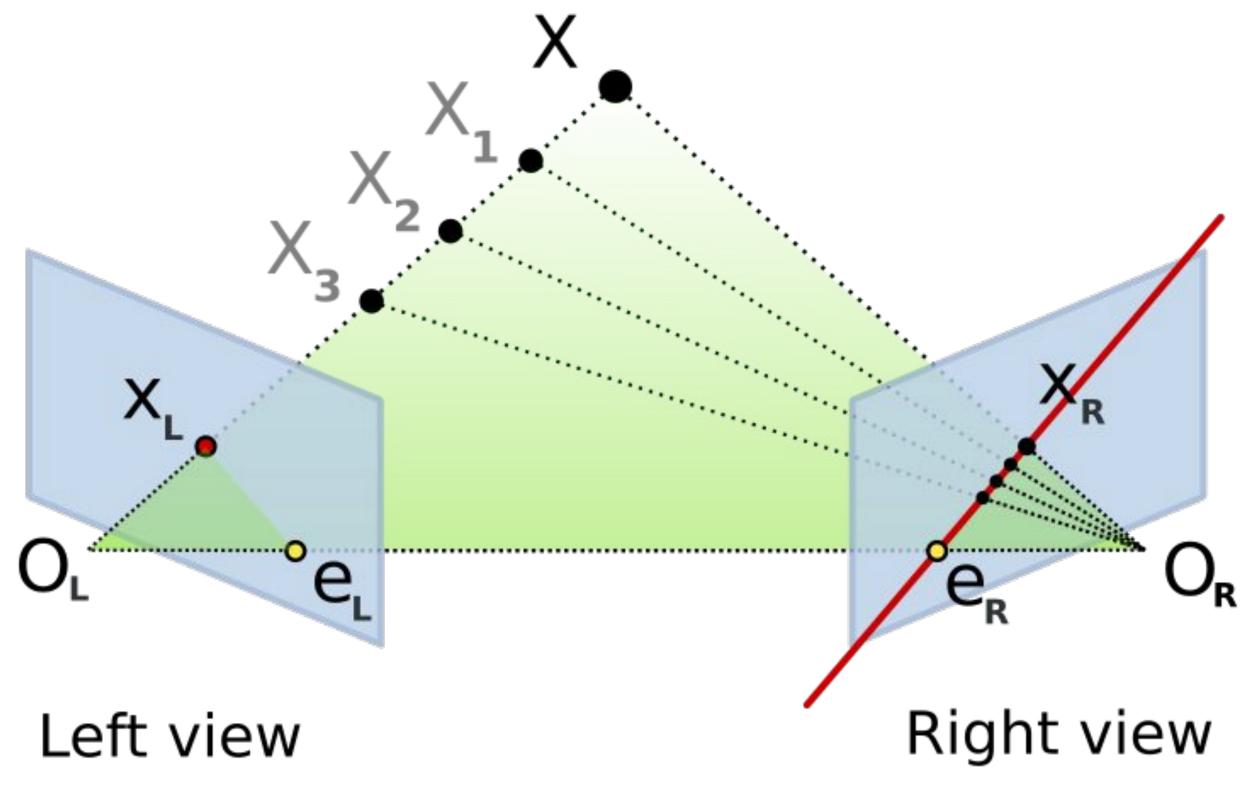
Georgios Pavlakos*, Ethan Weber*, Matthew Tancik, Angjoo Kanazawa

University of California, Berkeley

Structure-from-Motion is robust to this data

Why is SfM so robust?

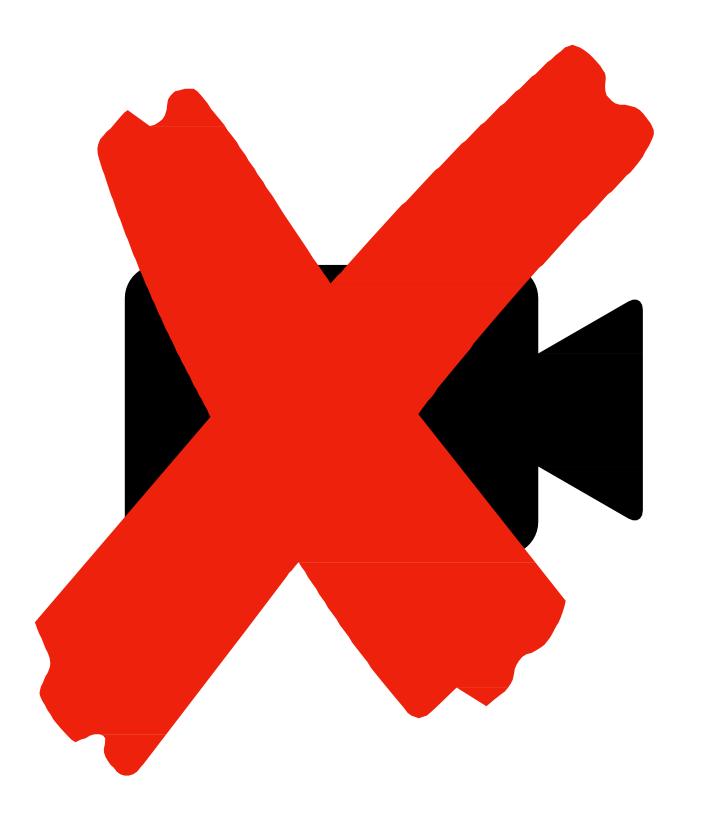
Epipolar Geometry and Ransac



Works for perspective cameras!

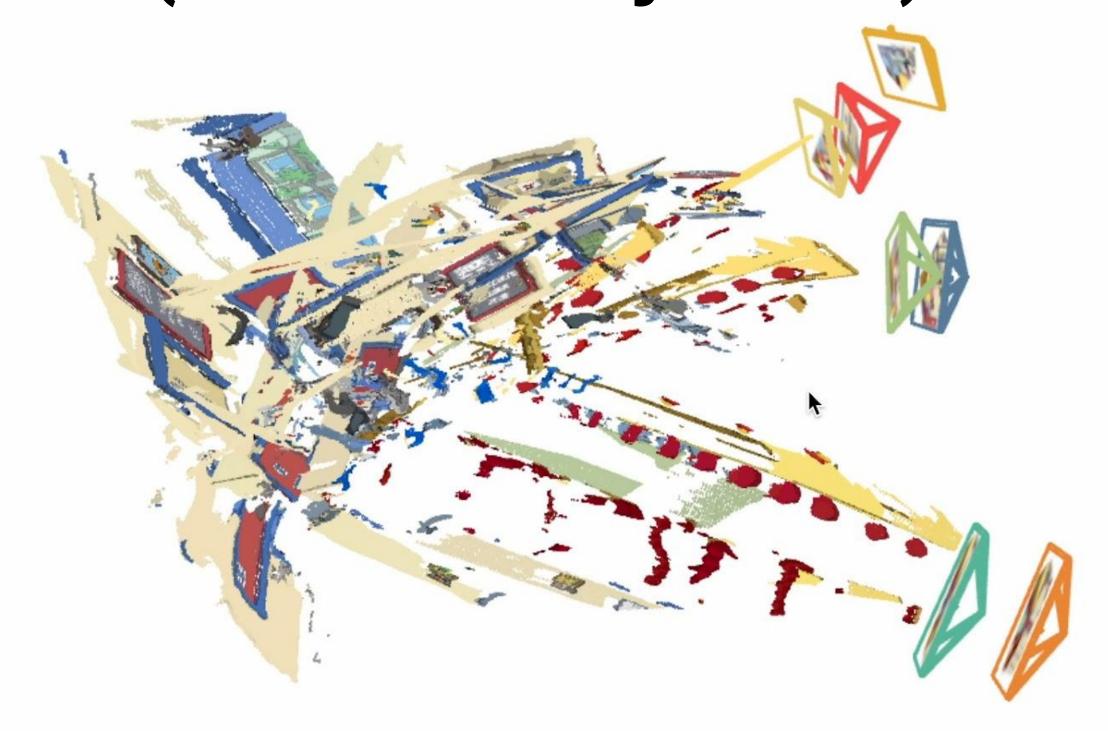
What if you don't have perspective cameras?

COLMAP



COLMAP with Manual Correspondences

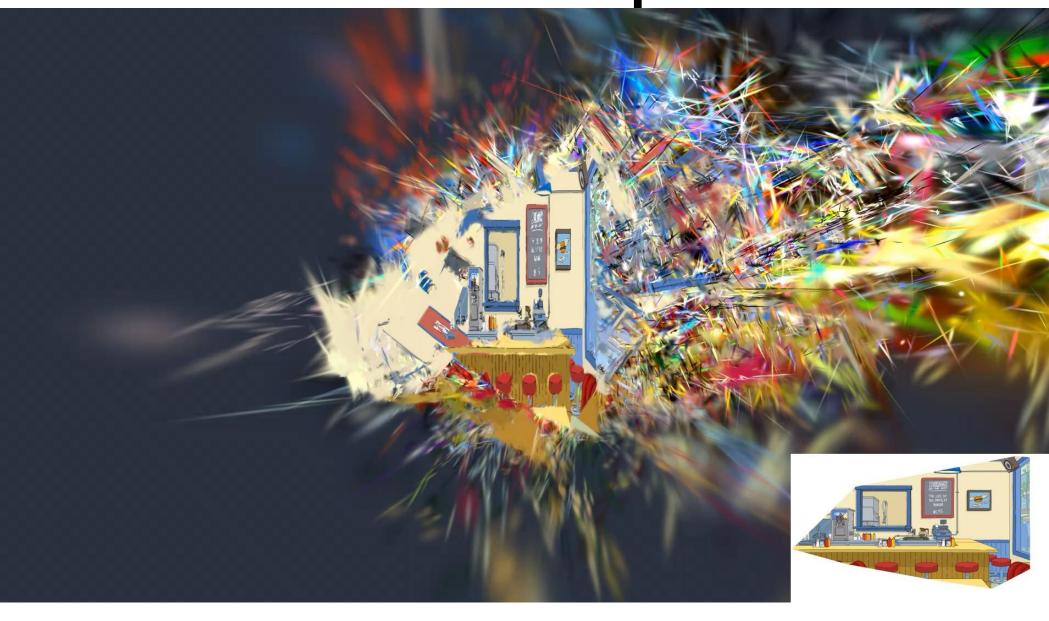
Bundle Adjustment with Manual Correspondences (no outlier rejection)



Toon3D (our method)

Bundle Adjustment with Manual Correspondences

Toon3D (our method)



How far can we push the limits of SfM on cartoons?

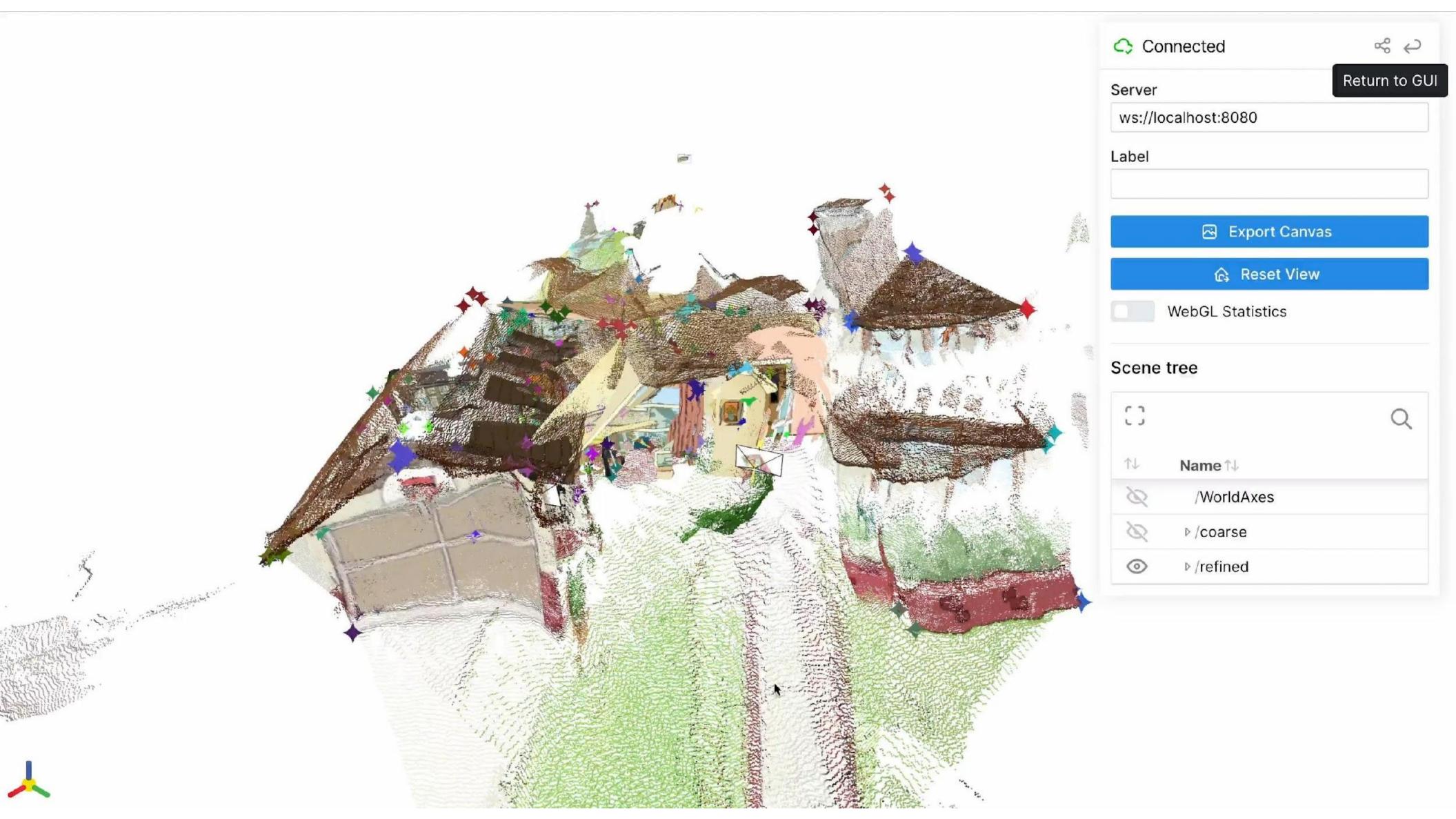
Toon3D Labeler

This is a simple tool to manually annotate correspondences on a set of images.

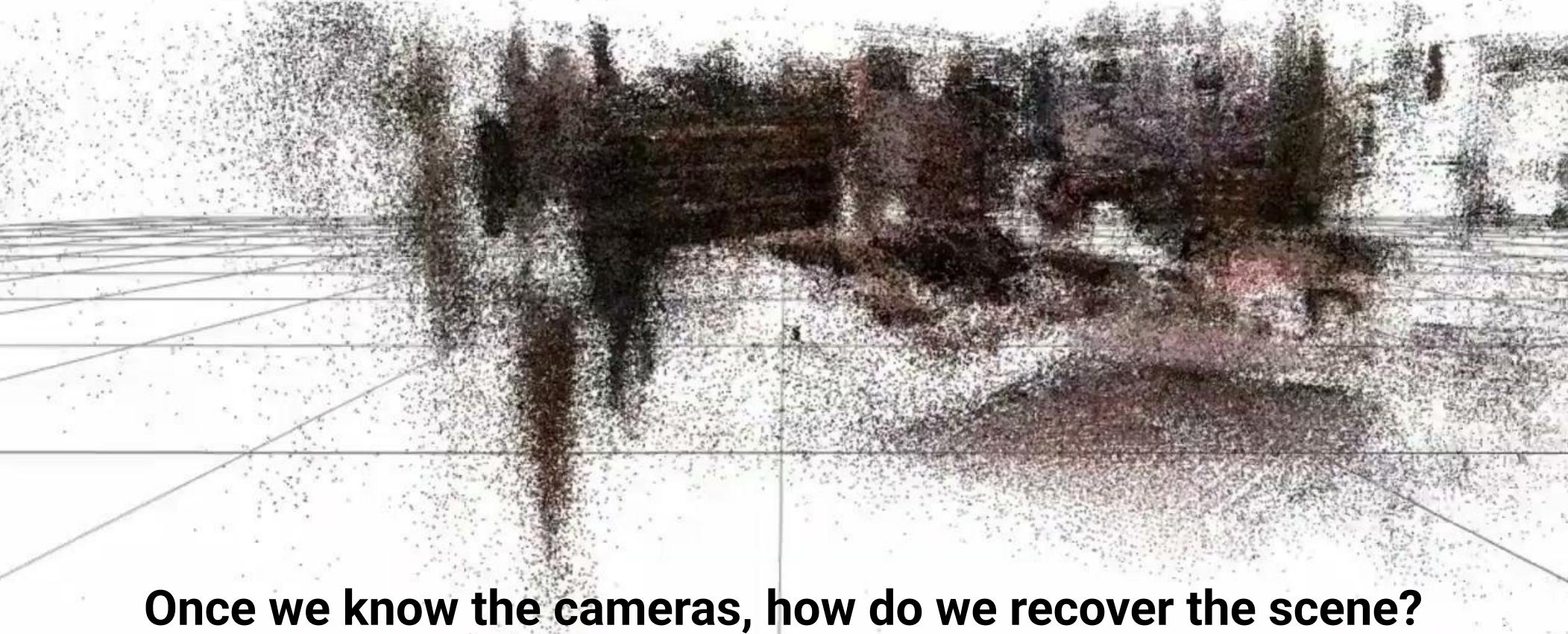
Instructions

Project Page

How far can we push the limits of SfM on cartoons?



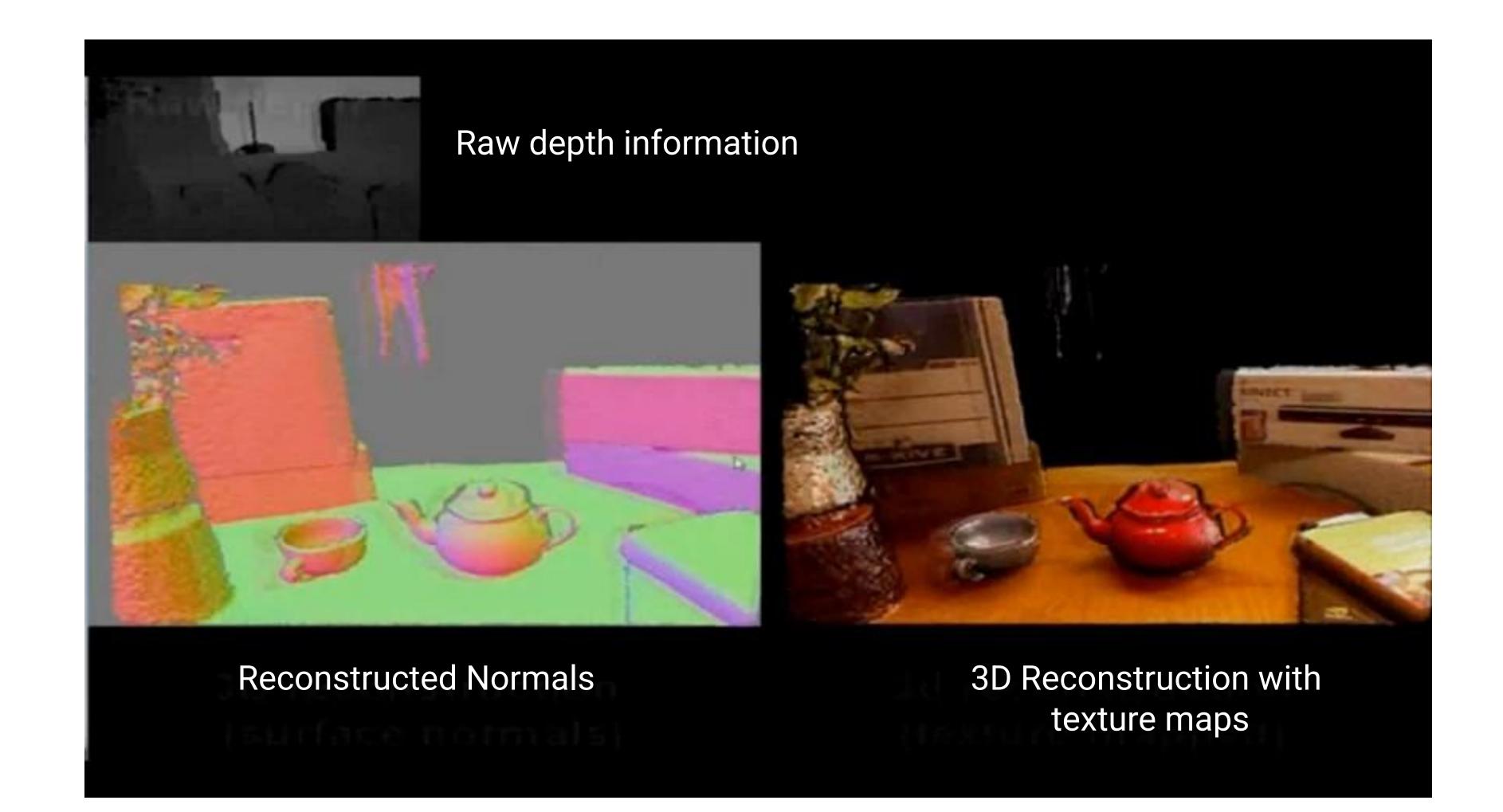
Novel-View Synthesis



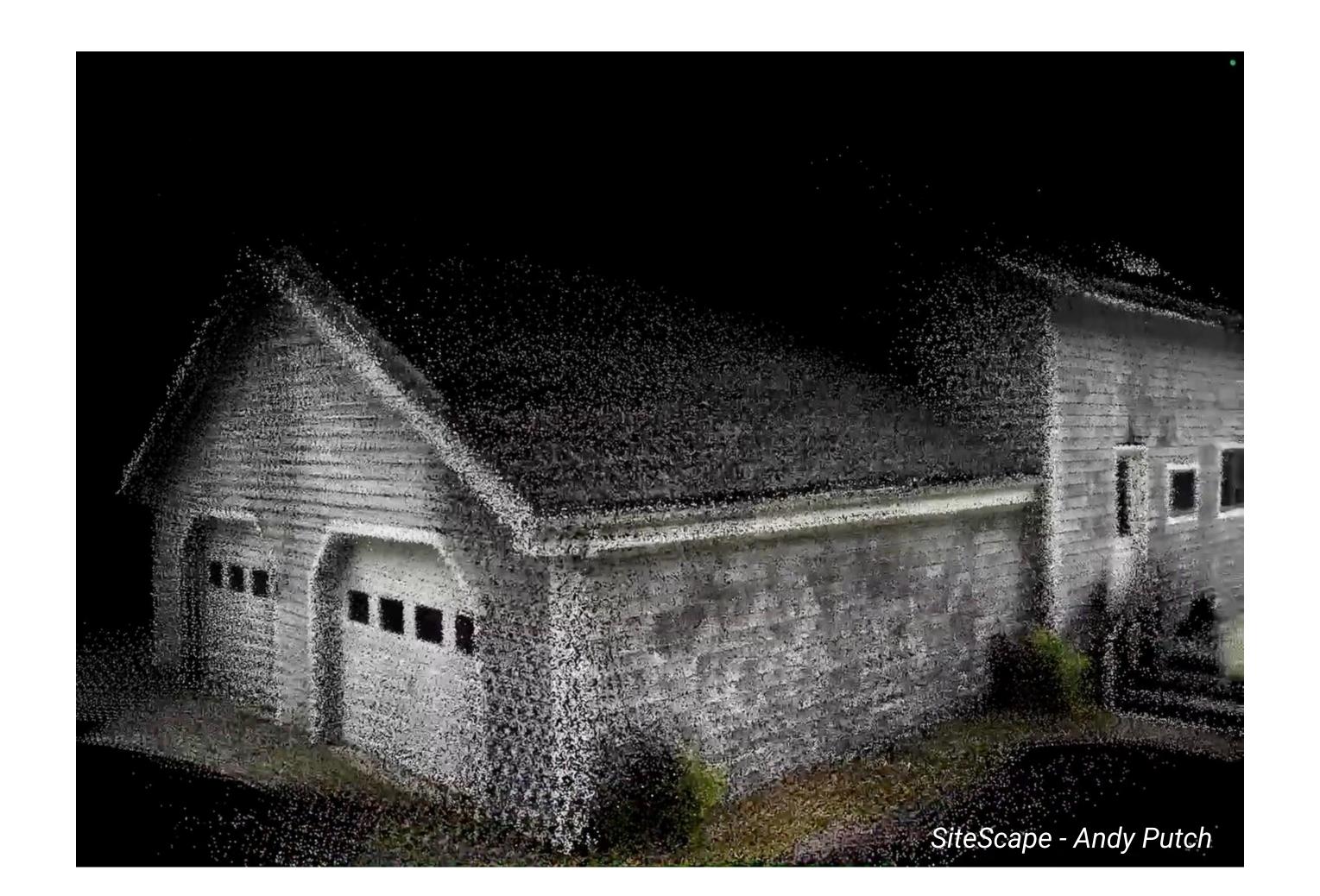
If we knew the depth, that would be helpful...

Microsoft Kinect

If we knew the depth, that would be helpful...



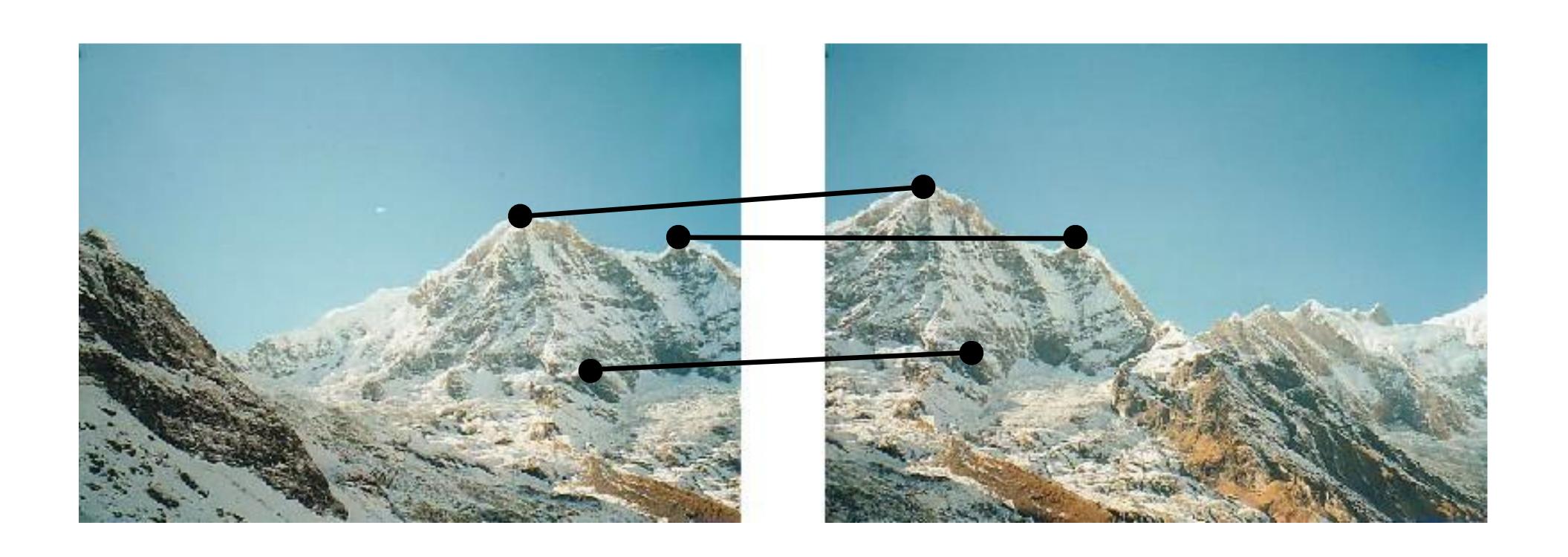
If we knew the depth, that would be helpful...



