Lecture 4: Transforms (46)
ochan1

An interpretation of this would be: Pick your rotation around ONE axis

You will affect two of the three axes

Rotation about a 2D space, keep other one constant

In short, you are working to rotate utilizing two axes at a time (mini-proof is notice the columns with the 1s and the 2D rotation like elements in the matrix)

yirenng

@ochan1 -- thank you!

yirenng

For Ry(α)\mathbf{R}_y(\alpha), where would the red arrow go? And how about for Rz(α)\mathbf{R}_z(\alpha). Why does the top-right sin(α)\sin(\alpha) in the second matrix lack a negative sign?

You must be enrolled in the course to comment