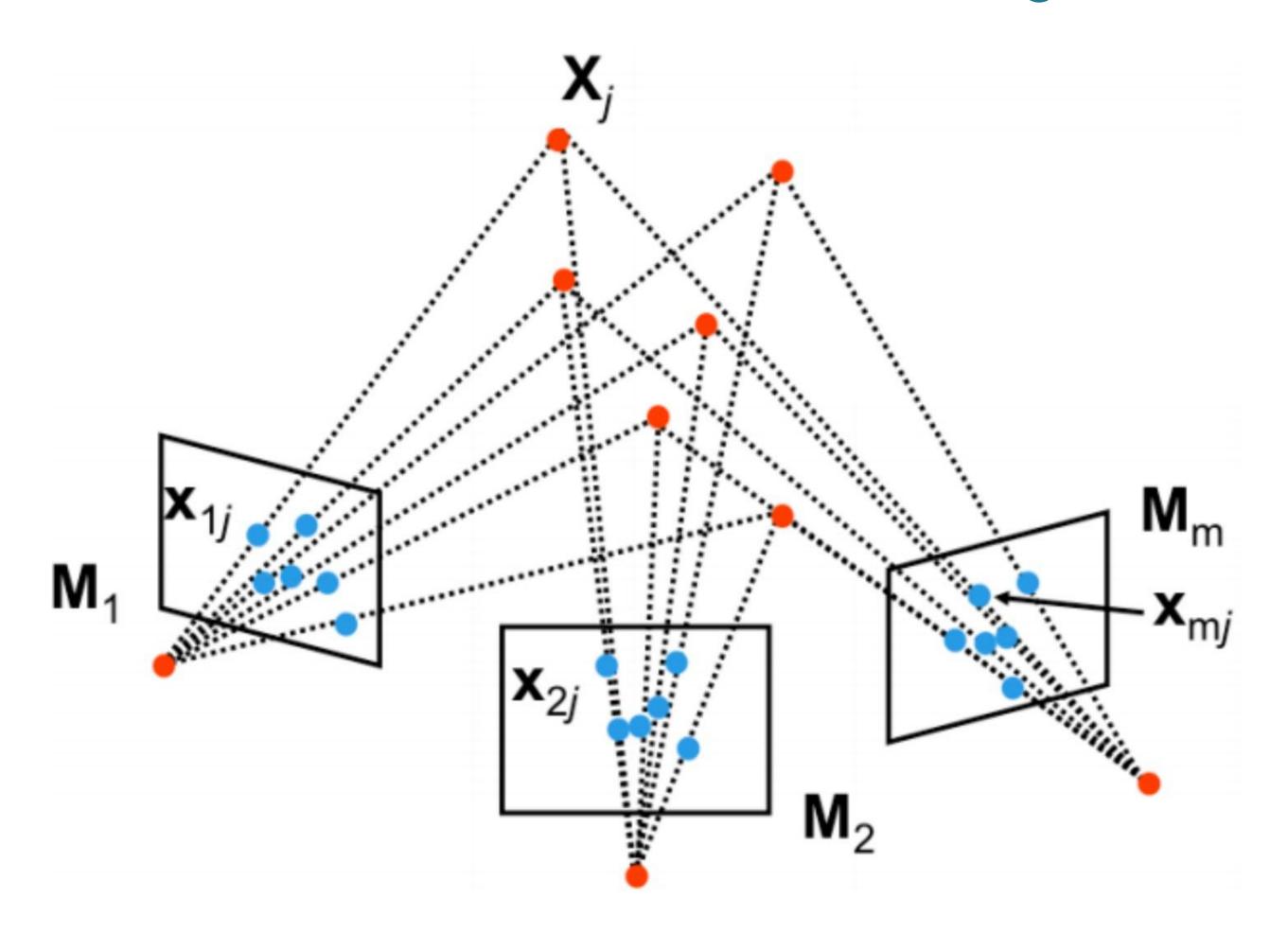
What if we don't know the depth?

Point Cloud from Images

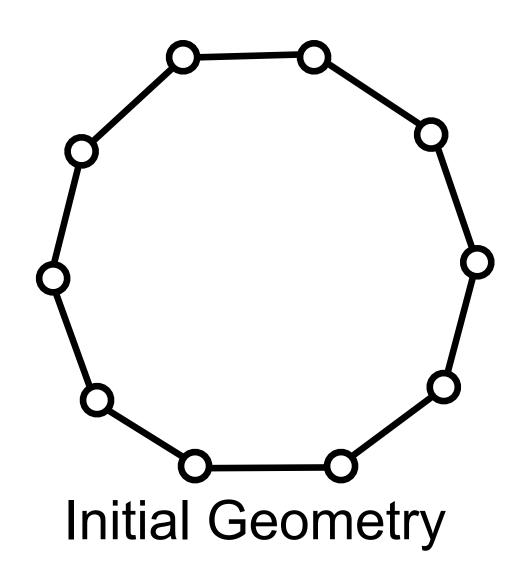
Point Cloud from Images

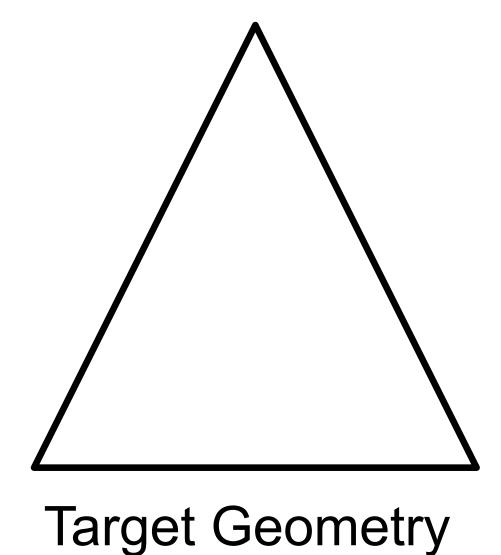


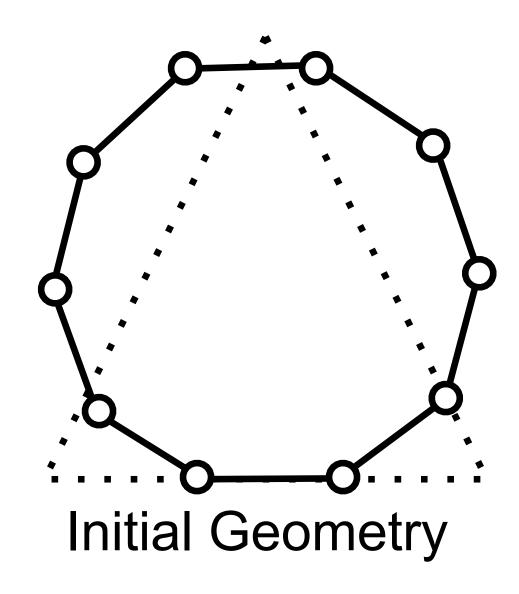
Point Cloud from Images

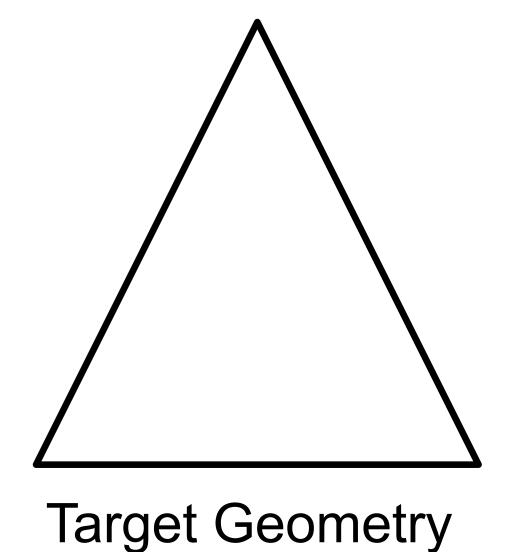


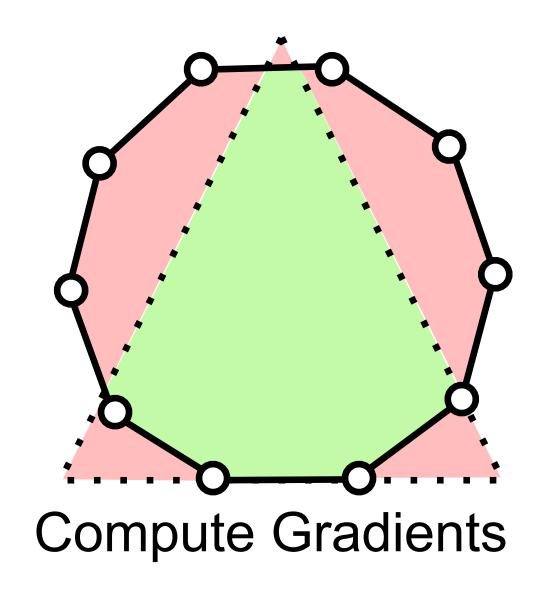
Can we operate on the geometry directly?

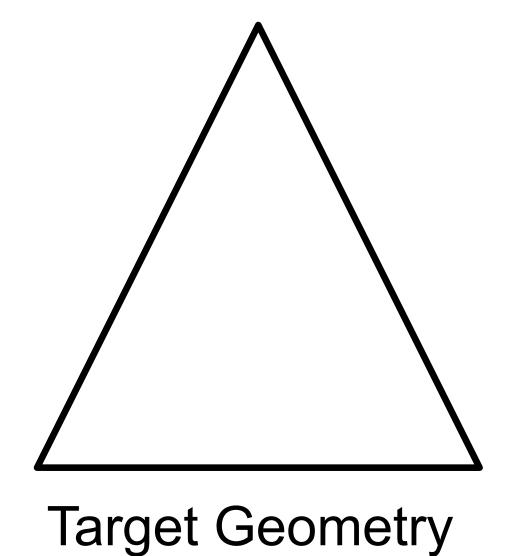


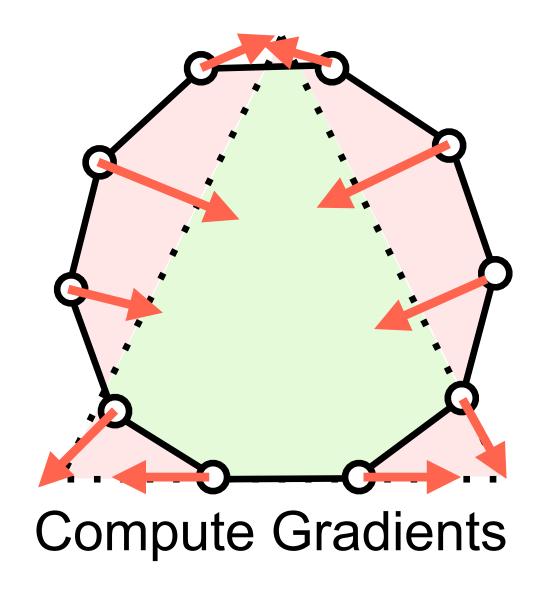


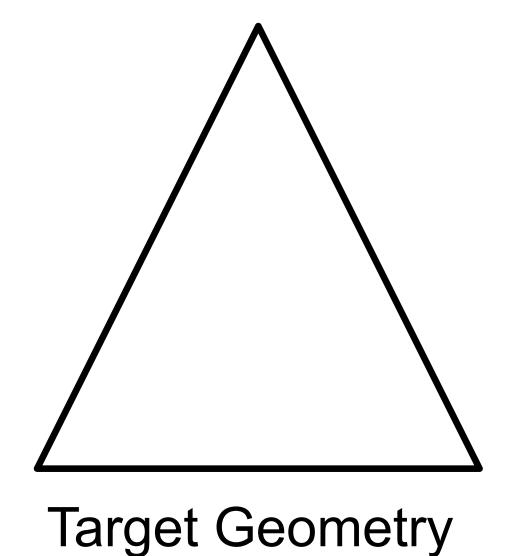


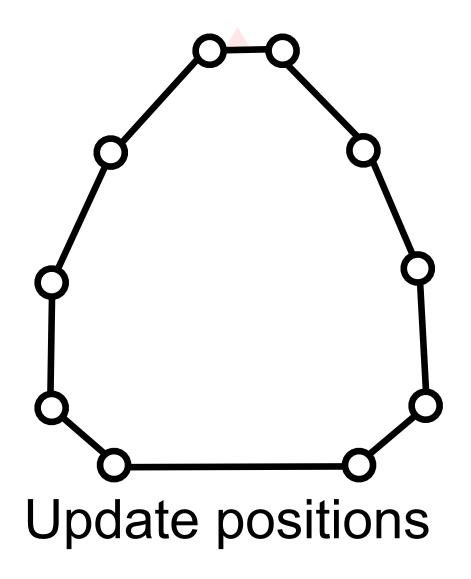


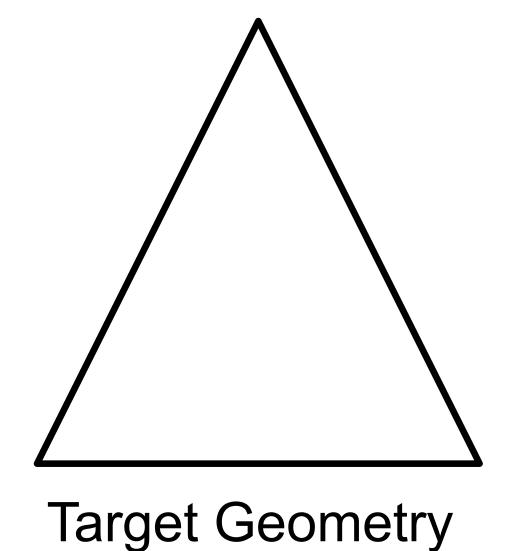


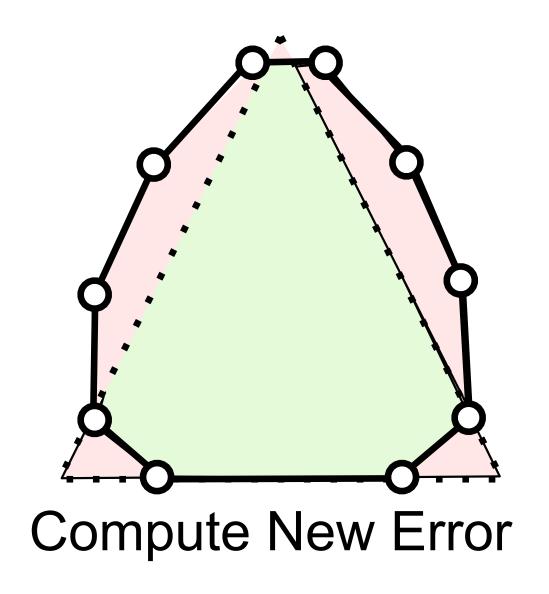


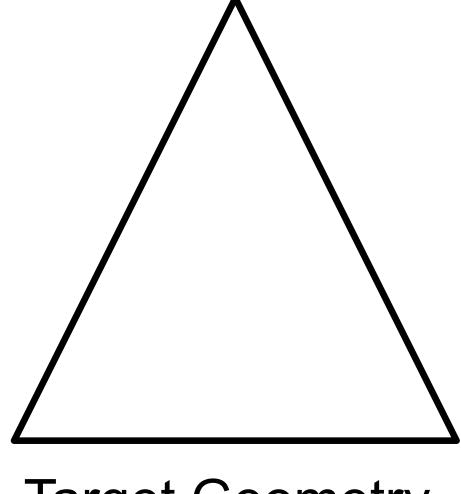




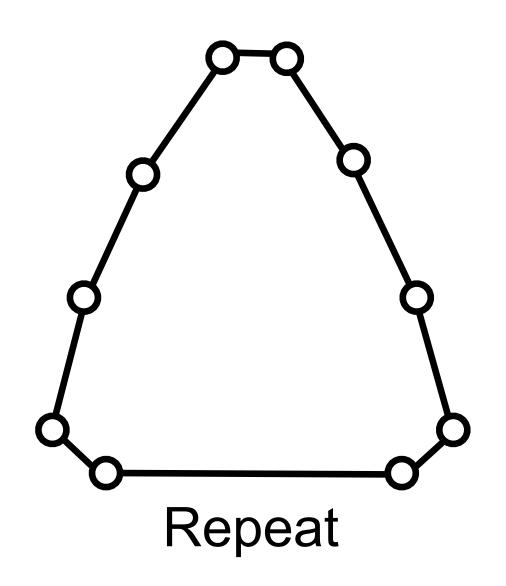


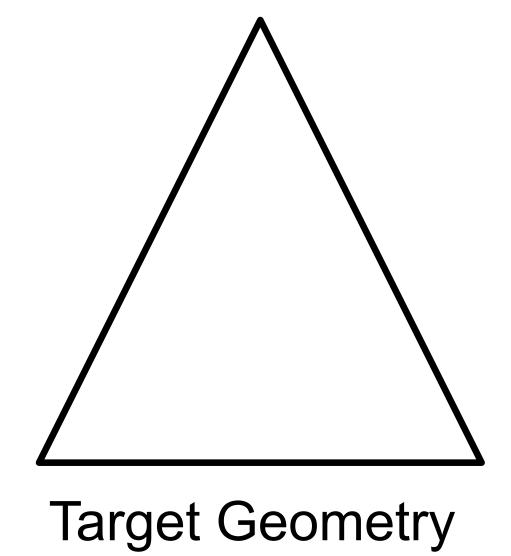


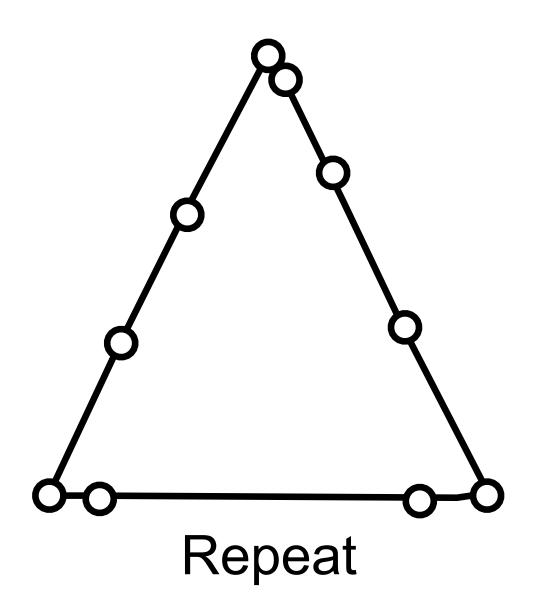


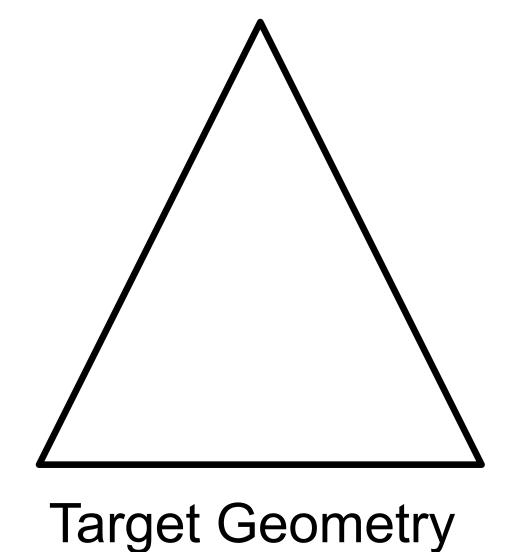


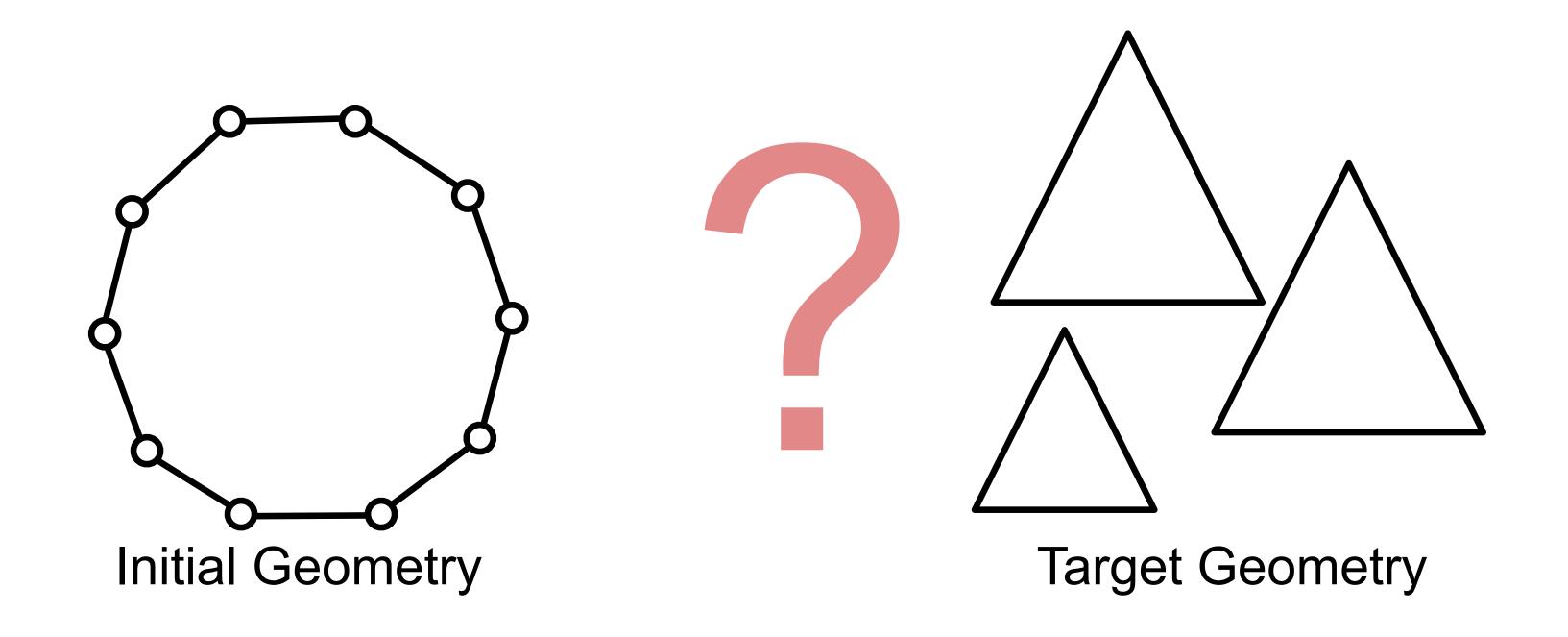
Target Geometry

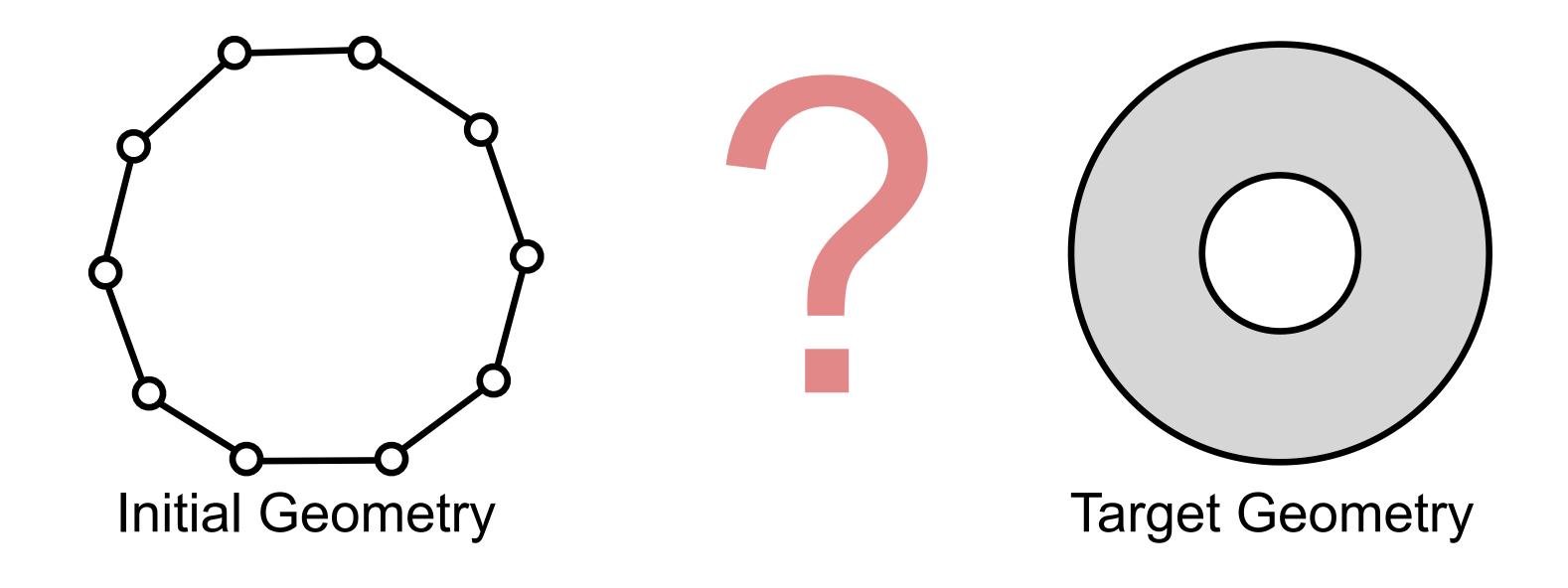


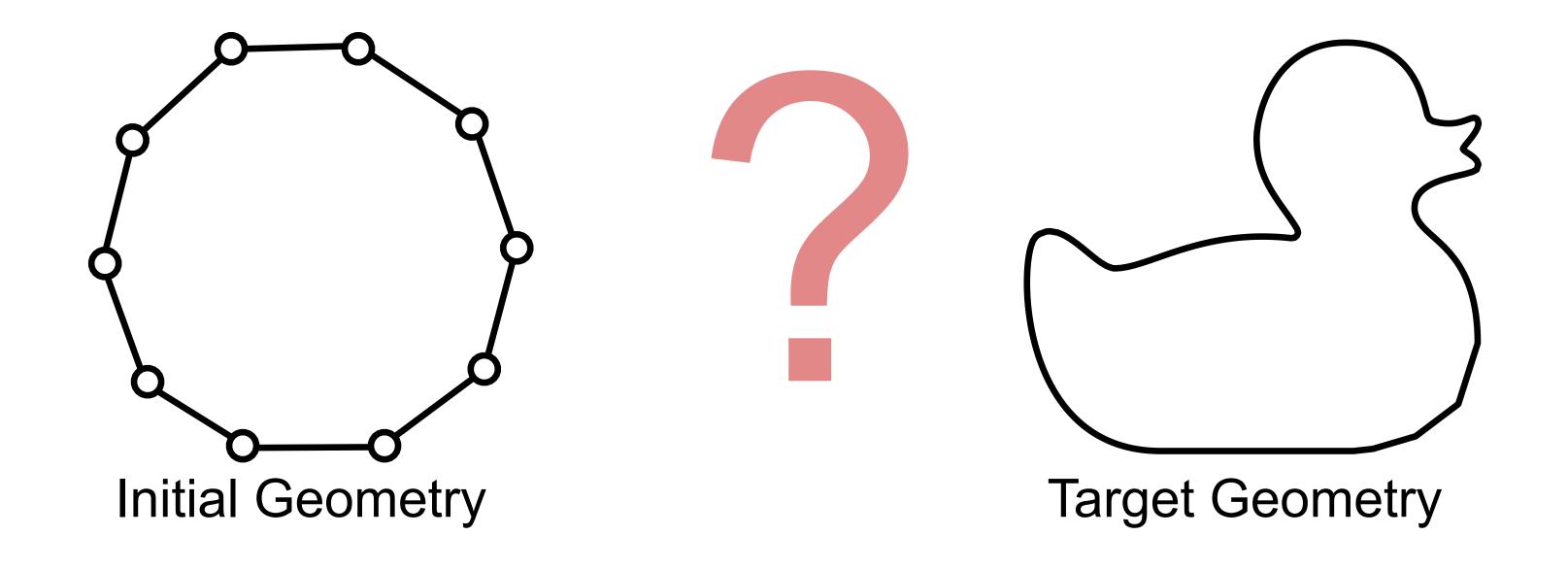




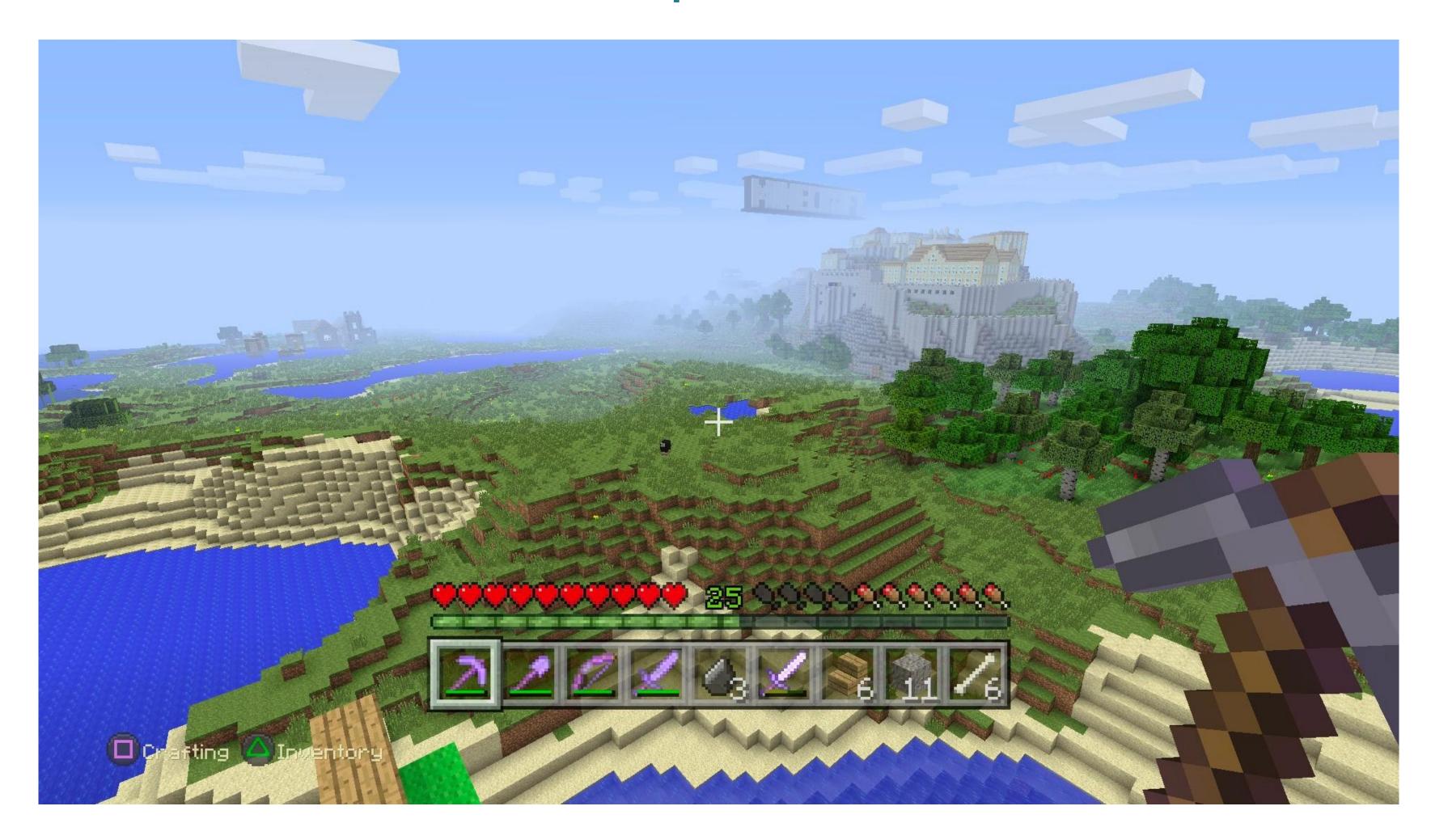


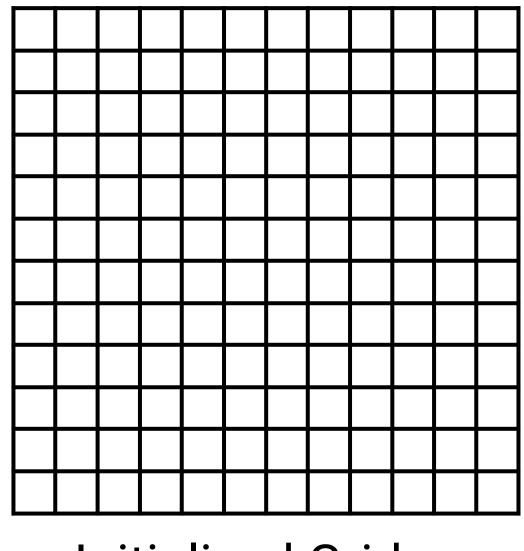




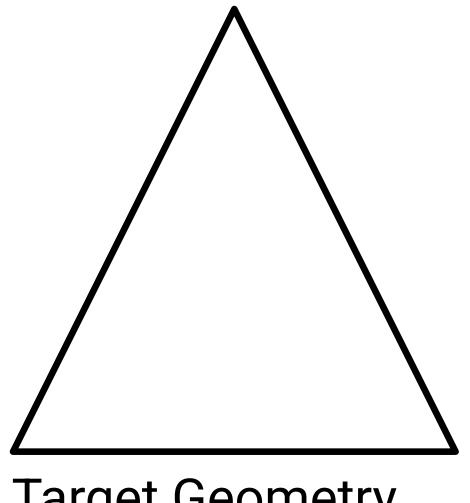


Voxel Representation

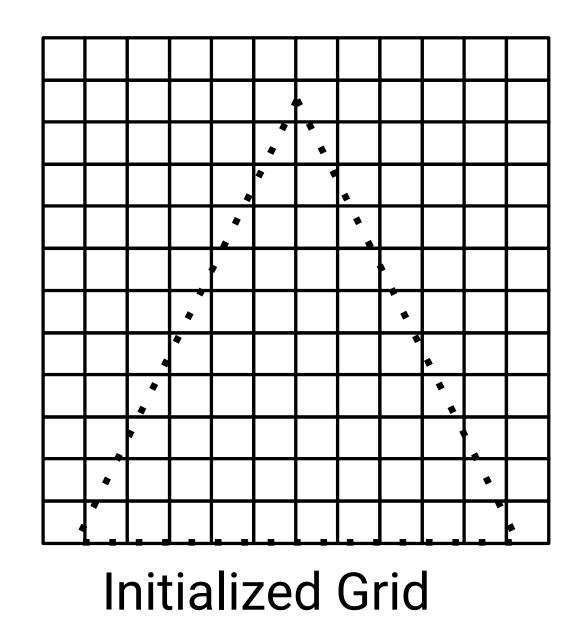


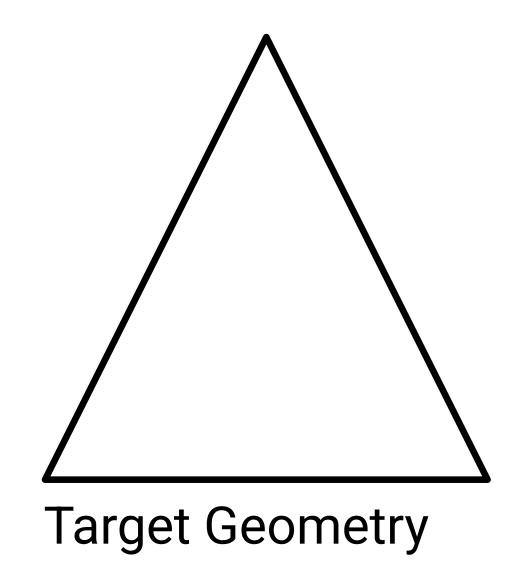


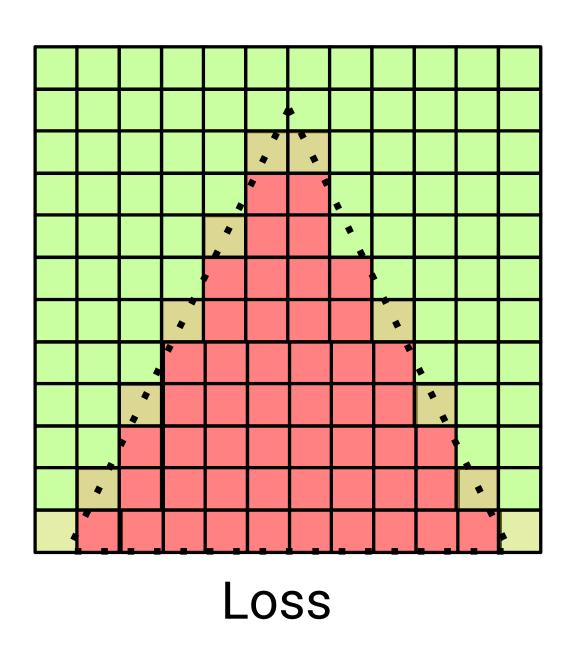
Initialized Grid

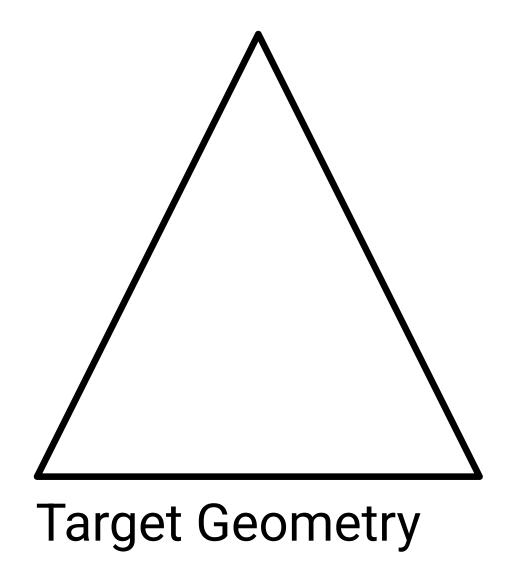


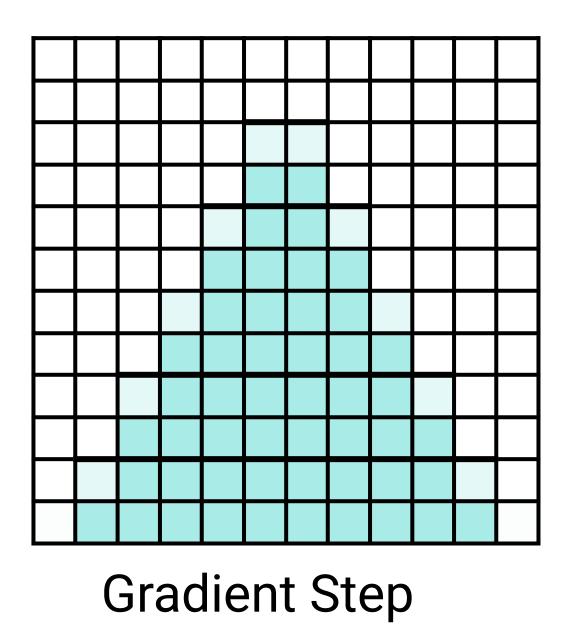
Target Geometry



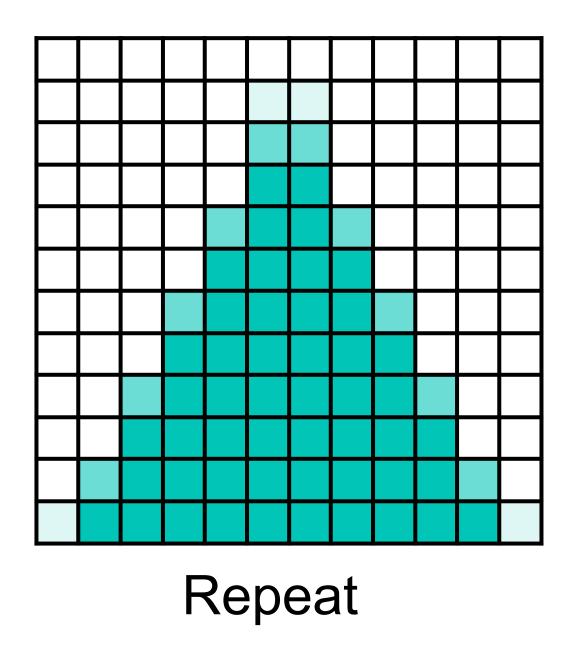


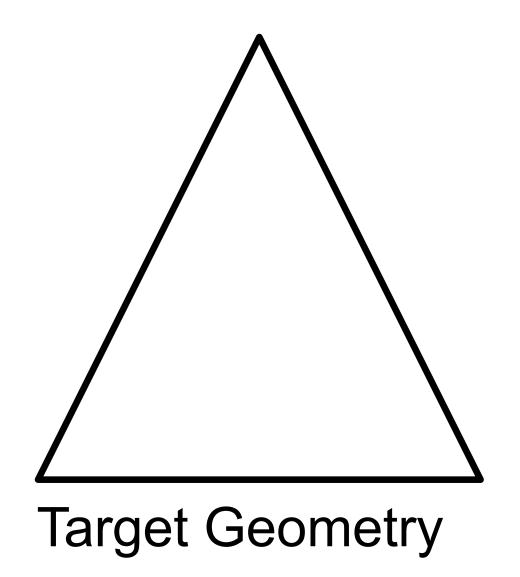


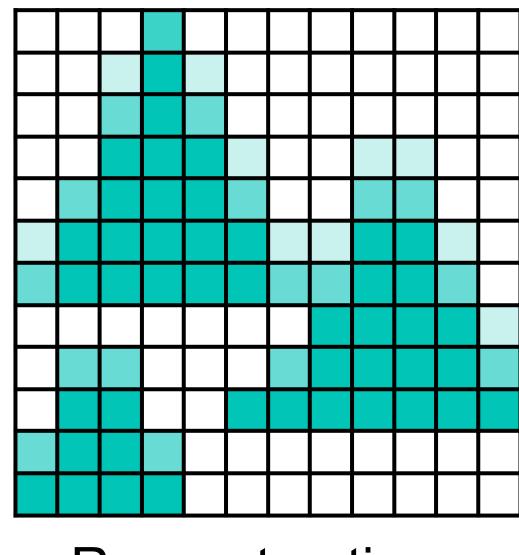




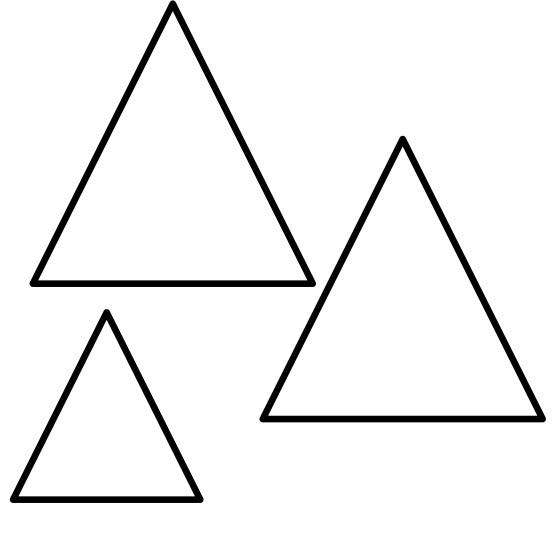
Target Geometry



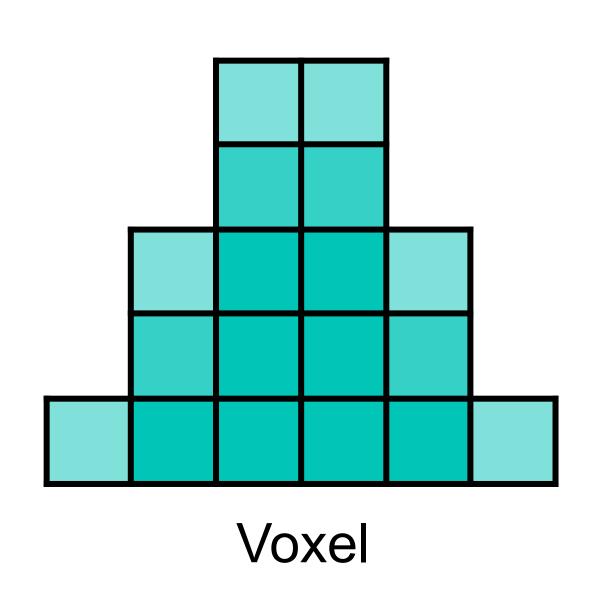


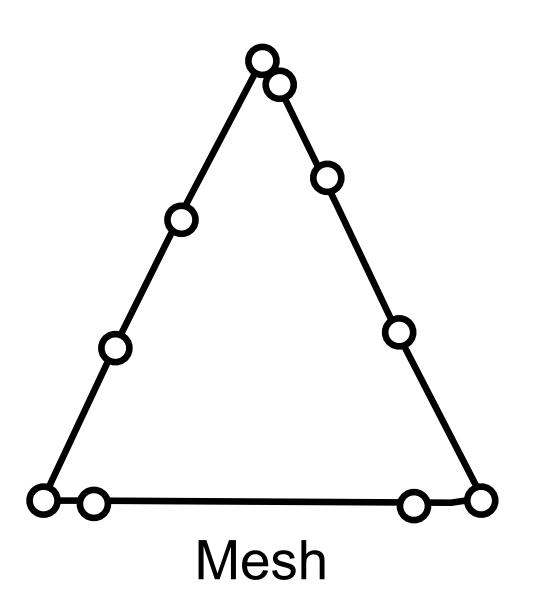


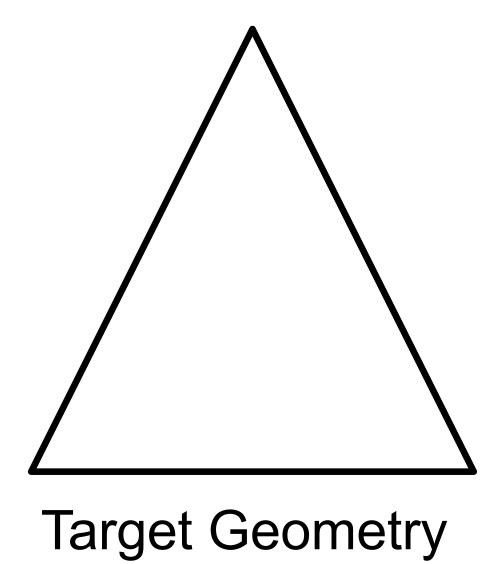
Reconstruction



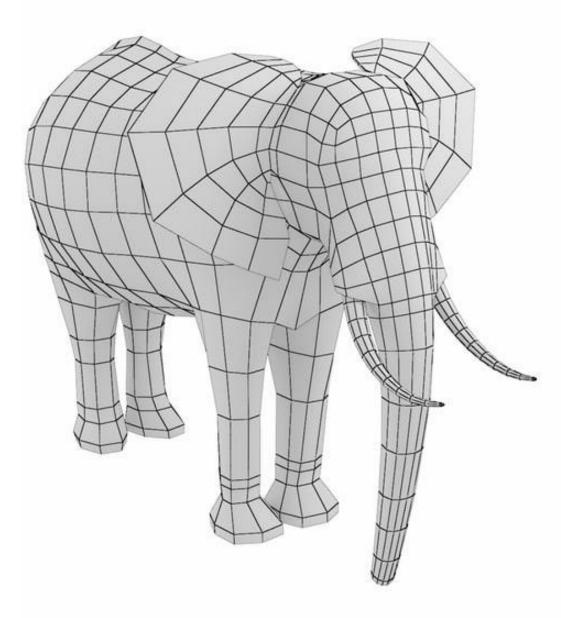
Target Geometry







Geometry Representations



Mesh Representation

Small memory footprint
Hard to optimize

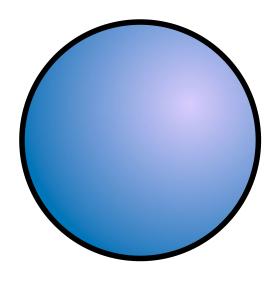


Voxel Representation

Easy to optimize

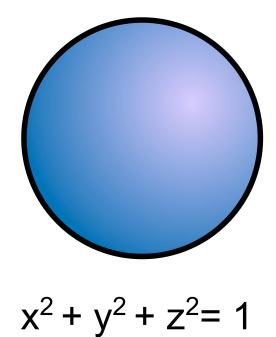
Large memory footprint

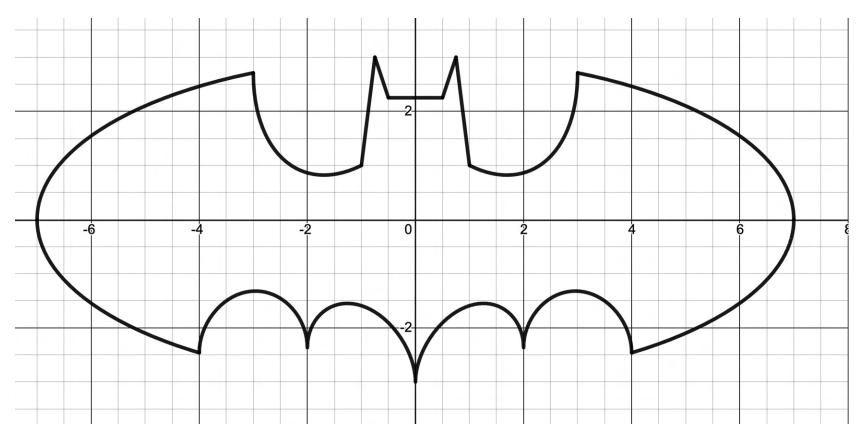
Implicit Functions



 $x^2 + y^2 + z^2 = 1$

Implicit Functions





$$\left\{ |x| > 3:3\sqrt{-\left(\frac{x}{7}\right)^2 + 1} \right\}$$

$$\left\{ |x| > 4: -3\sqrt{-\left(\frac{x}{7}\right)^2 + 1} \right\}$$

$$\left| \frac{x}{2} \right| - \frac{3\sqrt{33} - 7}{112} x^2 + \sqrt{1 - \left(abs(|x| - 2) - 1 \right)}$$

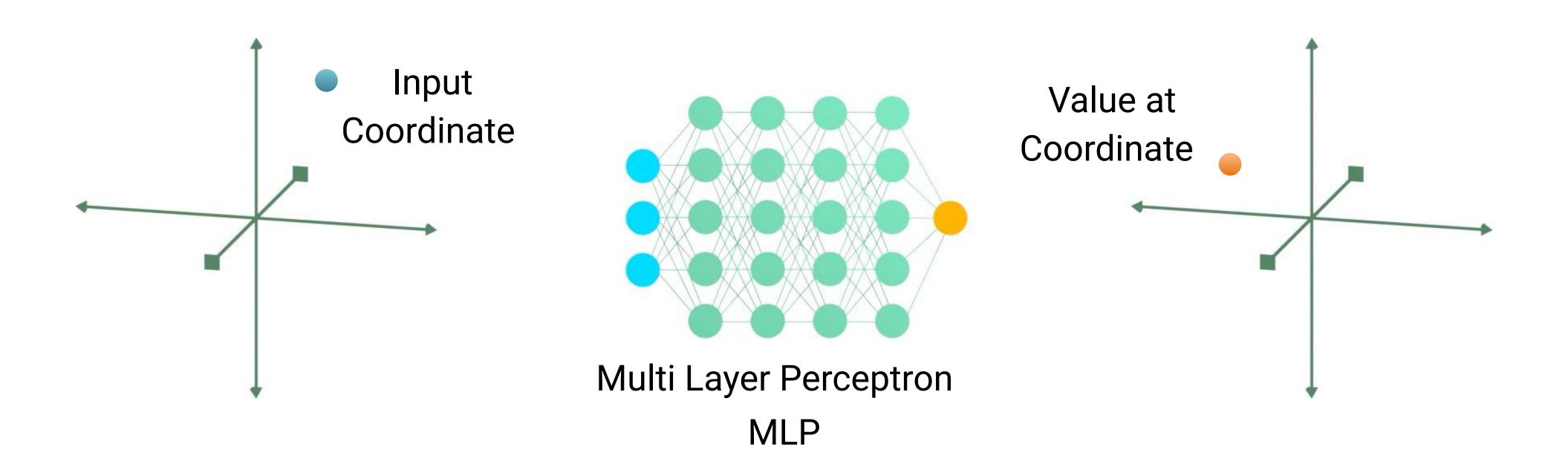
$$\left\{ .75 < |x| < 1 : 9 - 8|x| \right\}$$

$$\left\{ .5 < |x| < .75 : 3|x| + .75 \right\}$$

$$\{ |x| < .5 : 2.25 \}$$

$$\left\{ |x| > 1:1.5 - .5|x| - \frac{6\sqrt{10}}{14} \left(\sqrt{3 - x^2 + 2|x|} \right) \right\}$$

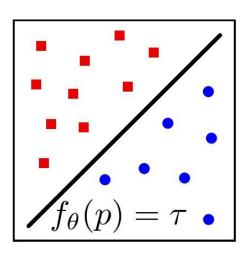
Coordinate Based Neural Network



Neural networks as a continuous shape representation

Occupancy Networks

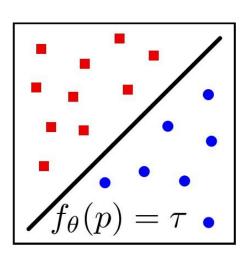
(Mescheder et al. 2019) $(x, y, z) \rightarrow \text{occupancy}$



Neural networks as a continuous shape representation

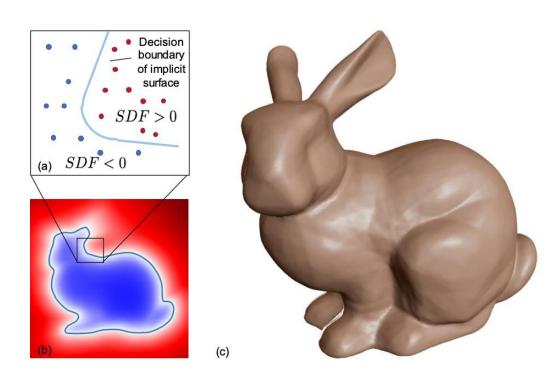
Occupancy Networks

(Mescheder et al. 2019) $(x, y, z) \rightarrow \text{occupancy}$



DeepSDF

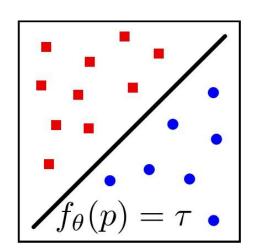
(Park et al. 2019) $(x, y, z) \rightarrow \text{distance}$



Neural networks as a continuous shape representation

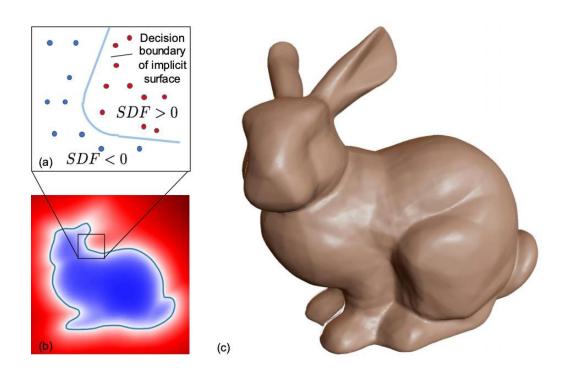
Occupancy Networks

(Mescheder et al. 2019) $(x, y, z) \rightarrow \text{occupancy}$



DeepSDF

(Park et al. 2019) $(x, y, z) \rightarrow \text{distance}$



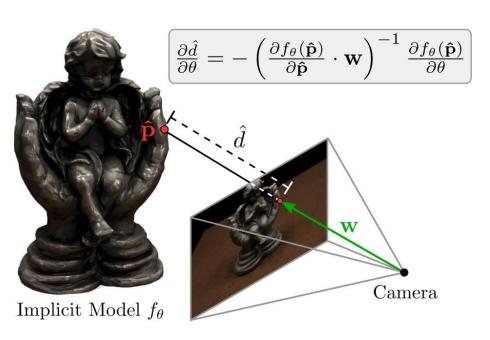
Scene Representation Networks

(Sitzmann et al. 2019)

 $(x, y, z) \rightarrow$ latent vec. (color, dist.)

Differentiable Volumetric Rendering

(Niemeyer et al. 2020) $(x, y, z) \rightarrow \text{color, occ.}$



NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Matthew Tancik*1

Jonathan T. Barron³

Pratul P. Srinivasan*^{1,3}

Ravi Ramamoorthi²

Ben Mildenhall*^{1,3} Ren Ng¹

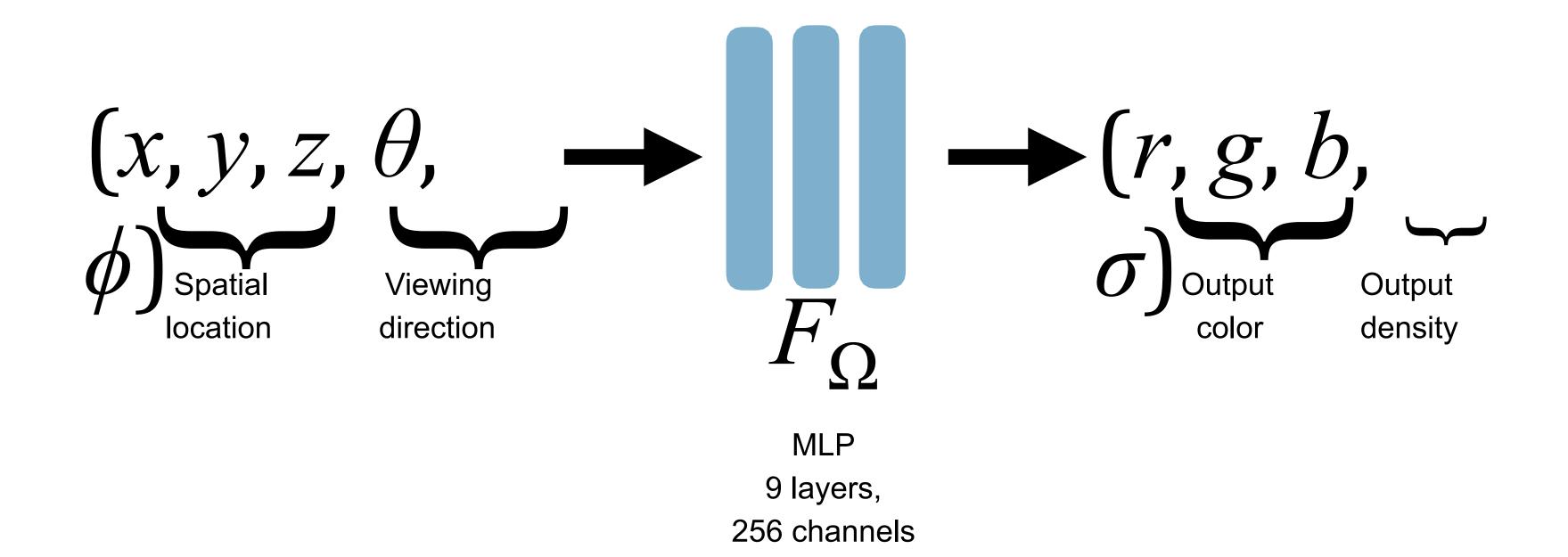
UC San Diego

* Denotes Equal Contribution

NeRF (neural radiance fields):
Neural networks as a volume representation, using volume rendering to do view synthesis.

 $(x, y, z, \theta, \phi) \rightarrow \text{color, opacity}$

Representing a scene as a continuous 5D function



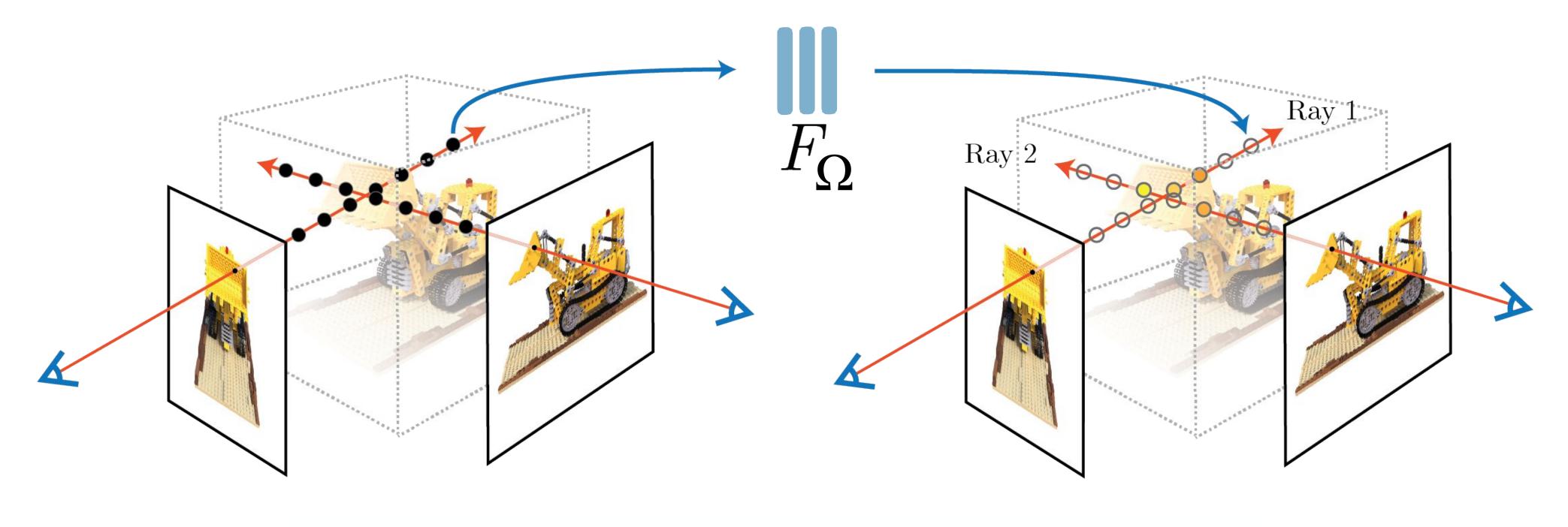
Recall "radiance" from previous lectures

Radiance

Light Traveling Along A Ray

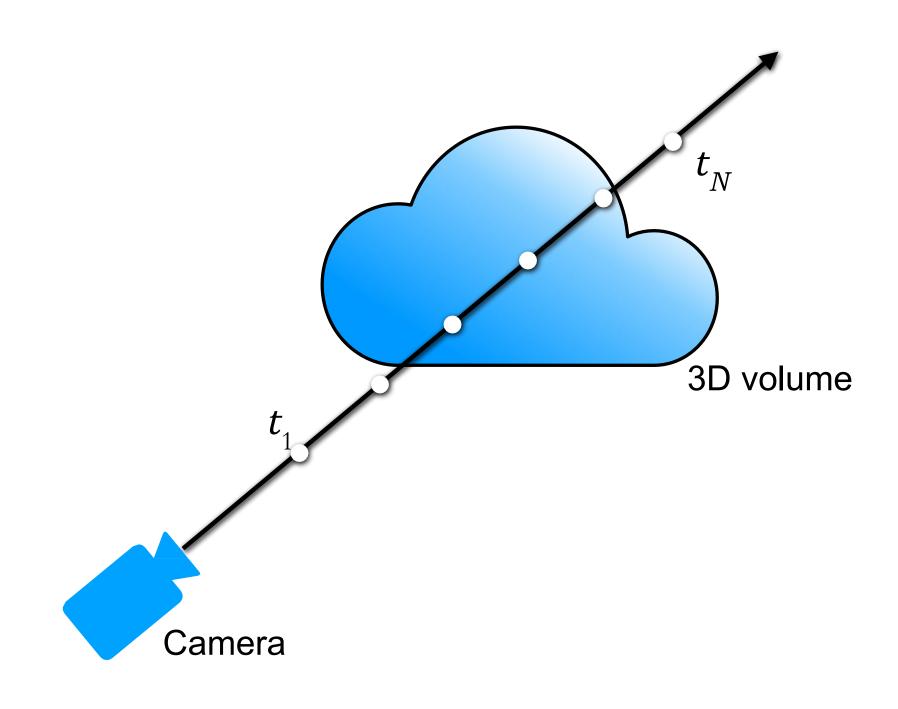
- 1. Radiance is the fundamental field quantity that describes the distribution of light in an environment
 - Radiance is the quantity associated with a ray
 - Rendering is all about computing radiance
- 2. Radiance is invariant along a ray in a vacuum

CS184/284A Ren Ng

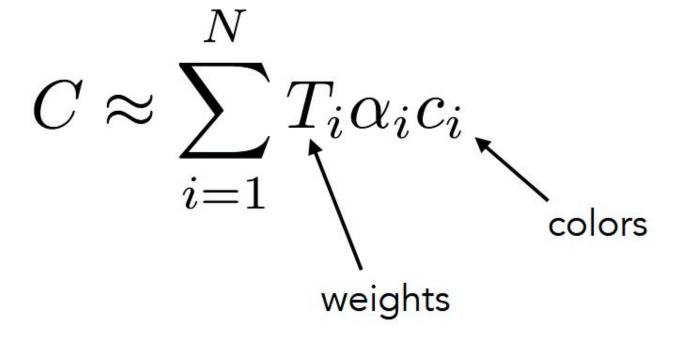


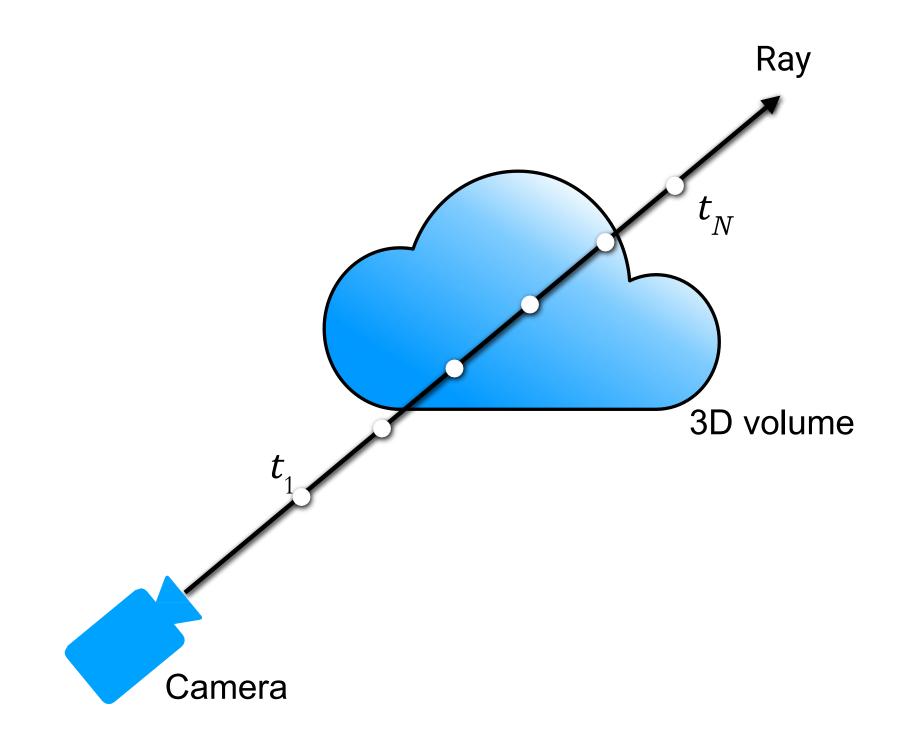
$$\min_{\Omega} \sum_{i} \| \operatorname{render}^{(i)}(F_{\Omega}) - I_{\operatorname{gt}}^{(i)} \|^{2}$$

Rendering model for ray r(t) = o + td:

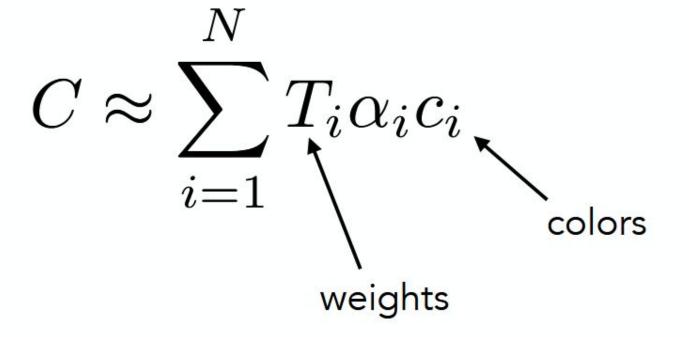


Rendering model for ray r(t) = o + td:



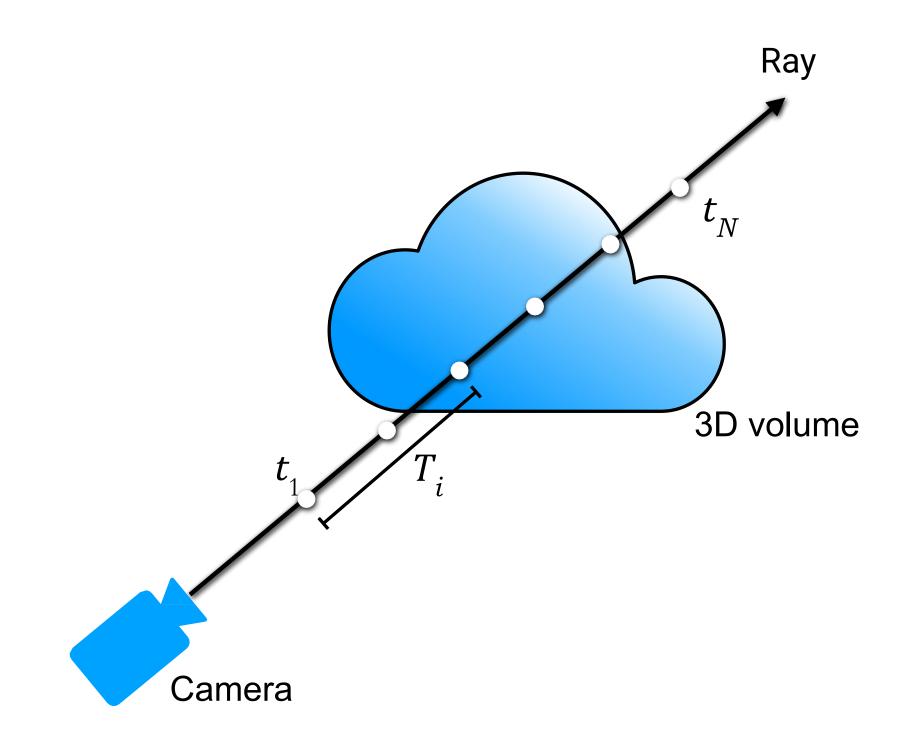


Rendering model for ray r(t) = o + td:

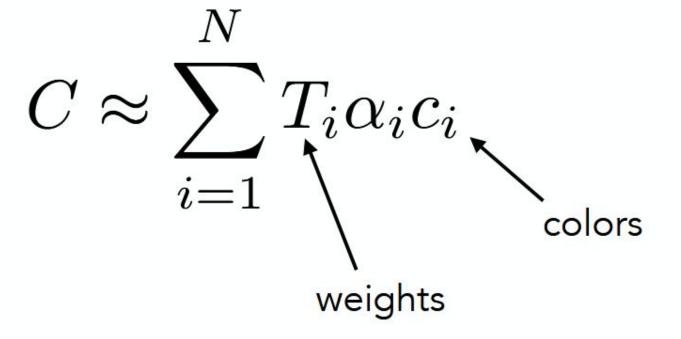


How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$



Rendering model for ray r(t) = o + td:

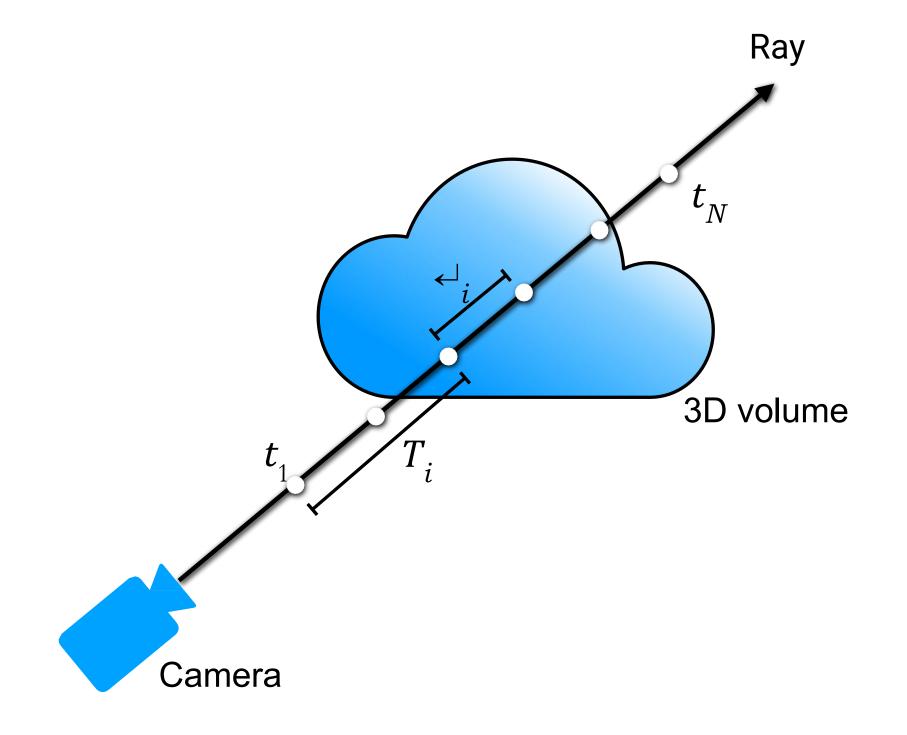


How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

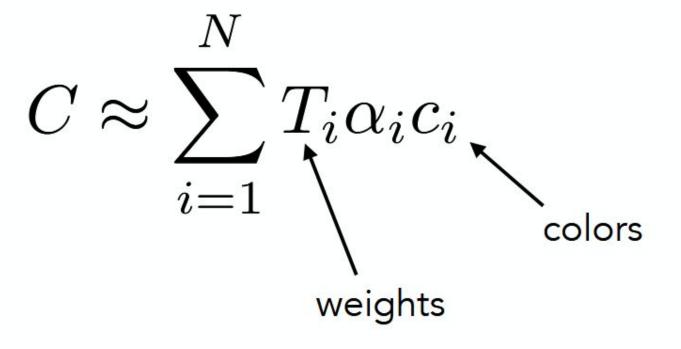
How much light is contributed by ray segment i:

$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$



Effective resolution is tied to distance between samples

Rendering model for ray r(t) = o + td:

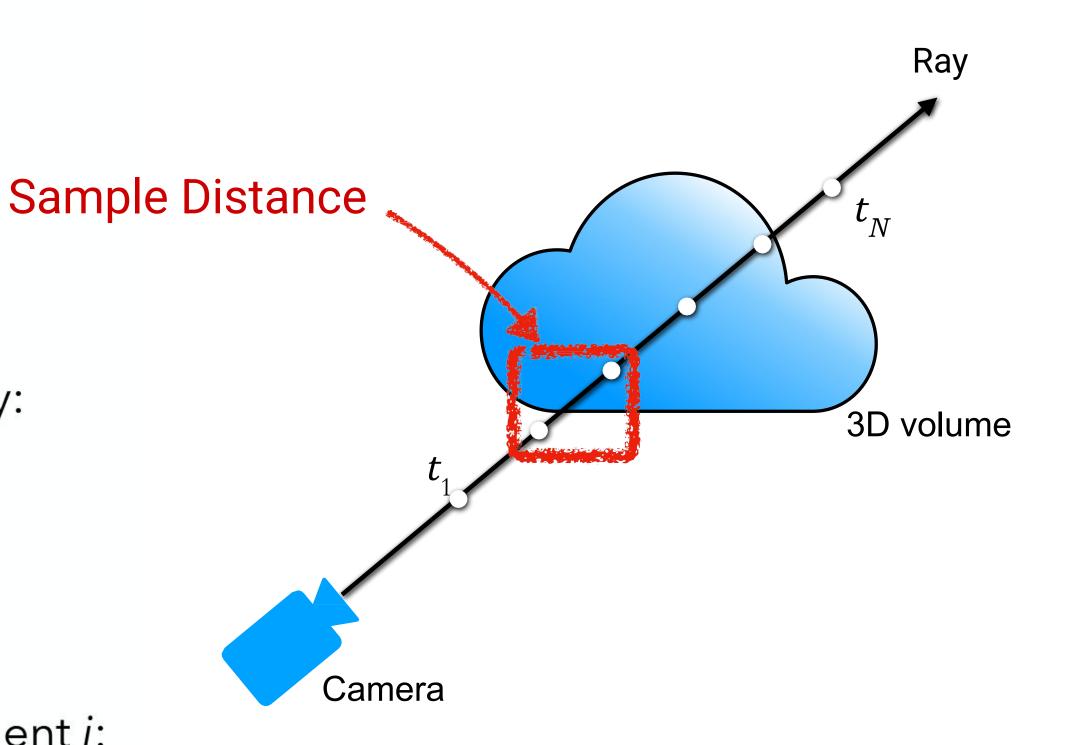


How much light is blocked earlier along ray:

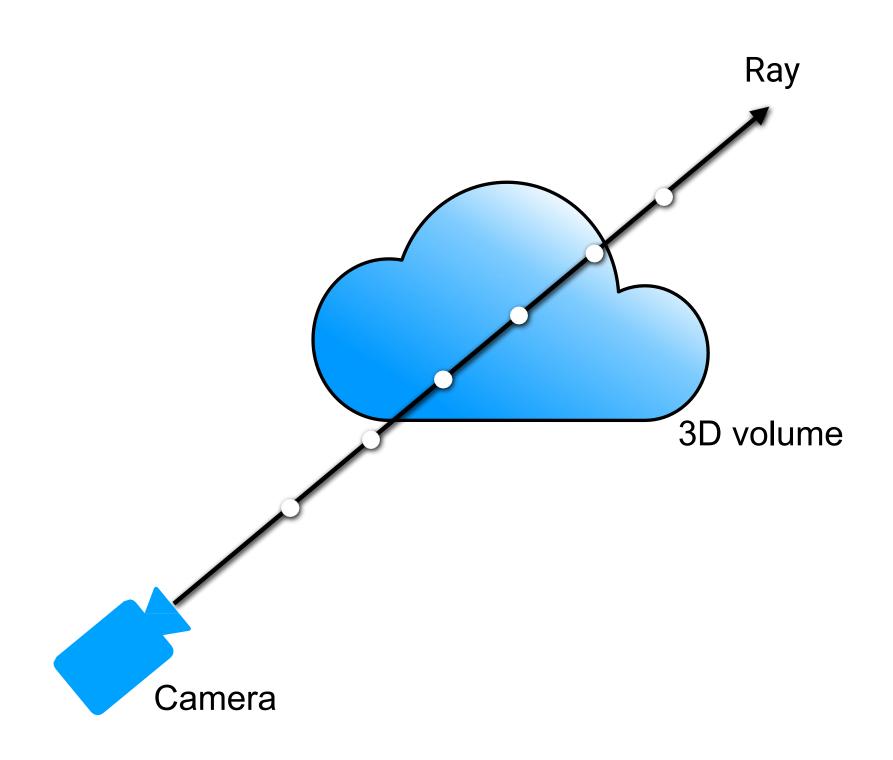
$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

How much light is contributed by ray segment i:

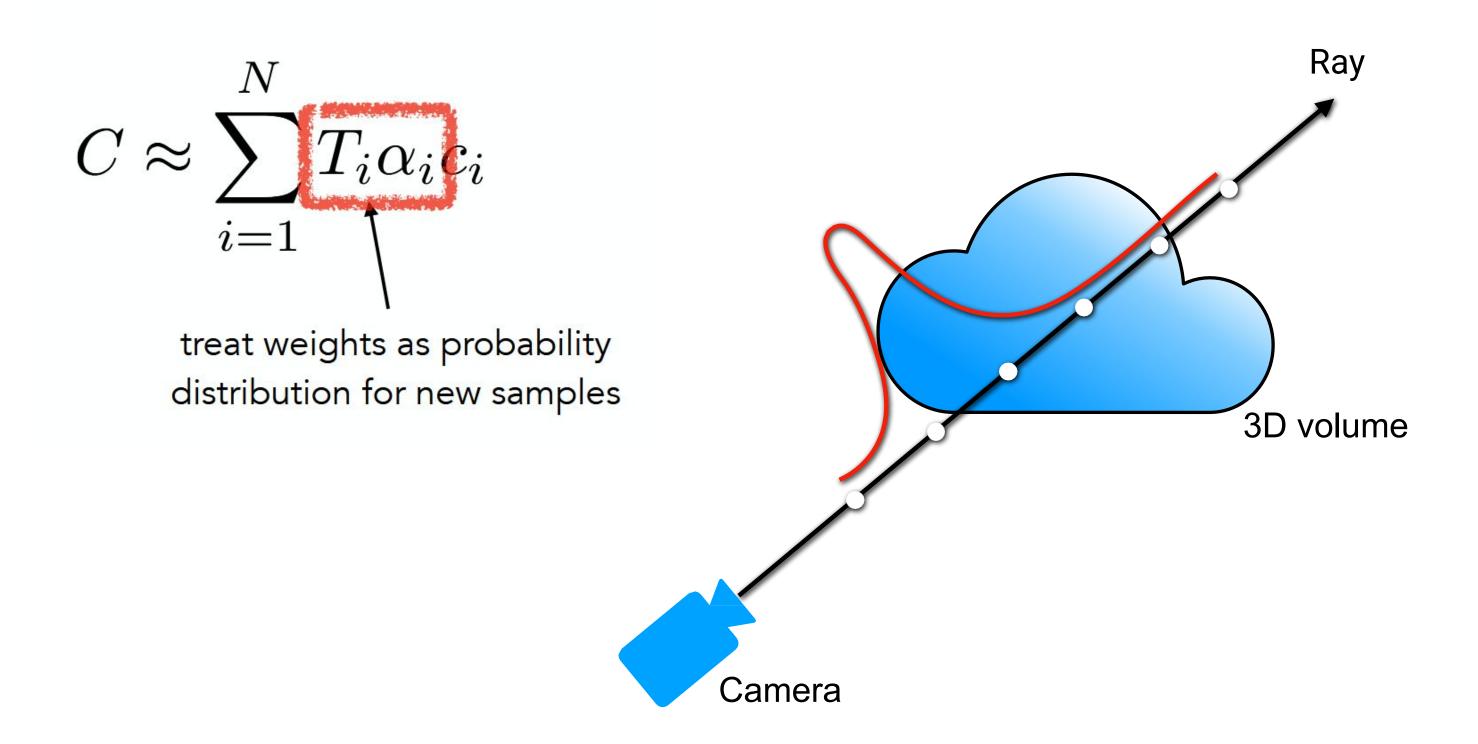
$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$



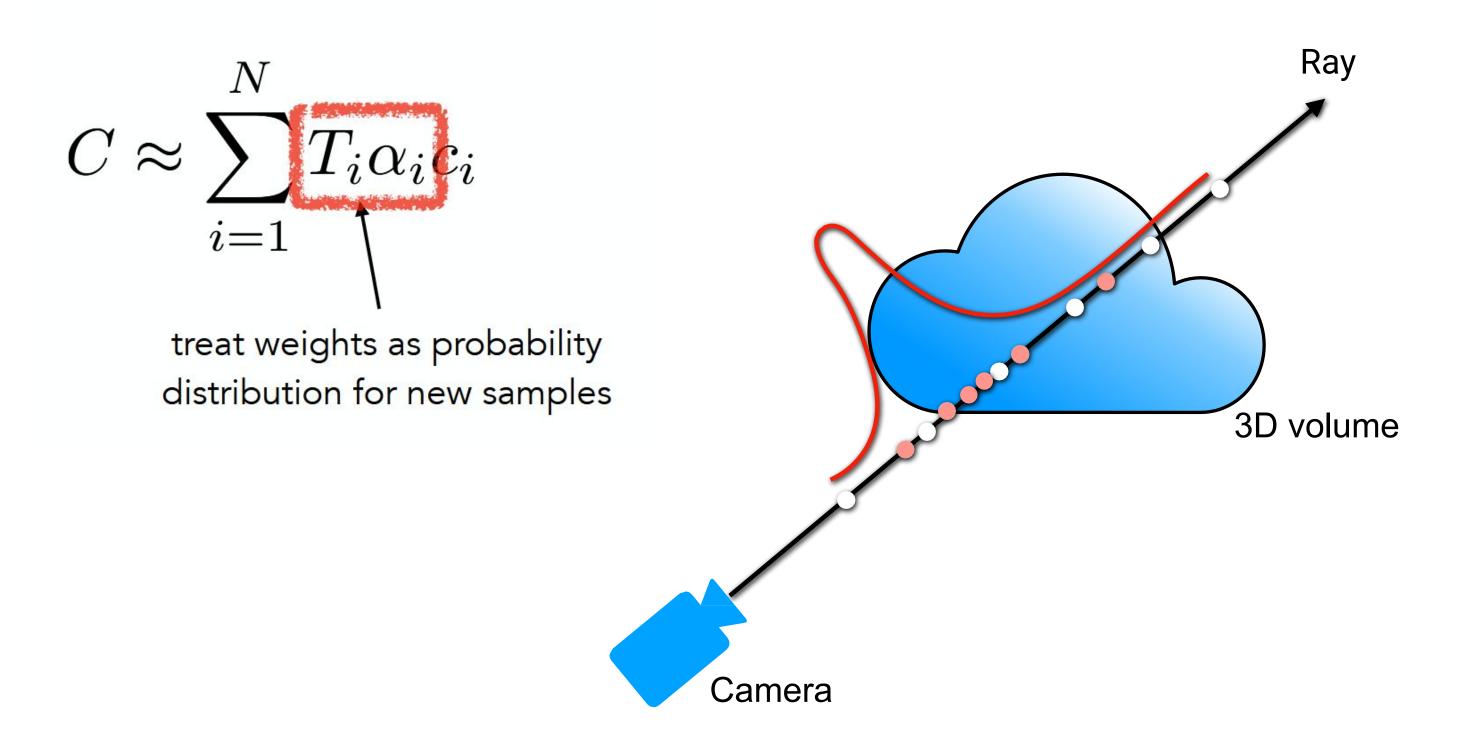
Can we allocate samples more efficiently? Two pass rendering



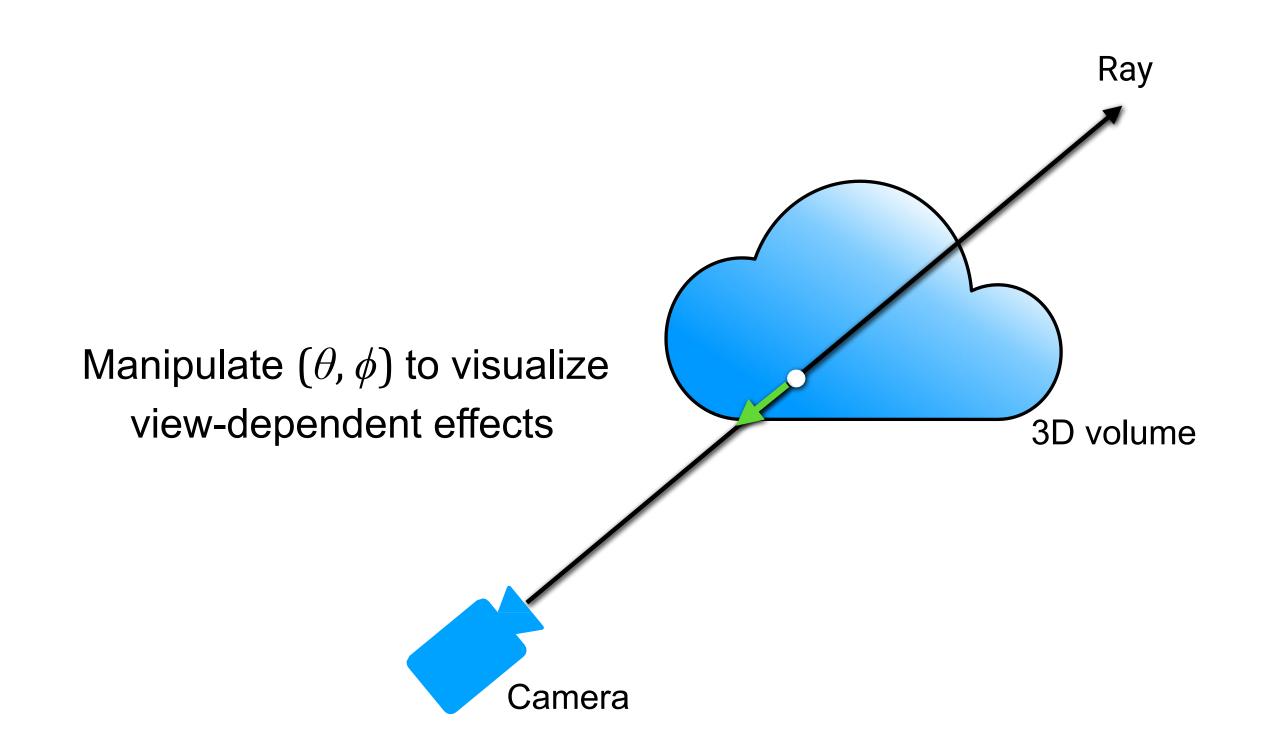
Two pass rendering: coarse



Two pass rendering: fine

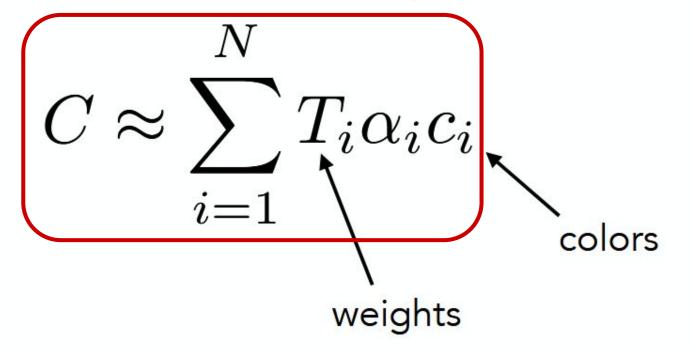


Viewing directions as input



Volume rendering is differentiable

Rendering model for ray r(t) = o + td:

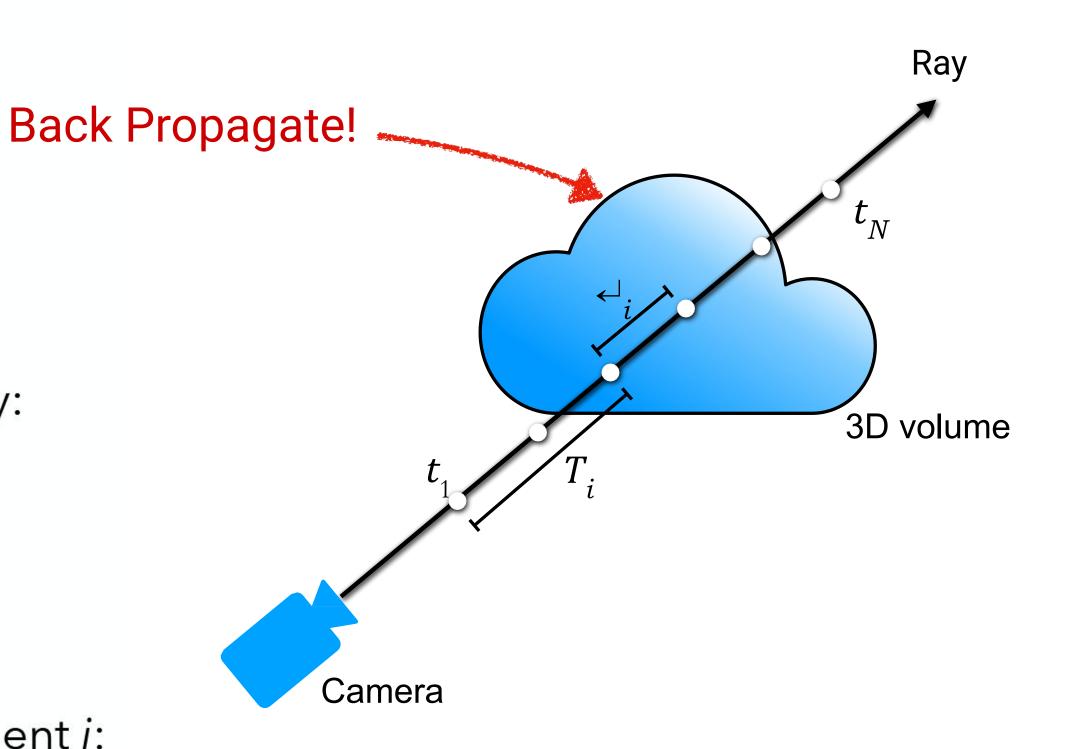


How much light is blocked earlier along ray:

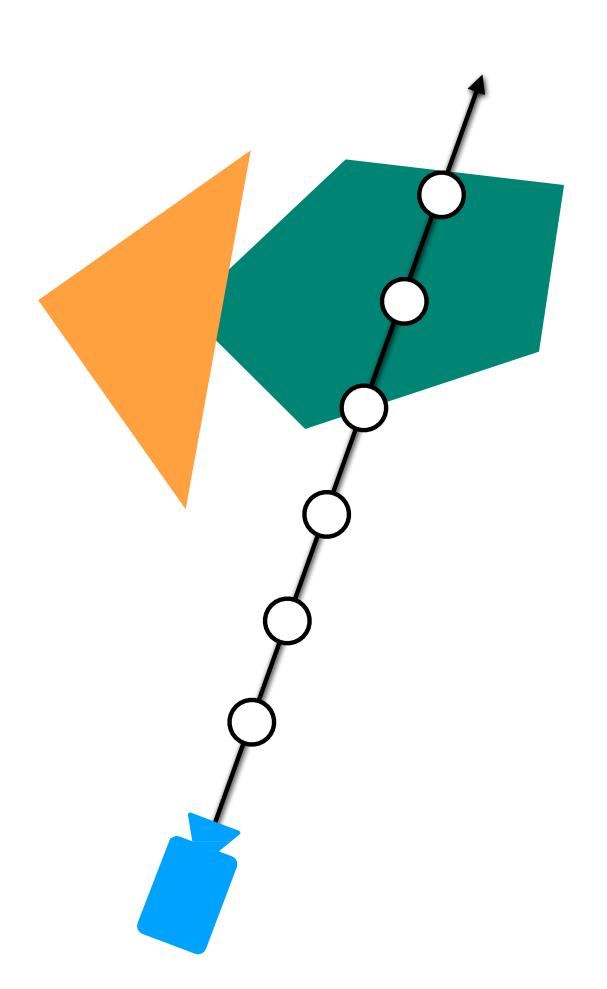
$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

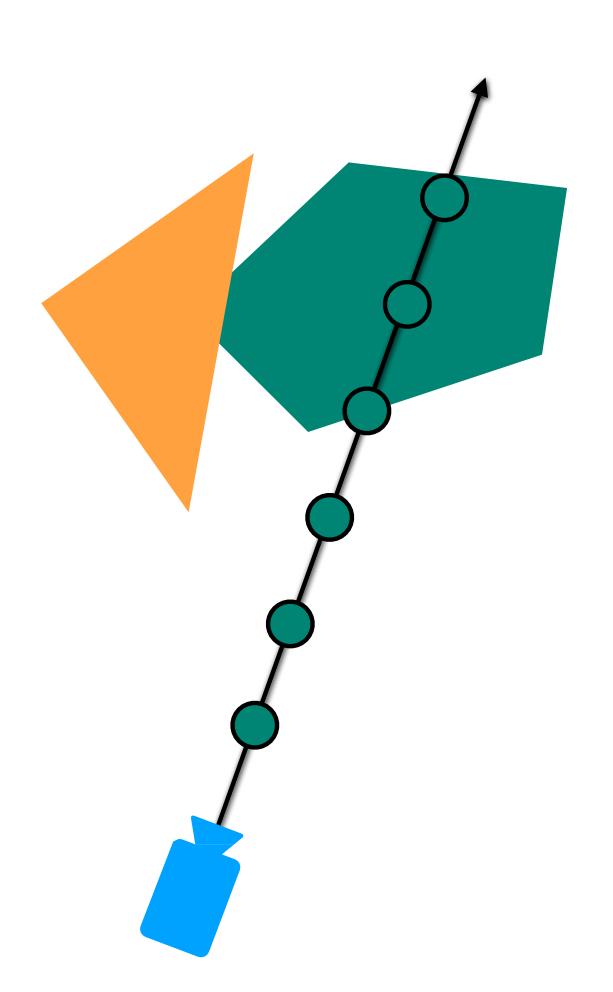
How much light is contributed by ray segment i:

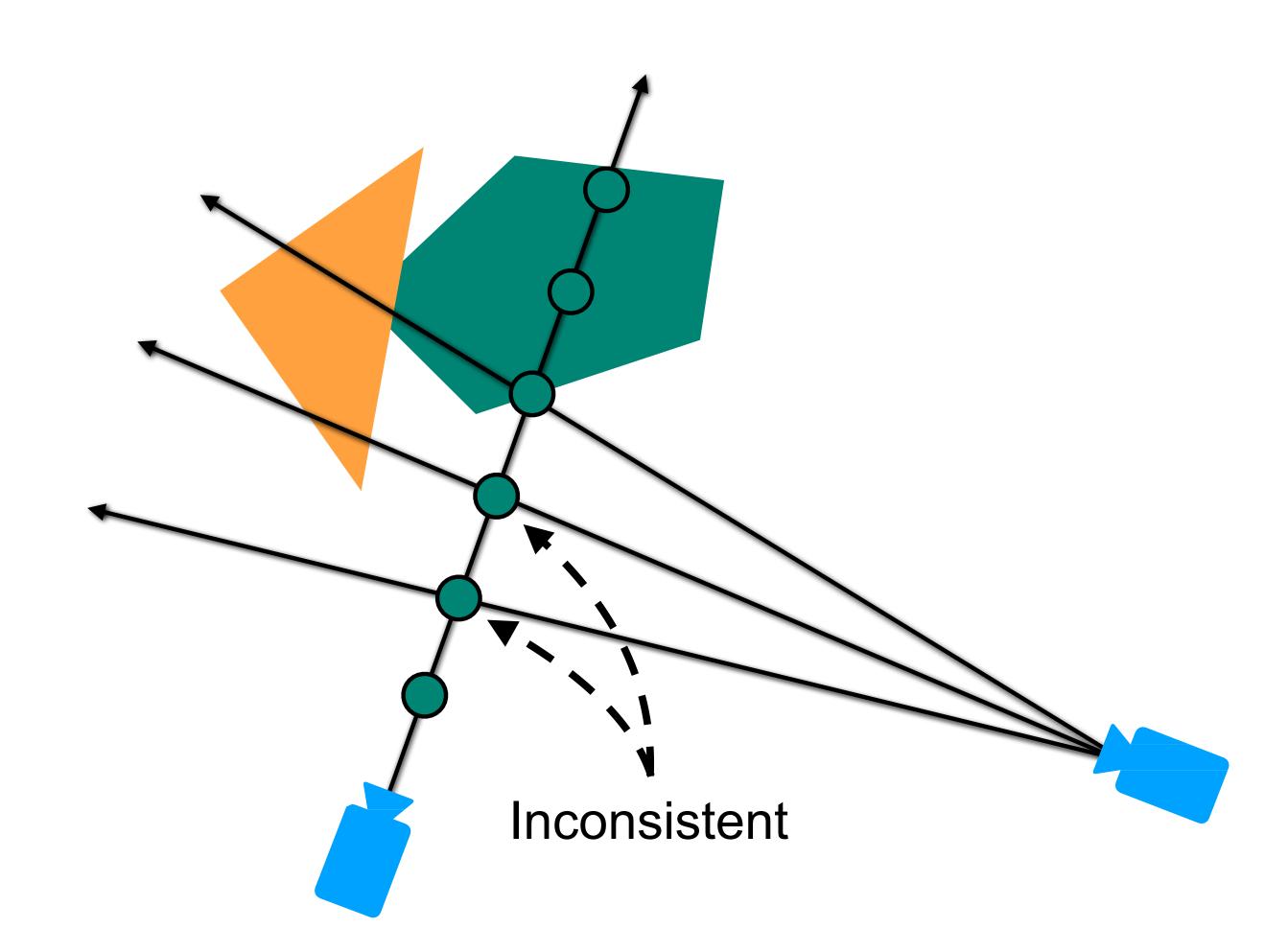
$$\alpha_i = 1 - e^{-\sigma_i \delta t_i}$$

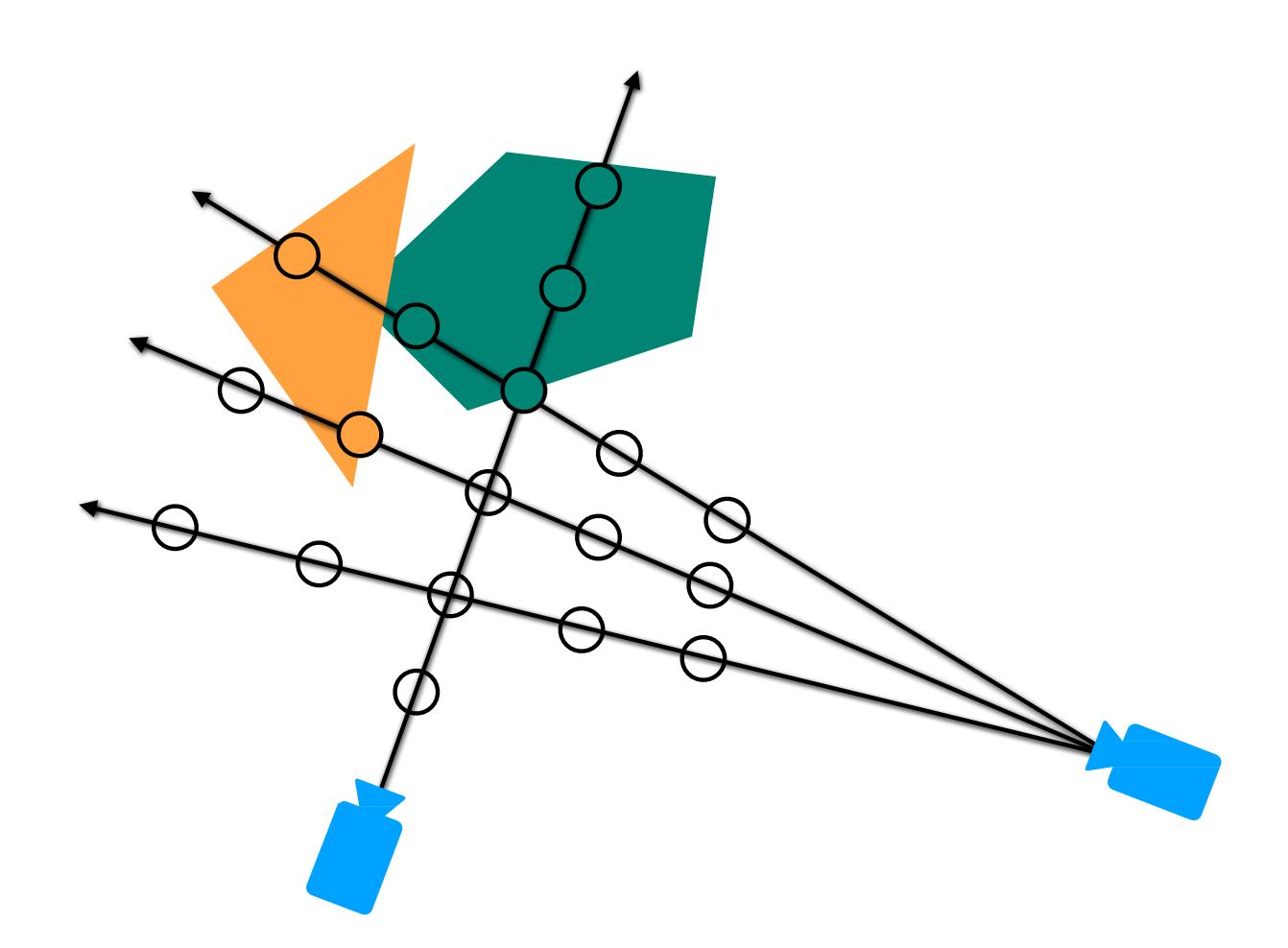


Training network to reproduce all input views of the scene

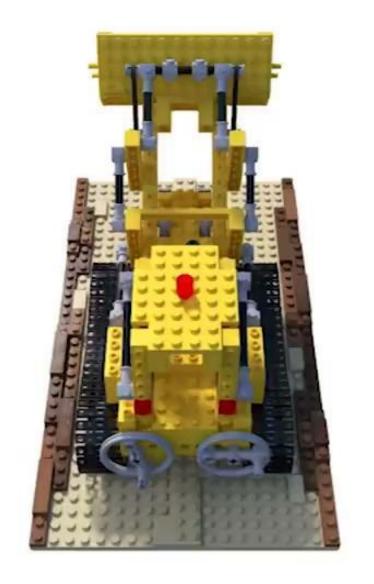


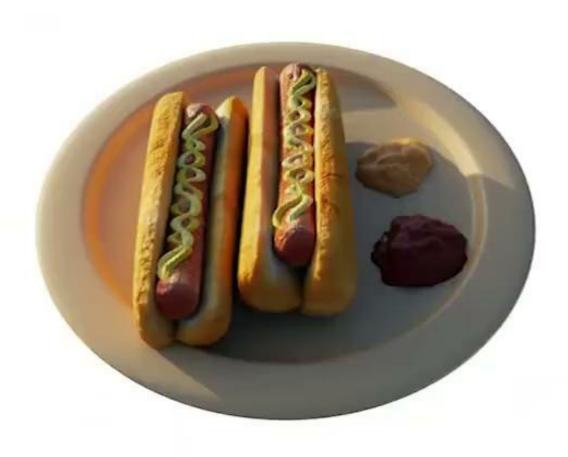




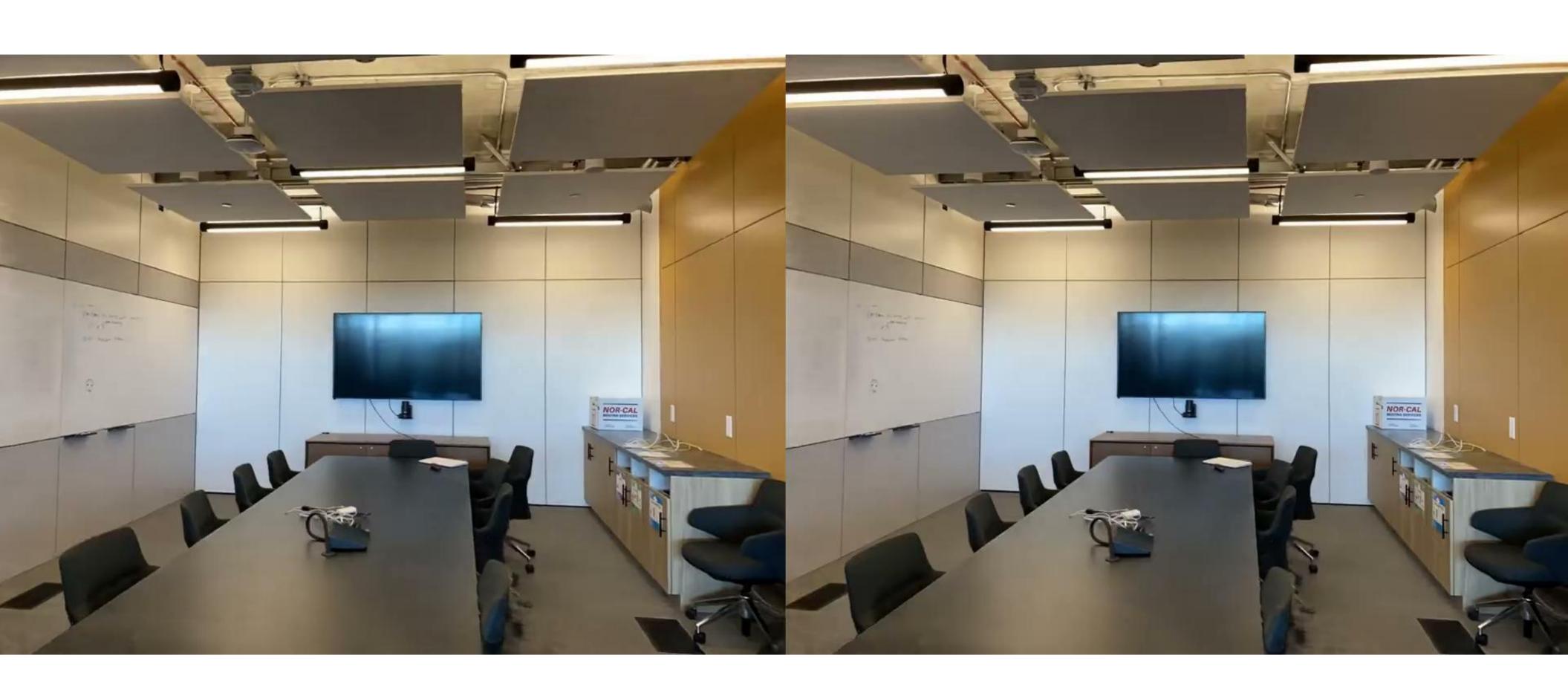


Results





NeRF encodes convincing view-dependent effects using directional dependence



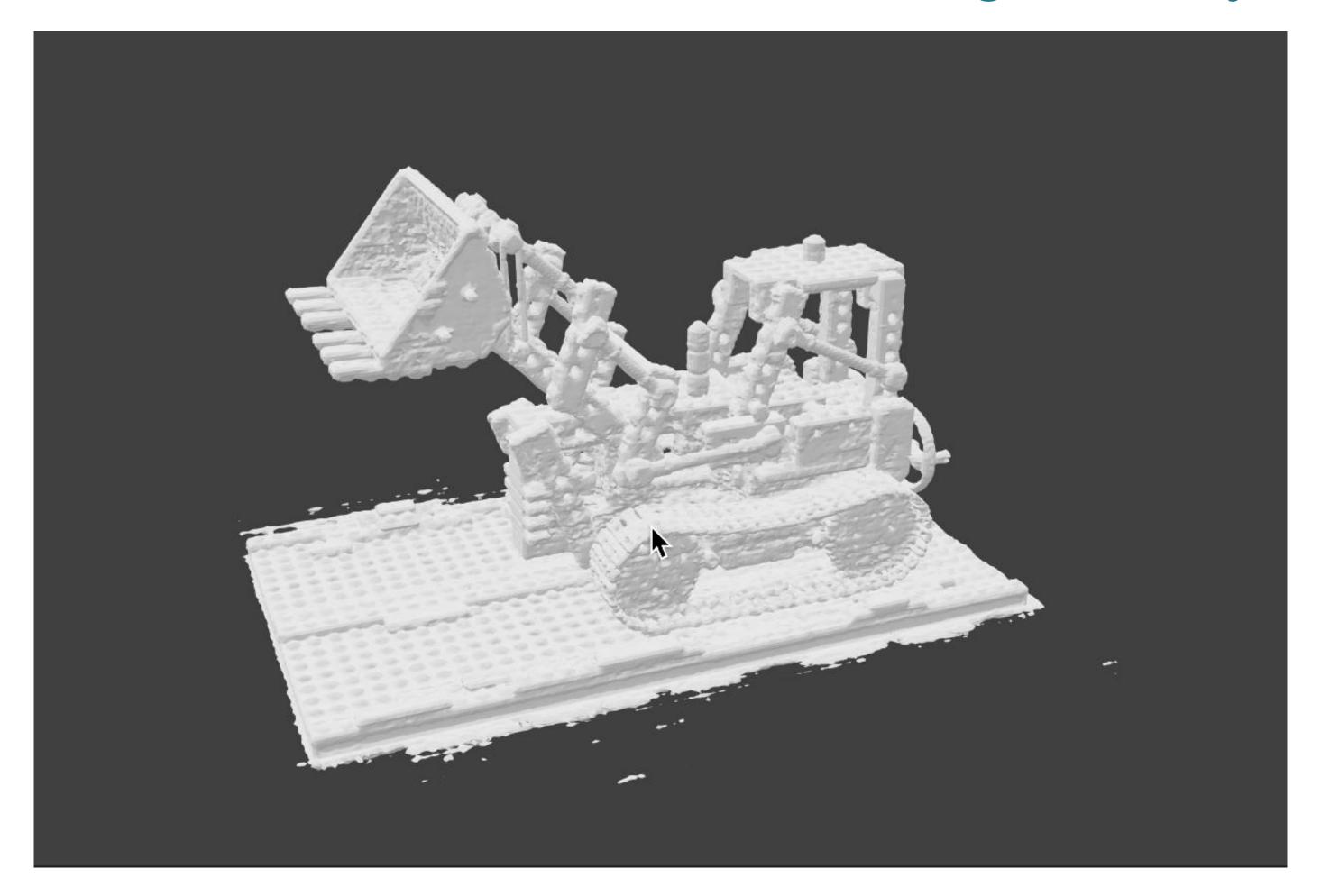
NeRF encodes convincing view-dependent effects using directional dependence

A great example! (not from the NeRF paper)

_

Notice the occlusion!

NeRF encodes detailed scene geometry



Jenin

Naive implementation produces blurry results



NeRF (Naive)

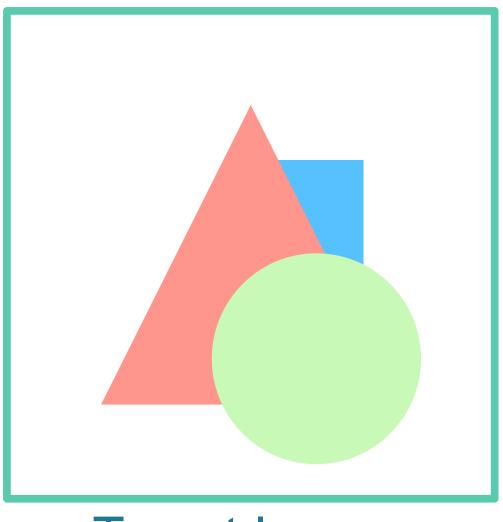
Naive implementation produces blurry results

NeRF (Naive)

NeRF (with positional encoding)

PositionalEncodings

How to get neural networks to represent higher frequency functions?

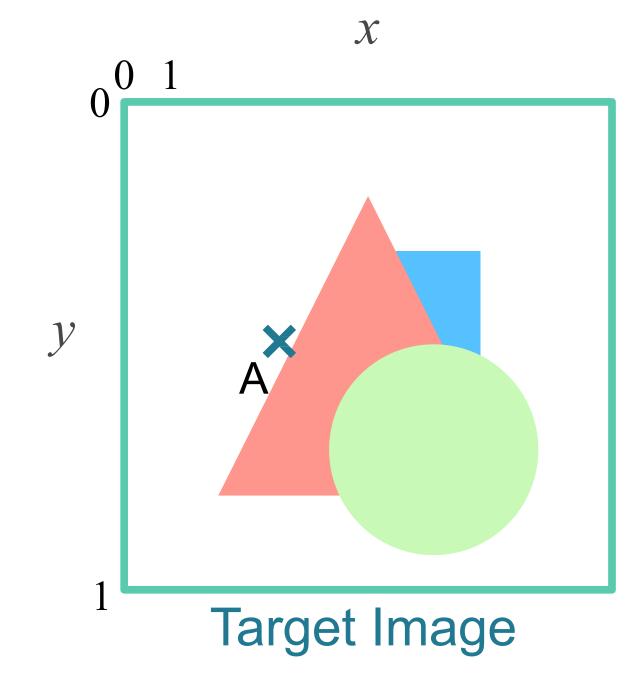


Target Image

Input

x y

A .36.5



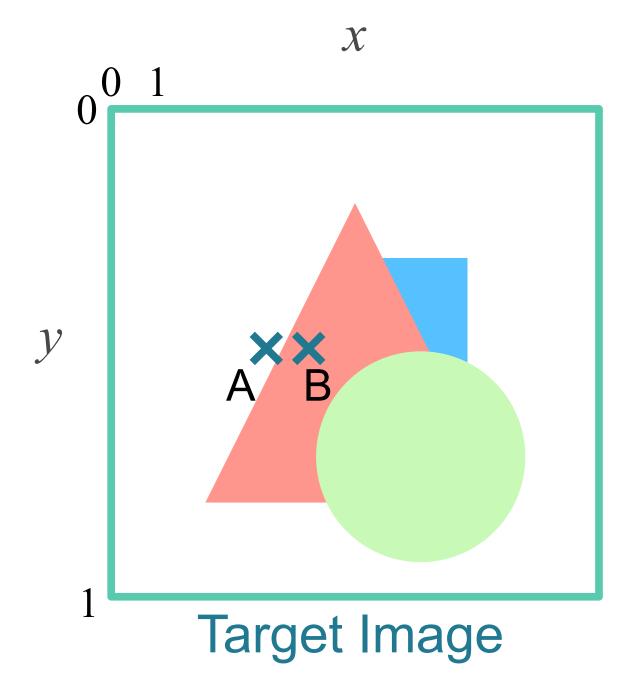
Input

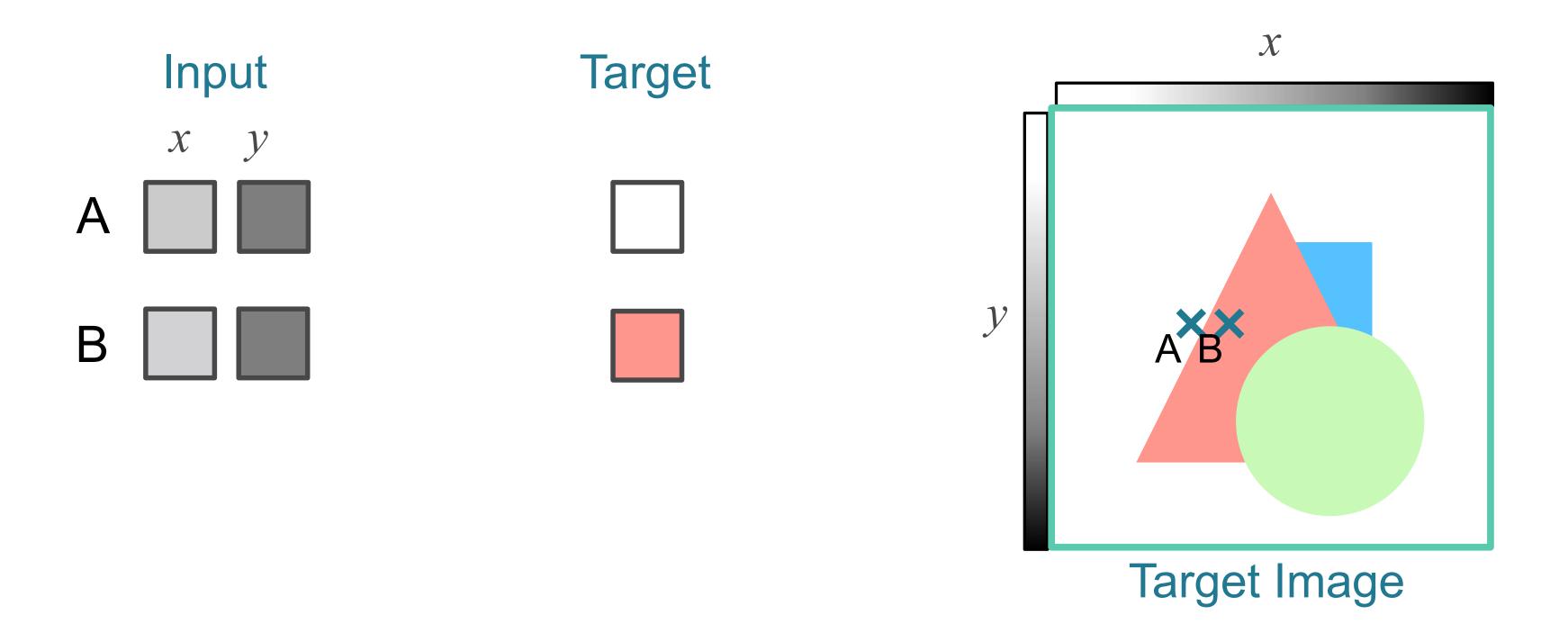
x y

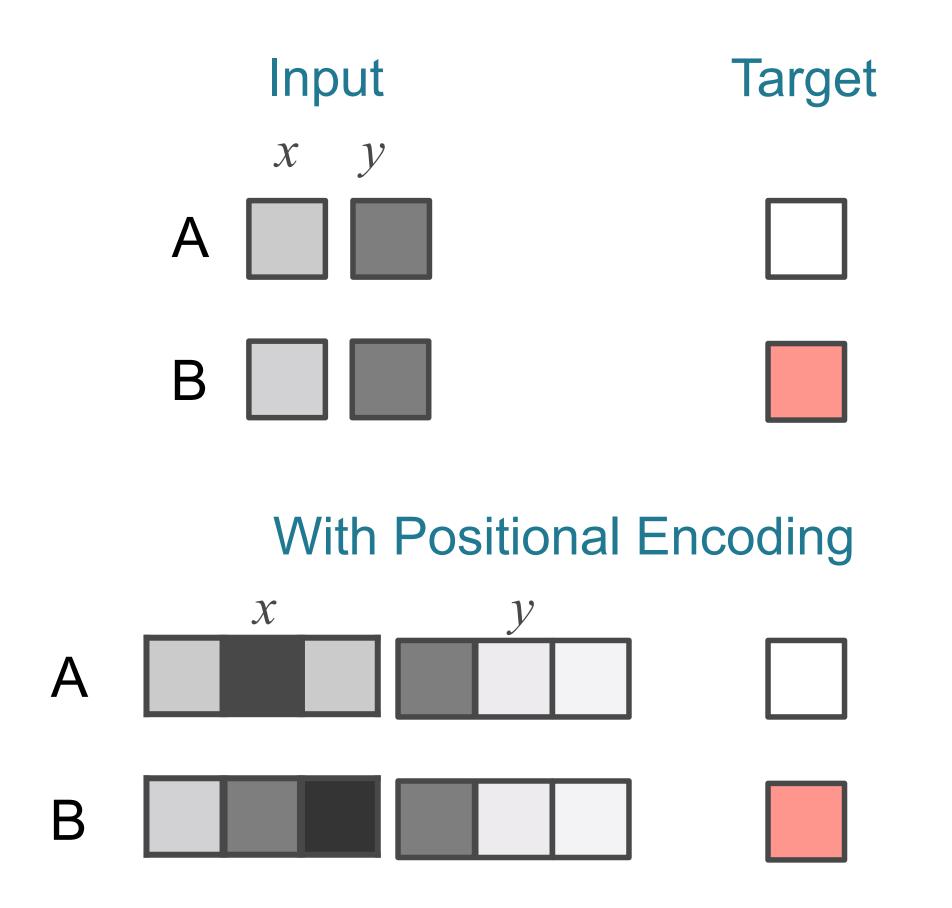
A .36.5

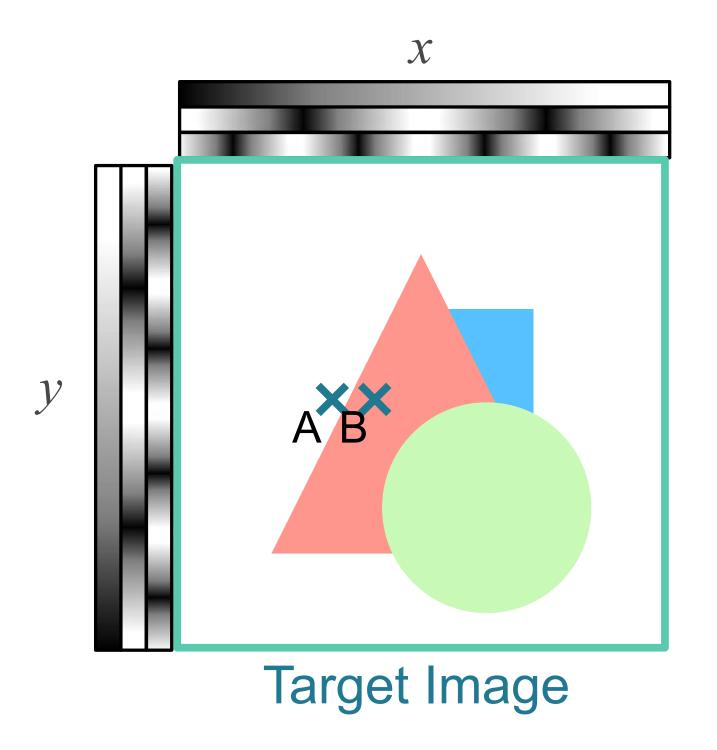
B .38.5

Target

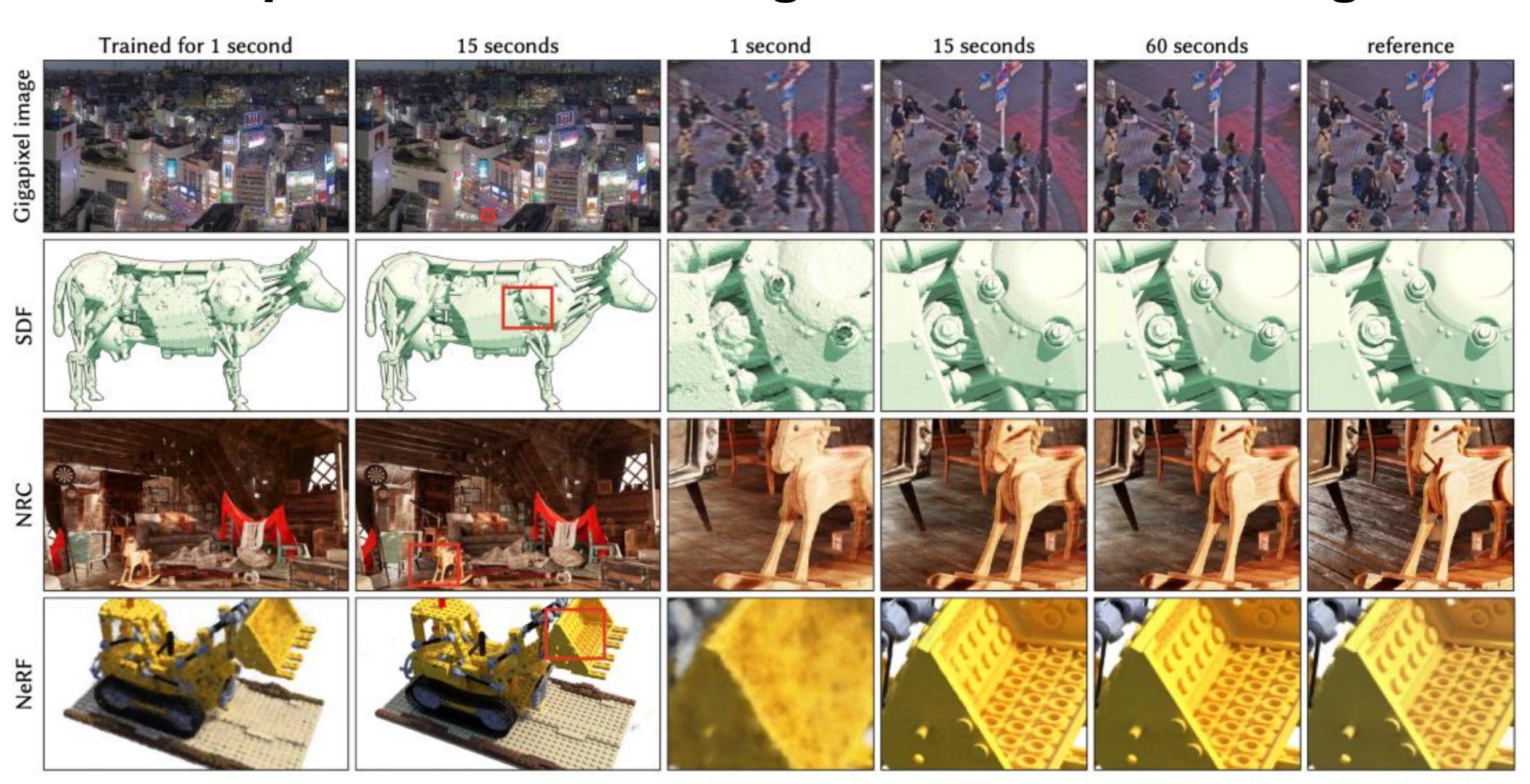








Better positional encodings decreased training time

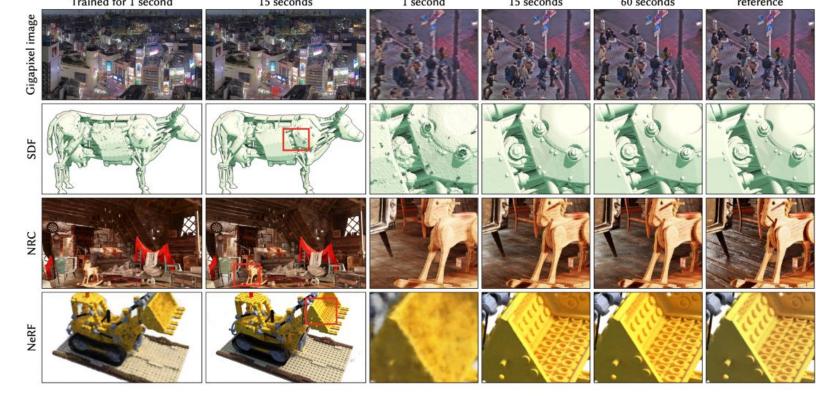


Better positional encodings decreased training time

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

THOMAS MÜLLER, NVIDIA, Switzerland ALEX EVANS, NVIDIA, United Kingdom CHRISTOPH SCHIED, NVIDIA, USA ALEXANDER KELLER, NVIDIA, Germany

https://nvlabs.github.io/instant-ngp





Scene Contraction

How can we represent unbounded spaces?

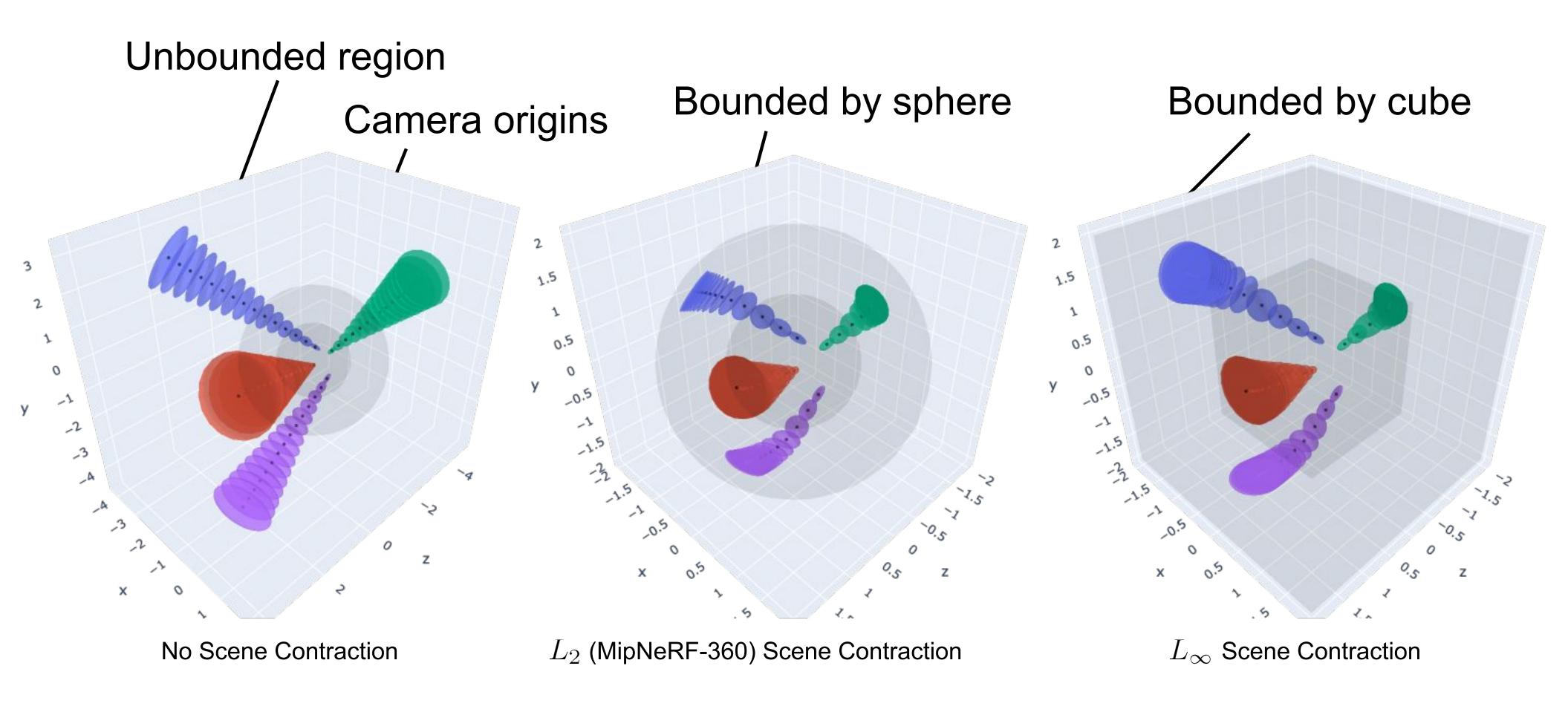
Mip-NeRF 360

Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields

Jonathan T. Barron¹ Ben Mildenhall¹ Dor Verbin^{1,2}
Pratul P. Srinivasan¹ Peter Hedman¹

¹Google Research ²Harvard University

Major idea: use a contracted and bounded region as input to an MLP or hash grid



Major idea: use a contracted and bounded region as input to an MLP or hash grid

AppearanceEmbeddings

How can we handle varying camera exposure or lighting changes?

NeRF in the Wild

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections

Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, Daniel Duckworth

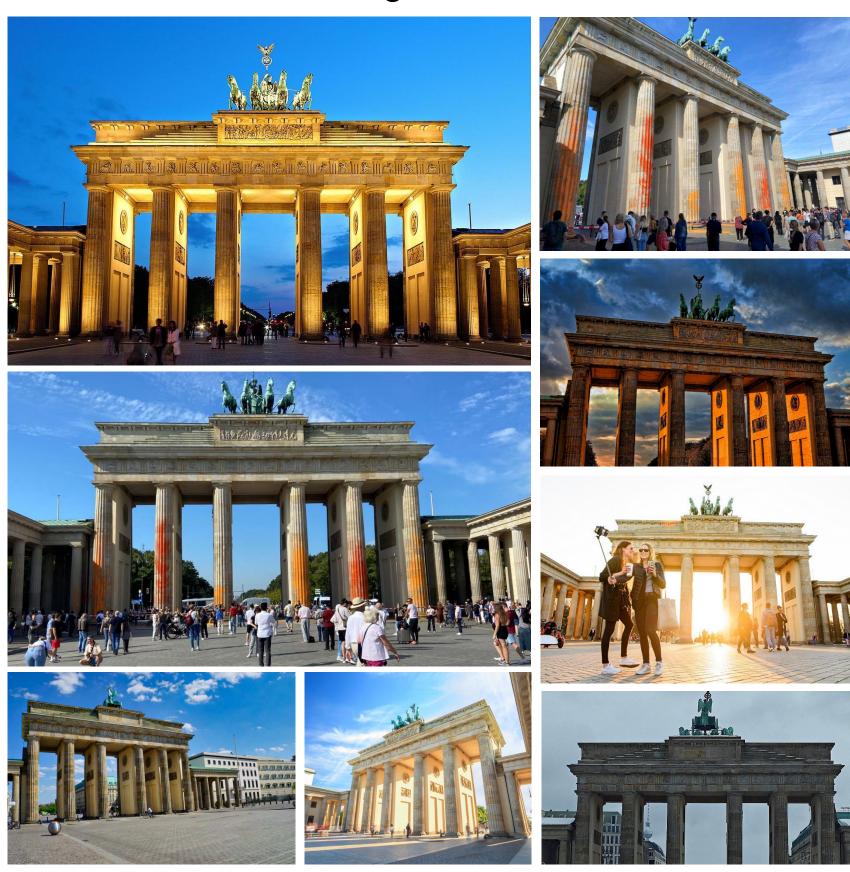
Brandenburg Gate in Berlin

NeRF in the Wild

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections

Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, Daniel Duckworth

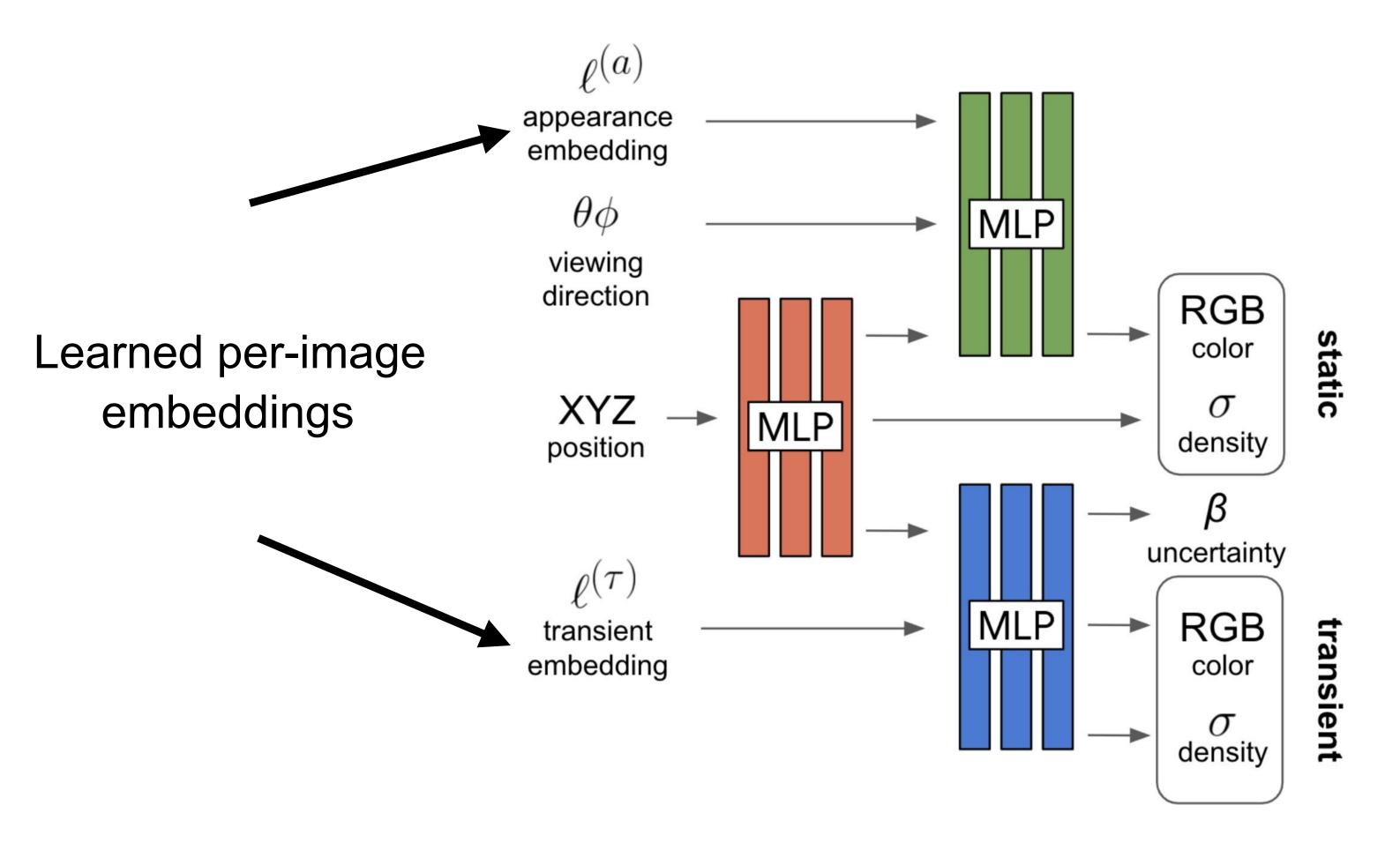
Brandenburg Gate in Berlin



NeRF in the Wild

NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections

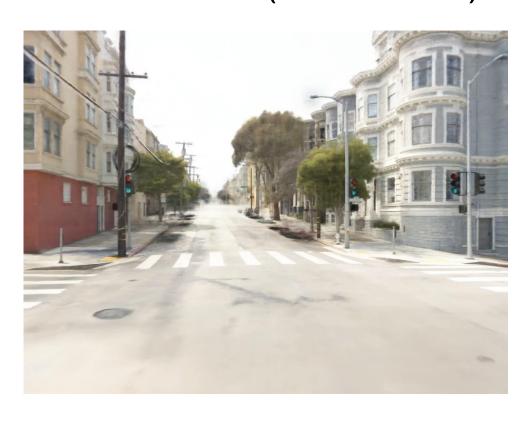
Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, Daniel Duckworth



Appearance Embeddings

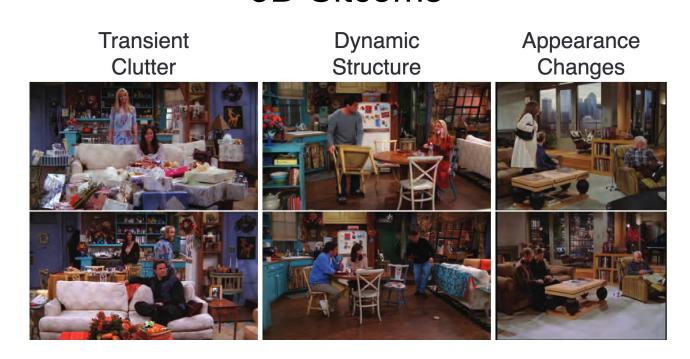
NeRF-W (Martin-Brualla* & Radwan* et al

Block-NeRF (Tancik et al)



Splatfacto-W (Xu et al)

3D Sitcoms



Nerfacto (Nerfstudio)

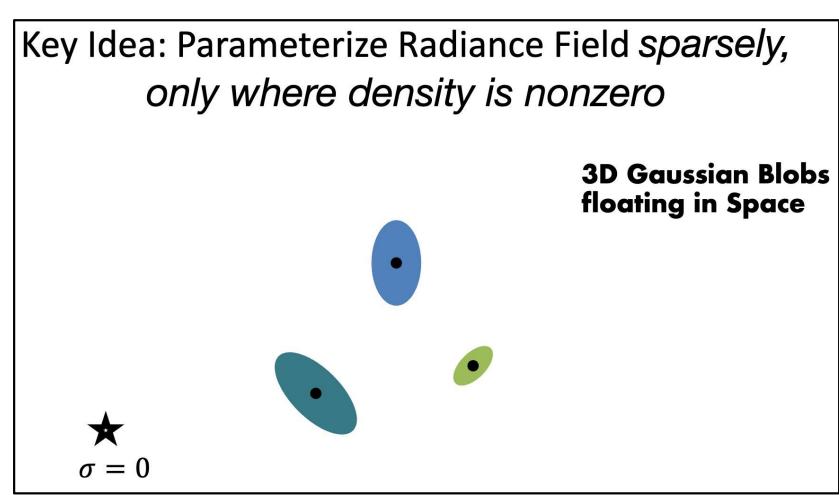
Thank You!

3D Reconstruction

Novel-View Synthesis

NeRF

3DGaussian Splatting



Resource: lecture notes from Stanford (adapted from MIT) here

3D Gaussian Splatting for Real-Time Radiance Field Rendering

BERNHARD KERBL*, Inria, Université Côte d'Azur, France GEORGIOS KOPANAS*, Inria, Université Côte d'Azur, France THOMAS LEIMKÜHLER, Max-Planck-Institut für Informatik, Germany GEORGE DRETTAKIS, Inria, Université Côte d'Azur, France Rasterize shape primitives instead of sampling a field

gsplat (https://docs.gsplat.studio)

2D toy example on an image

Parameters to optimize:

- Color
- Opacity
- Position
- Scale(s)
- Rotation

Optimization tricks:
Initialization Culling &
pruning Splitting &
densify Coarse to fine

Going into iconic movie scenes using gaussian splats

Here are the interactive gaussian splats for each scene:

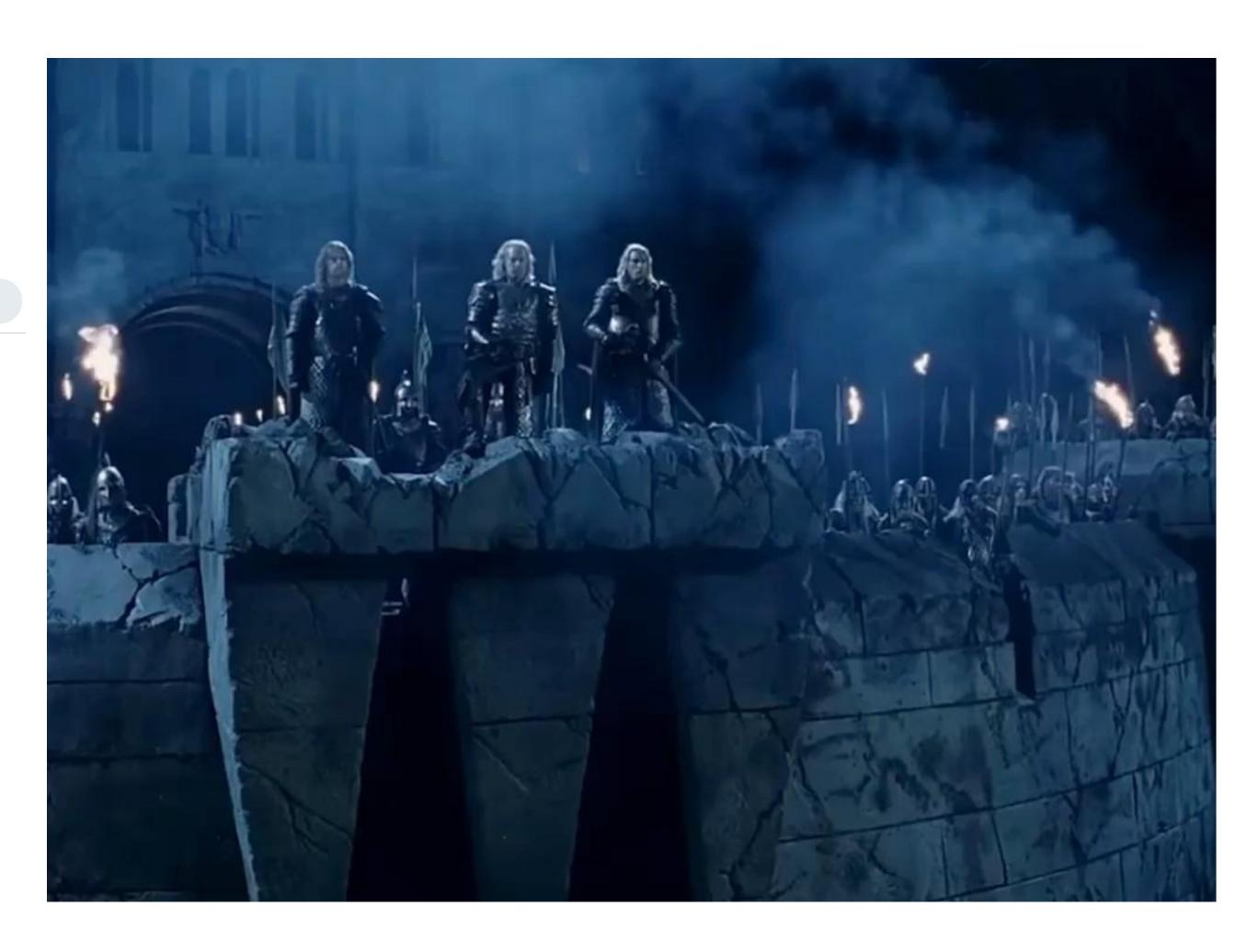
LOTR: https://lumalabs.ai/capture/176ED9AA-514F-4A45-9343-D4C708C86570

Matrix: https://lumalabs.ai/capture/F358C359-42BE-44B6-BA81-D58C7F75E19D

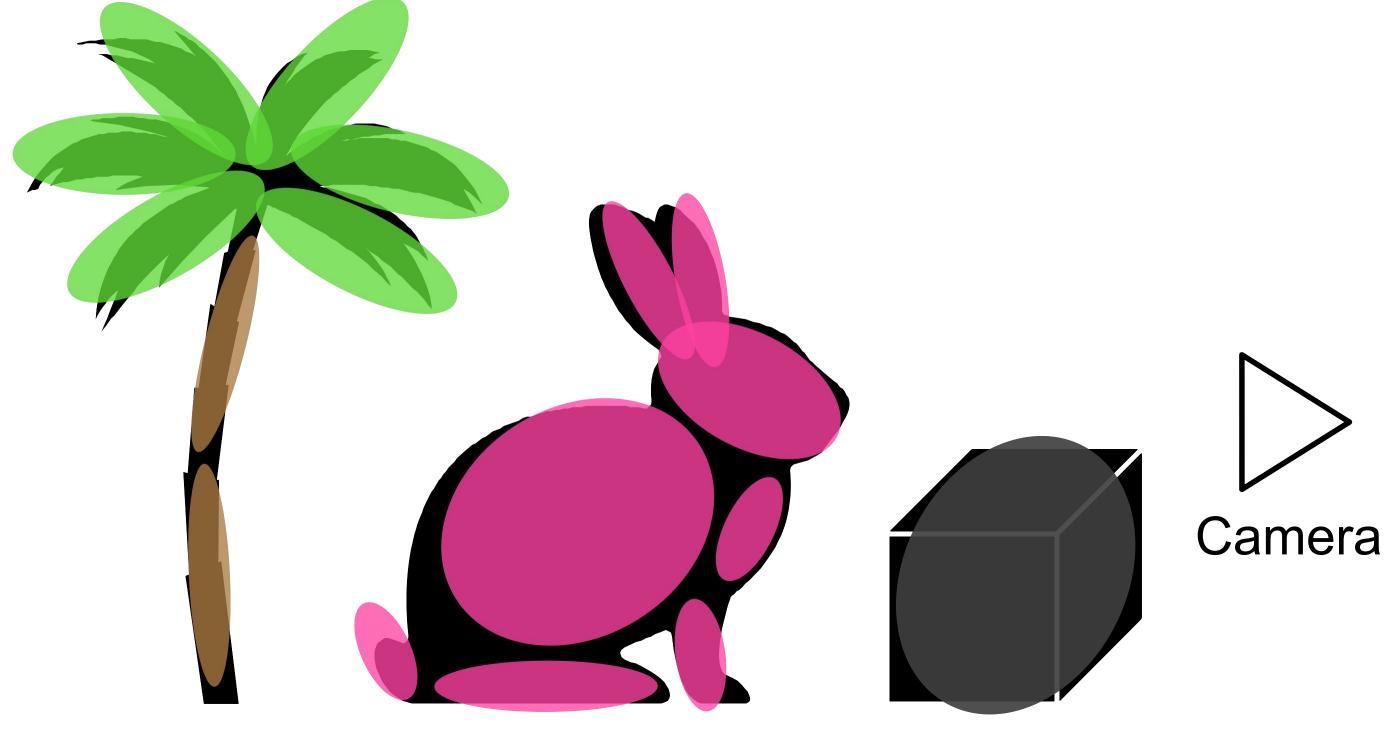
Citizen Kane: https://lumalabs.ai/capture/4ED192E4-44C9-4550-BC80-2CB130753F5D

Wizard of Oz: https://lumalabs.ai/capture/3D8B463B-62FF-43AF-AD42-B1E47C1213D5

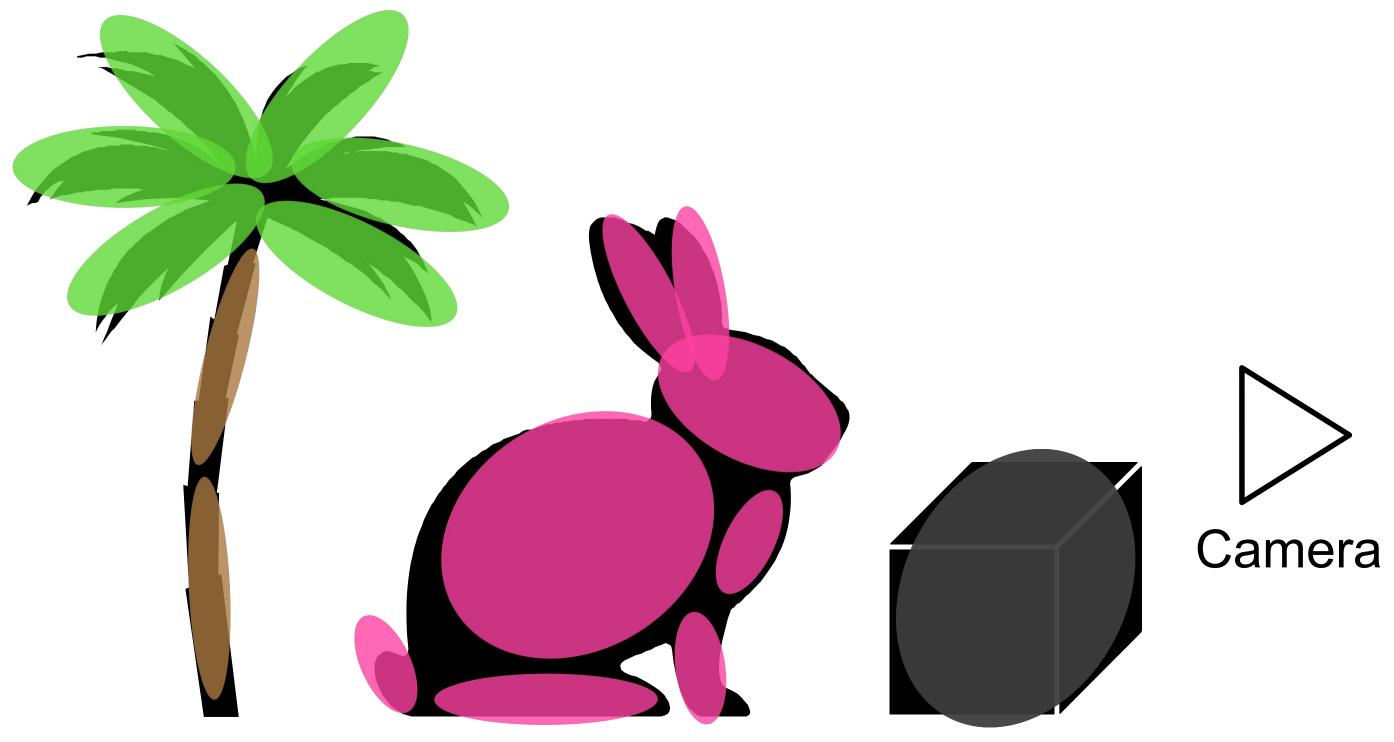
Terminator 2: https://lumalabs.ai/capture/220C2F41-E512-455C-B3EE-47CDD4398743



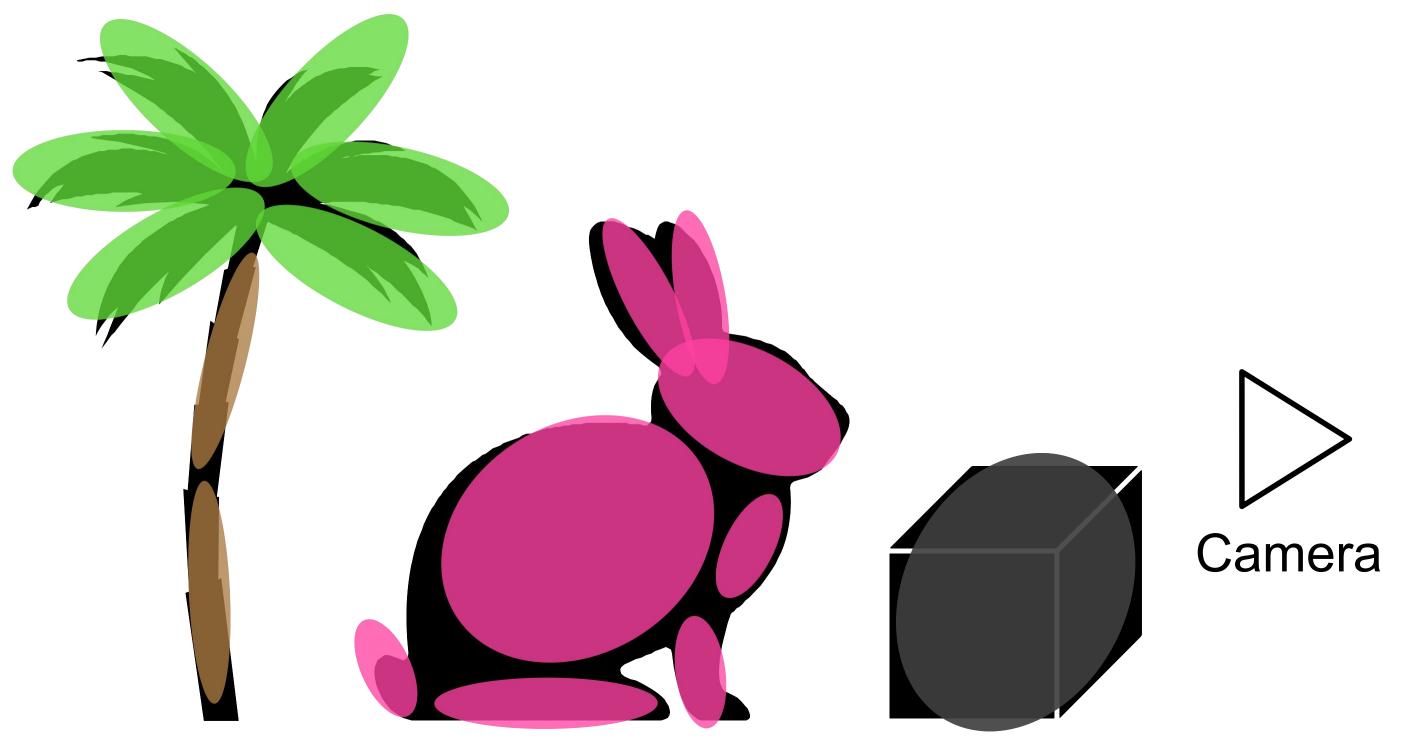
Target Image



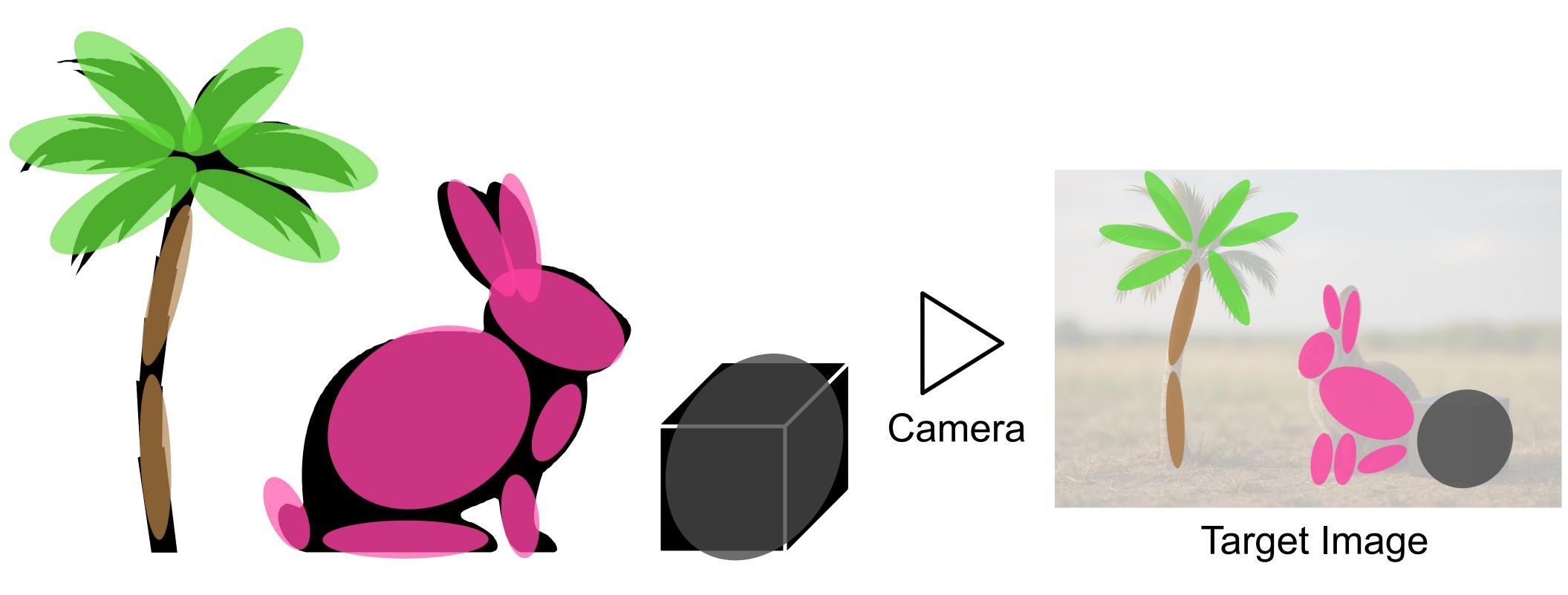
Target Image



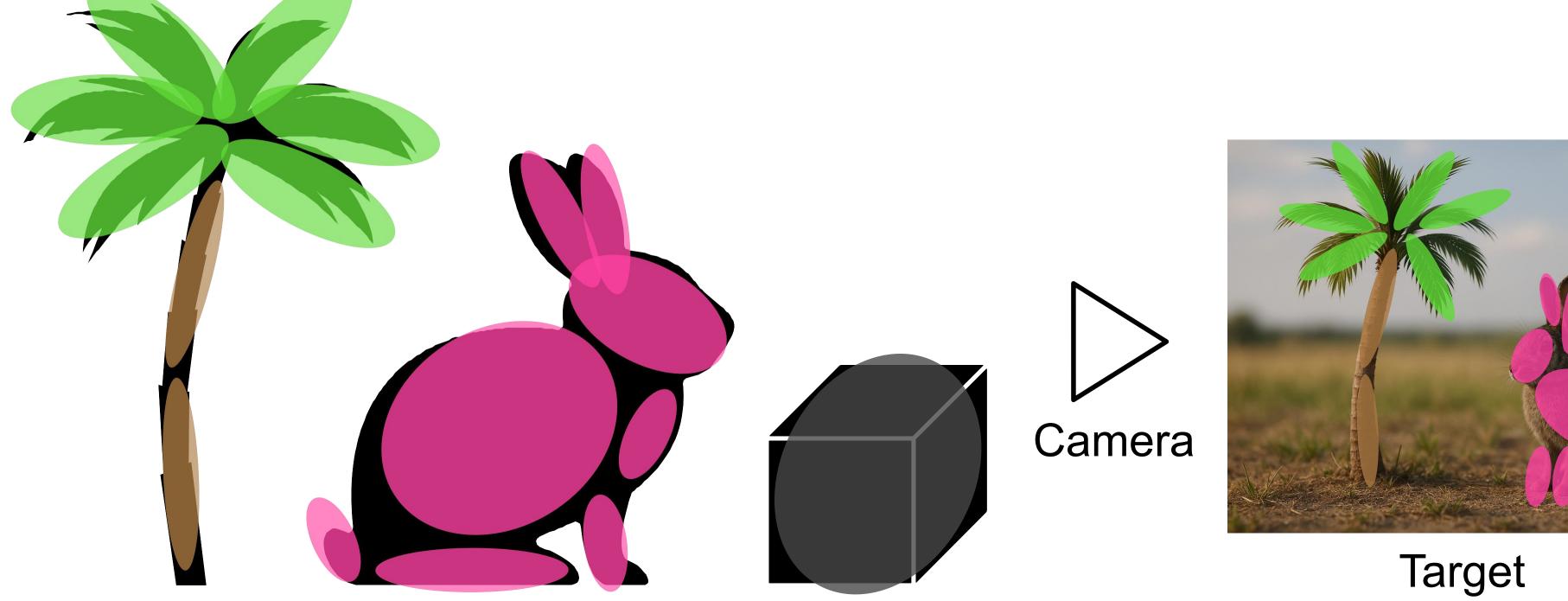
Target Image

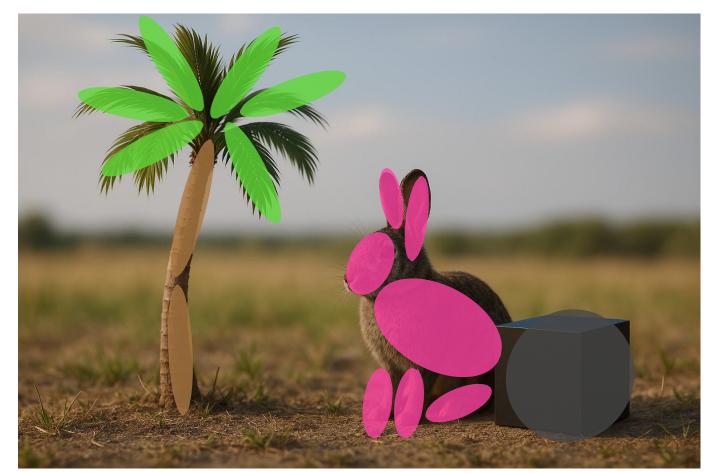


Target Image



Optimize Gaussians to match the target image

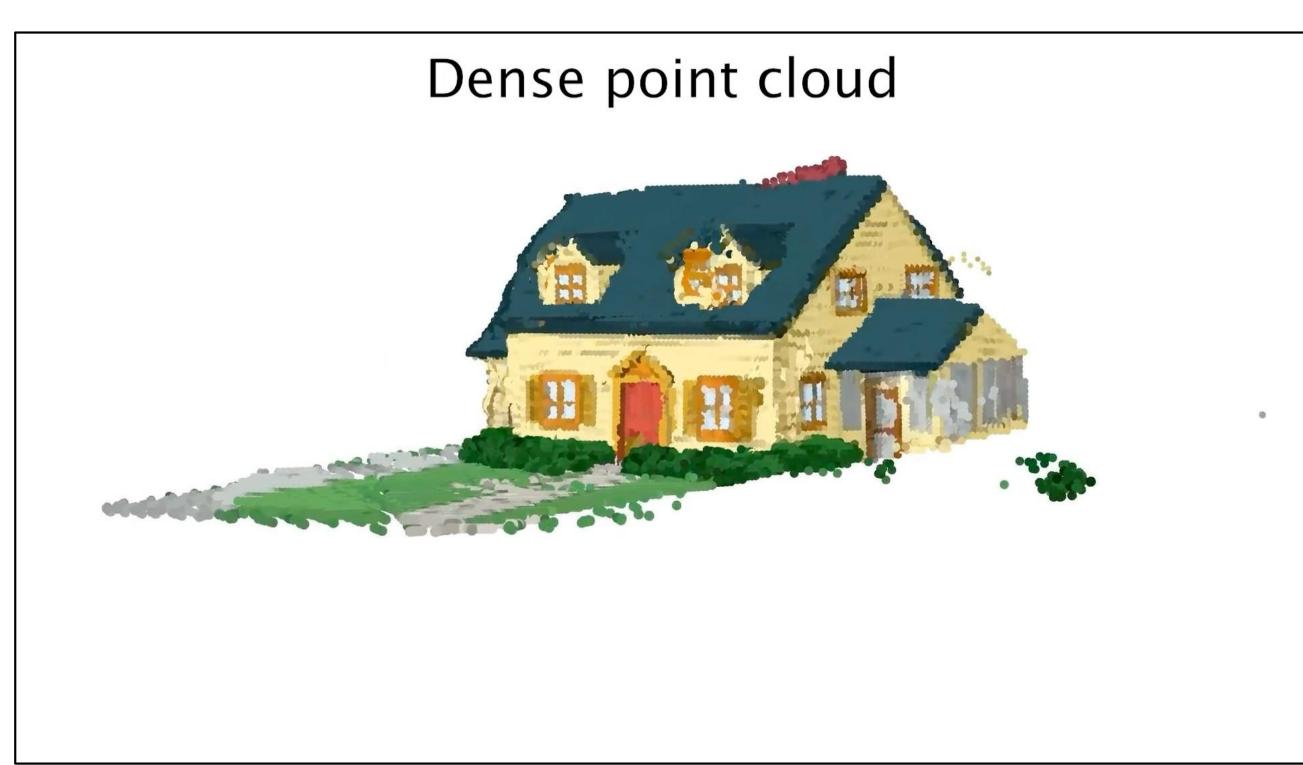




Image

Toon3D Gaussian Splatting For Better Visualizations

Optimize camera and align points



Follow-ups to Gaussian Splatting

3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting

Qi Wu¹*, Janick Martinez Esturo¹*, Ashkan Mirzaei^{1,2}, Nicolas Moenne-Loccoz¹, Zan Gojcic¹

¹NVIDIA, ²University of Toronto

3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes

NICOLAS MOENNE-LOCCOZ*, NVIDIA, Canada

ASHKAN MIRZAEI*, NVIDIA, Canada and University of Toronto, Canada

OR PEREL, NVIDIA, Israel

RICCARDO DE LUTIO, NVIDIA, USA

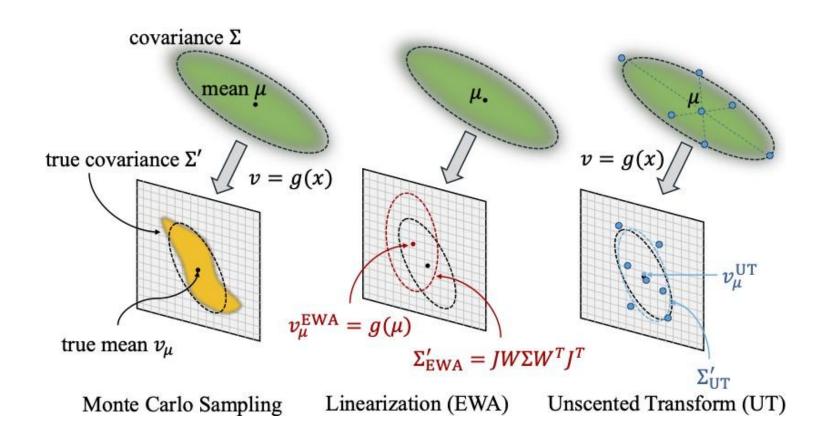
JANICK MARTINEZ ESTURO, NVIDIA, Germany

GAVRIEL STATE, NVIDIA, Canada

SANJA FIDLER, NVIDIA, Canada, University of Toronto, Canada, and Vector Institute, Canada

NICHOLAS SHARP[†], NVIDIA, USA

ZAN GOJCIC[†], NVIDIA, Switzerland



3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes

NICOLAS MOENNE-LOCCOZ*, NVIDIA, Canada

ASHKAN MIRZAEI*, NVIDIA, Canada and University of Toronto, Canada

OR PEREL, NVIDIA, Israel

RICCARDO DE LUTIO, NVIDIA, USA

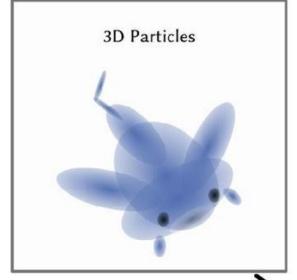
JANICK MARTINEZ ESTURO, NVIDIA, Germany

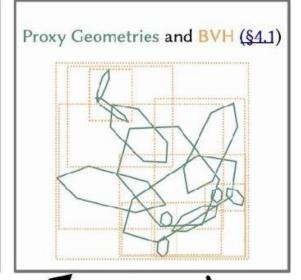
GAVRIEL STATE, NVIDIA, Canada

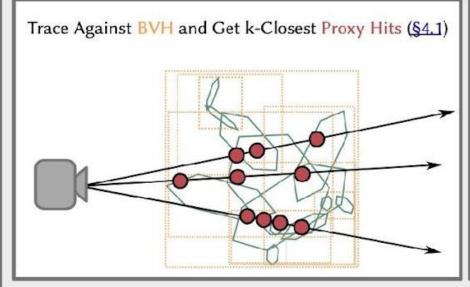
SANJA FIDLER, NVIDIA, Canada, University of Toronto, Canada, and Vector Institute, Canada

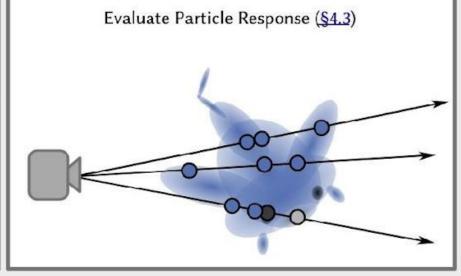
NICHOLAS SHARP[†], NVIDIA, USA

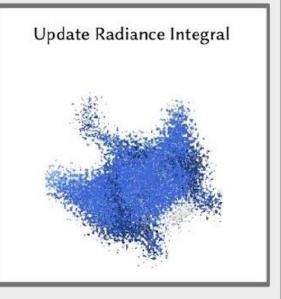
ZAN GOJCIC[†], NVIDIA, Switzerland

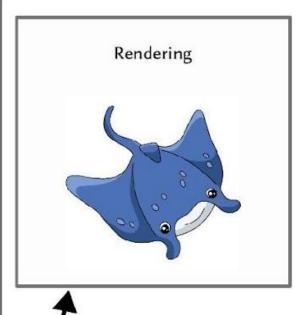












Repeat Until All Particles Evaluated or Transmittance Theshold

3D Reconstruction

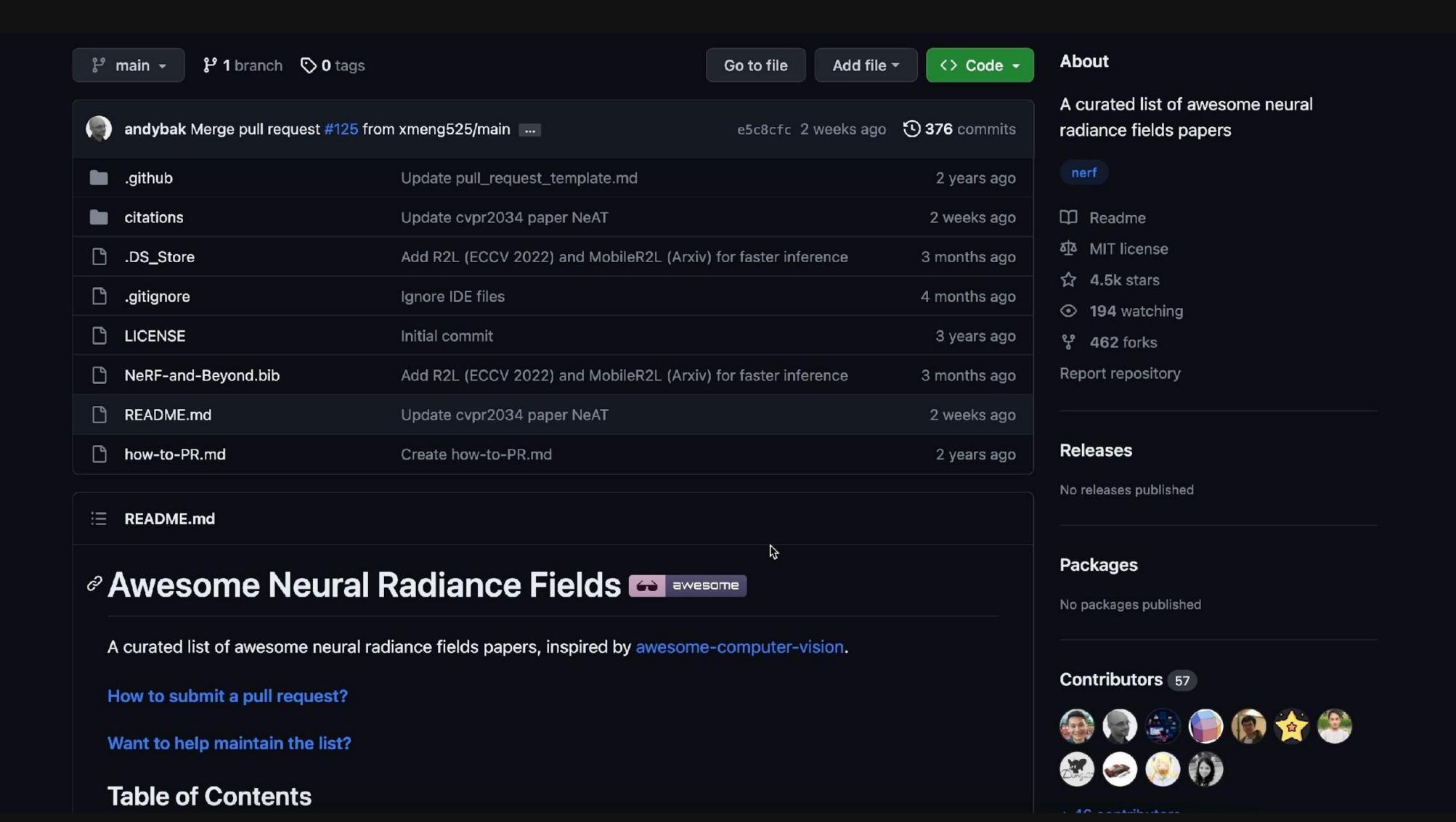
Novel-View Synthesis

NeRF

3DGaussian Splatting

A Modular Framework for NeRF Development

Matthew Tancik*, Ethan Weber*, Evonne Ng*, Ruilong Li, Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David McAllister, Angjoo Kanazawa



Nerfstudio Design Goals

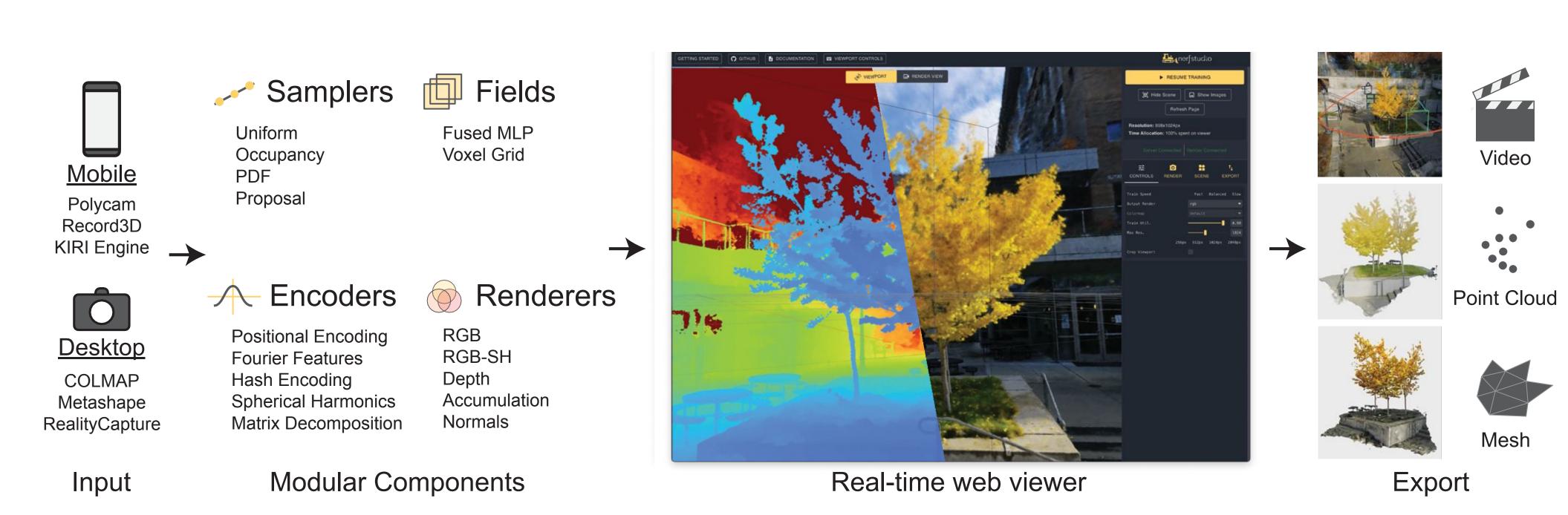
Easy to:

Use

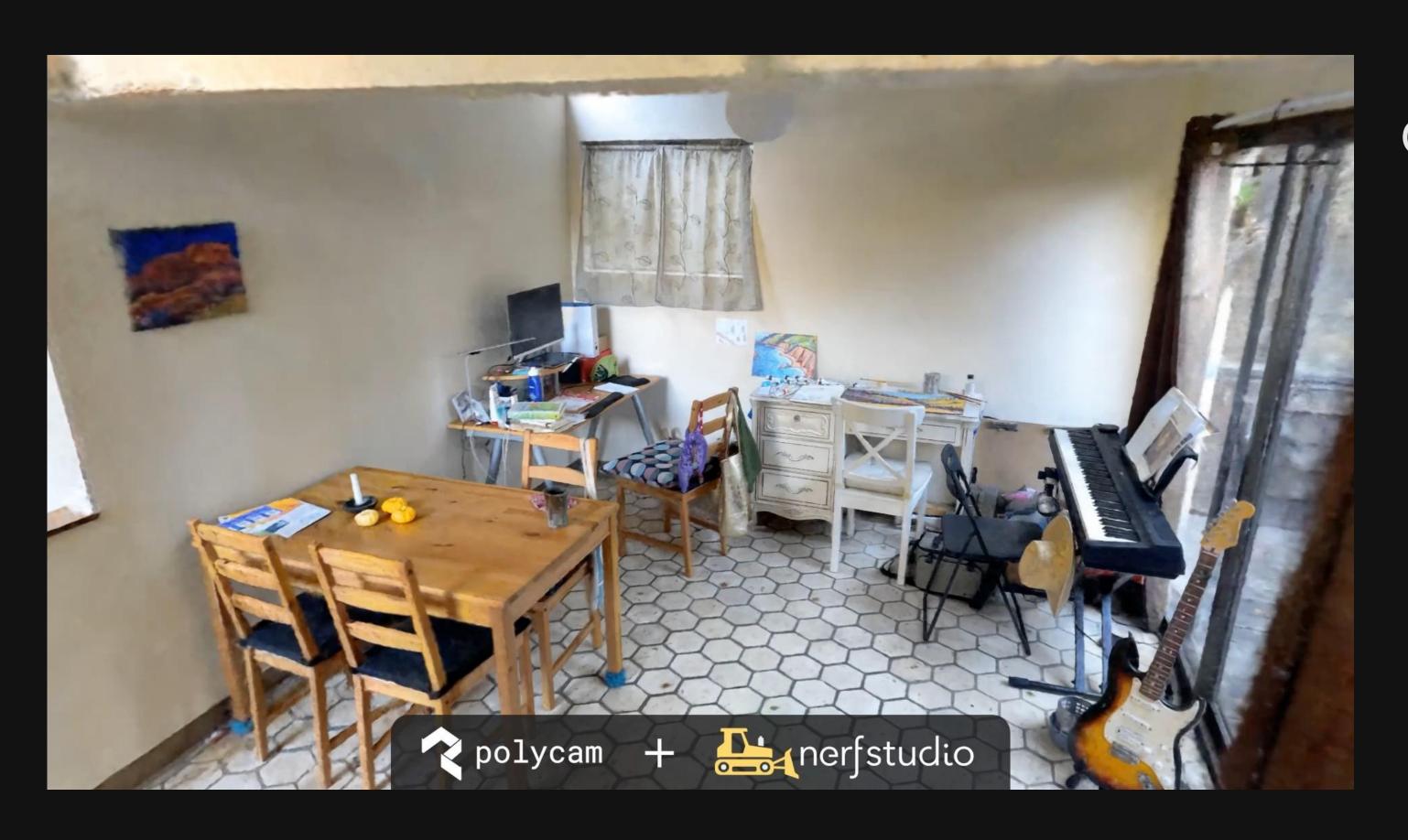
Develop

Learn

An End-to-End Framework



Data Pipelines



Onboarding Pipelines

- COLMAP
- Polycam
- Record3D
- MetaShape
- RealityCapture
- Kiri Engine

Easy to Develop

Sampling

Fields & Encoders

Volumetric Rendering

Pythonic and Modular

Easy to Develop

Sampling

- Uniform
- Occupancy
- PDF
- Proposal
- Spacing Fn

Fields & Encoders

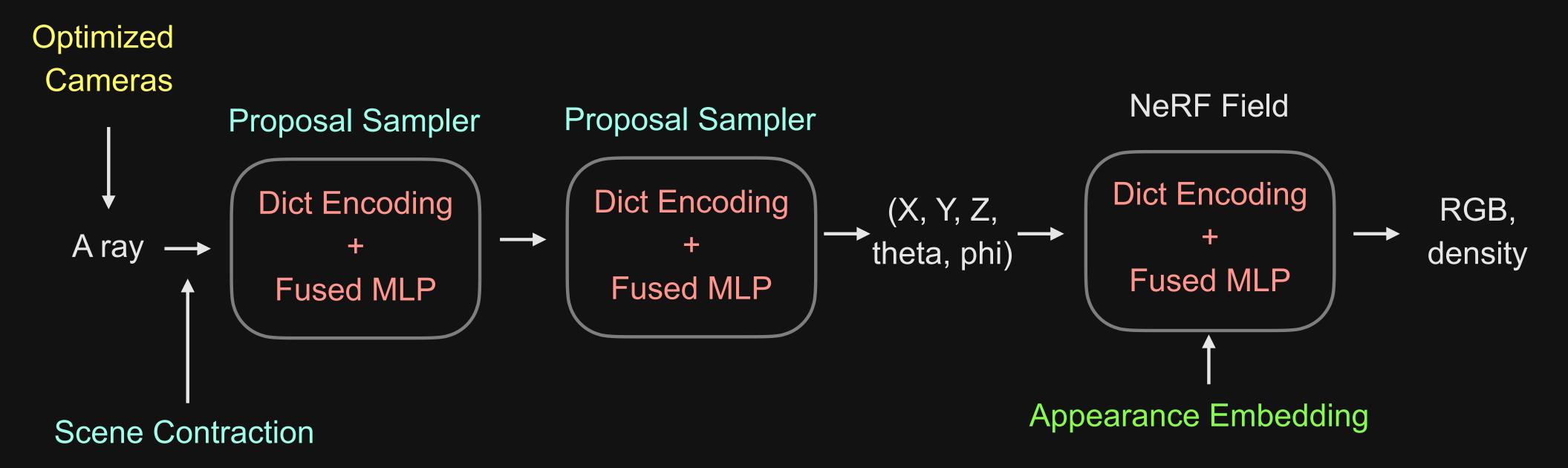
- Positional Encoding
- Fourier Features
- Hash Encoding
- Spherical Harmonics
- Matrix Decomposition
- Fused MLP
- Voxel Grid

Volumetric Rendering

- RGB
- RGB-SH
- Depth
- Accumulation
- Normals

Pythonic and Modular

Striking the balance between performance & easy development



mip-NeRF 360, NeRF-W, NeRF--/BaRF, InstantNGP

Nerfa to Variants (Bigger models work better)

Model	Description	Memory	Speed
nerfacto	Default Model	~6GB	Fast
nerfacto-big	Larger higher quality	~12GB	Slow
Nerfacto-huge	Even larger and higher quality	~24Gb	Slower

